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Abstract

Let Ax = b be a large and sparse system of linear equations where A is
a nonsingular matrix. An approximate solution is frequently obtained by
applying preconditioned iterations. Consider the matrix B = A + PQT

where P,Q ∈ Rn×k are full rank matrices. In this work we study the
problem of updating a previously computed preconditioner for A in order
to solve the updated linear system Bx = b by preconditioned iterations.
In particular we propose a method for updating a Balanced Incomplete
Factorization preconditioner. The strategy is based on the computation of
an approximate Inverse Sherman-Morrison decomposition for an equiva-
lent augmented linear system. Approximation properties of the precondi-
tioned matrix and an analysis of the computational cost of the algorithm
are studied. Moreover, the results of the numerical experiments with dif-
ferent types of problems show that the proposed method contributes to
accelerate the convergence.

Keywords: Iterative methods; preconditioning; low rank update; balanced
incomplete factorization; sparse linear systems

1 Introduction

Let A be a nonsingular matrix and consider the matrix B given by

B = A+ PQT (1)

where P and Q are n× k rectangular matrices with k � n. We assume that B
is a nonsingular matrix and that P and Q have full rank. We are interested in
solving the updated linear system

Bx = b (2)

∗This work was supported by the Spanish Ministerio de Economı́a y Competitividad under
grant MTM2014-58159-P.
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by preconditioned iterations updating a previously computed preconditioner for
A.

The problem of updating a preconditioner for a matrix arise in many appli-
cations of numerical linear algebra. Very often it is coupled with the problem
of solving a sequence of linear systems as, for example, the solution of nonlin-
ear equations by a Newton-like method [26]. Quasi-Newton methods involve
low-rank updates of an approximate factorization of an initial Jacobian matrix
[3, 4]. Other approaches are based on an estimation of the difference between a
reference matrix and the updated one [16]. In this context are of special interest
the so called matrix-free algorithms that do not require forming explicitly the
Jacobian matrix, see [17, 1] and the references therein. These approaches follow
somehow the ideas found in [2, 7] and generally involve a rank-n correction of
an initial factorized preconditioner. A different scenario corresponds to the case
where a given matrix can be split in two parts as A = M − N , with M being
a well conditioned matrix for which a proper preconditioner can be computed
efficiently, and the matrix N has low-rank. This kind of problems arise in the
application of the boundary integral methods where the Green’s function can
be approximated by a numerically low-rank matrix [22], spectral-tau methods
for Navier-Stokes equations [6], wave propagation phenomena and topology op-
timization [19, 20]. The matrix N can be approximated as a product of two
matrices by applying a singular value decomposition [21], [23], or with prob-
abilistic algorithms for constructing matrix decompositions [25]. In [18] the
authors propose a preconditioner based on splitting a nearly Hermitian matrix
A into its Hermitian and skew-Hermitian parts. Finally, in overdetermined least
squares problems that involve the addition of a set of new equations, the normal
equations can be formulated as a rank-k update of the normal equations for the
initial matrix [24].

In this paper we present an algebraic algorithm for problems whose system
matrix can be written in the form (1), i.e., it comes from a low-rank update. In
particular, we are interested on updating an initial Balanced Incomplete Fac-
torization (BIF) preconditioner. BIF is based on the Inverse Sherman-Morrison
(ISM) decomposition of a matrix and it is able to compute both the LDU fac-
torization and its inverse at the same time with a process that exhibits mu-
tual influence between both factorizations throughout the computation [10, 13].
In addition, with suitable dropping strategies a balance in the factors can be
achieved, helping to control the conditioning of the factors. These properties
give raise to robust preconditioners for a wide variety of problems as numeri-
cal results presented in [11, 12] confirm. Our aim is to carry out the updating
computations in such a way that the updated preconditioner exhibits the same
characteristics.

The paper is organized as follows. In section 2 we review the main char-
acteristics of the ISM decomposition and the BIF preconditioner. The method
to update a given BIF preconditioner is presented in section 3 and the pre-
conditioning step is described in section 4. An analysis of the computational
complexity is done in section 5. The approximation properties of the updated
preconditioner are analyzed in section 6. In section 7 we present the results of
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the numerical experiments for different problems. Finally, in section 8 we give
our conclusions.

2 ISM decomposition and BIF preconditioner

In this section we review the main characteristics of BIF preconditioners that
are based on the computation of an approximate ISM decomposition. ISM was
introduced in [10] as a method to compute an approximate inverse precondi-
tioner. The authors showed that by applying repeatedly the Sherman-Morrison
formula a factorization of a shifted inverse of a given matrix A can be obtained.
Consider the square matrices A0 and Y given by

A0 = sI, Y = (A−A0)T ,

where s is a positive parameter and I is the identity matrix. By applying
recursively, for j = 1, . . . , n, the formulas

zj = ej −
j−1∑
i=1

vji
sri

zi,

vj = yj −
j−1∑
i=1

ajzi
sri

vi,

rj = 1 +
yTj zj

s
=
ajzj
s

= 1 +
vjj
s

(3)

where ej and ej are the jth column and row respectively of the identity matrix,
and aj is the jth row of A. Let Z and Vs be the matrices whose columns are the
vectors zj and vj , and Ds a diagonal matrix containing the scalars rj as defined
in (3). Then, the expression

s−1I −A−1 = s−2ZD−1s V Ts (4)

is called an ISM decomposition of A. This decomposition is not unique since
it depends of the value of the parameter s, but two different ISM decomposi-
tions obtained for different parameters are closely related [11]. What it is more
interesting for us in this paper is that the ISM decomposition and the LDU fac-
torization of a matrix are strongly connected. In [12] it is proved the following
theorem.

Theorem 1. A square matrix A has LDU factorization, A = LDU , if and only
if it has ISM decomposition s−1I −A−1 = s−2ZD−1s V Ts .

Then

D = s−1Ds, U = Z−1 and Vs = UTD − sL−T .

That is, the ISM decomposition contains the D (scaled) and U factors of
the LDU factorization of A, and the factors L−1, U−1 of the LDU factorization
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of A−1. When A is a symmetric positive definite matrix all factors of the
LDLT factorizations of A are available and it is possible to get a Cholesky
preconditioner computing an incomplete ISM decomposition. In the general
case, one can get the missed factor from the ISM decomposition of AT , as it is
proposed in [12]. Let

s−1I −A−T = s−2Z̃D̃−1s Ṽ Ts ,

the ISM decomposition of AT . Then

Ṽs = LD − sU−1 .

Thus, the matrices Vs and Ṽs contain not only the LDU factorization of A
but also its inverse as it is graphically shown in Figure 1. An analysis of the
expressions (3) shows that there is a computational influence between the entries
of the matrices L and L−1 (U and U−1 as well), that is, the computed factors
do influence each other numerically. Furthermore, the computation of the upper
triangular part of the matrices Vs and Ṽs can be simplified, as it is stated in
Lemma 3.1 of [12]

vpj = s
ṽjp
dp
−

j−1∑
i=p+1

ṽji
di
vpi, for p < j. (5)

The BIF preconditioner uses this mutual influence between factors to com-
pute an approximate ISM decomposition of a matrix. An additional feature is
that, since the LDU factorizations of A and its inverse are stored in matrices Vs
and Ṽs, it is possible to apply special dropping strategies. In [8, 9] the authors
propose a robust strategy that drops entries by value compared with the norm
of a row of the inverse. That is, given a drop tolerance τ , an entry lij in the jth
column of the factor L is zeroed if

|lij |‖ejL−1‖ ≤ τ.

Also the dual dropping criterion can be used. Thus, if `ij denotes an entry of
the jth row of the factor L−1, it is zeroed if

|`ij |‖ejL‖ ≤ τ.

The same dropping strategy can be applied to obtain approximations of U and
U−1. Since these factors are explicitly available in the ISM decomposition, the
BIF algorithm implements this technique to sparsify matrices in a straightfor-
ward manner. This dual dropping strategy together with the interlaced compu-
tations mentioned above, give raise to robust and efficient preconditioners for
a wide variety of problems as the numerical experiments in [11, 12] show. Our
aim is to update an existing BIF preconditioner mantaining these characteristics
throughout the update process and at the same time, making the computation
as simple as possible.
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UTD

−sL−T

Vs

LD

−sU−1

Ṽs

Figure 1: Factors of the LDU factorizations of A and A−1 included in Vs and
Ṽs. White parts are factors of A, while grey parts are factors of A−1.

3 Preconditioner update algorithm

As we stated in the Introduction we consider the iterative solution of the linear
system

Bx = b

where B = A + PQT , and P,Q ∈ Rn×k are full rank matrices. We study the
problem of updating a previously computed BIF preconditioner for the matrix
A in order to solve the updated linear system with a Krylov iterative method.
To simplify notation the factors of the computed preconditioner will be denoted
as L, D, and U . We note that, due to the recursive nature of the computation
formulas of the preconditioner (3), updating directly the entries of a BIF pre-
conditioner can be difficult and expensive. To simplify this task we will work
instead with the matrix of the equivalent augmented linear system with n + k
equations Bx = b, [

A P
−QT I

] [
x

QTx

]
=

[
b
0

]
. (6)

The computation of incomplete ISM decompositions for the matrices B and
BT is done by applying directly the BIF algorithm to these matrices. Thus, an
approximation of the LDU factorization of B is obtained and it will be used as
a preconditioner to compute iteratively an approximate solution of the updated
linear system (2).

It is of general agreement that algorithms that exploit the block structure
of a matrix, whenever it is possible, may benefit of an improved performance.
Therefore, we find of interest trying to exploit the structure of B and BT .
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Note from (6) that the block structure of these matrices not only depends on
the rank of the update, that determines the size of P and Q, but also on A
being structured itself that may induce a partition of these matrices. Thus, the
computation of the ISM decompositions of B and BT will be formulated by
blocks [13]. The block ISM decomposition and its relation with the block LU
factorization of a matrix is given by

B−1 = s−1I− s−2ZD−1s VT
s

B−T = s−1I− s−2Z̃D̃−1s ṼT
s

where
Z = U−1 , Vs = UTDT − sL−T (7)

and

Z̃ = L−T , Ṽs = LD− sU−1 . (8)

These expressions are an extension of Theorem 1 for block structured matrices,
and the only difference resides in the transposition of the block diagonal matrix
D in (7), see [14].

An immediate advantage of working with the augmented linear system (6)
is that computing from scratch the ISM decompositions of the matrices B and
BT is avoided. If we assume that the matrices A and AT are not structured
and their point ISM decompositions are available, then, it is natural to identify
the following block structure for the (n+ k)× (n+ k) matrices Vs and Ṽs

Vs =

 Vs

V1,n+1

...
Vn,n+1

Vn+1,1 · · · Vn+1,n Vn+1,n+1

 (9)

and

Ṽs =

 Ṽs

Ṽ1,n+1

...

Ṽn,n+1

Ṽn+1,1 · · · Ṽn+1,n Ṽn+1,n+1

 , (10)

where the n×n principal submatrices Vs and Ṽs correspond to the ISM decom-
positions of A and AT , respectively. Thus, only the last k rows and columns
must be computed for both matrices. In equation (9) the new k entries in the
jth column and row are denoted by Vn+1,j and Vj,n+1, j = 1, . . . , n, respec-
tively. Moreover, the block Vn+1,n+1 contains the last k × k entries that must

be computed. Similar notation is used for the matrix Ṽs in equation (10). The
computation of the preconditioner update and the application of the dropping
element criteria are formulated according to this structure.

From equation (7) it follows that Vn+1,j = UTj,n+1dj = PT (L−T )j , where the
last equality is obtained considering the relation between the LDU factorization
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of the matrices B and A. From the ISM decomposition of AT one has that
(L−T )j = z̃j , and therefore Vn+1,j = PT z̃j for j = 1, . . . , n. The elements of

the last k rows of Ṽs can be obtained analogously from equation (8). Thus,

Vn+1,j = PT z̃j , j = 1, . . . , n

Ṽn+1,j = −QT zj , j = 1, . . . , n
(11)

From equation (5), it follows that the last k columns in a given row j of the
matrices Vs and Ṽs are given by

Vj,n+1 =
s

dj
Ṽ Tn+1,j −

∑n
i=j+1

vj,i
di
Ṽ Tn+1,i , j = 1, . . . , n

Ṽj,n+1 =
s

dj
V Tn+1,j −

∑n
i=j+1

ṽj,i
di
V Tn+1,i , j = 1, . . . , n

(12)

The expression for the last k× k diagonal block is easily derived from equation
(7) and taking into account the form of the block LU factorization of B,

V Tn+1,n+1 = Ṽn+1,n+1 = −s−1
[
V T1,n+1 · · · V Tn,n+1

]
P + (1− s)Ik. (13)

The updated ISM decompositions need additional storage for 4k sparse vectors
of size n and a k × k matrix. This amount of memory is moderate provided
that k � n and the new vectors are kept sparse. The explicit computation
of the matrices Z and Z̃ can be avoided since they could be only required
in the framework of a sequence of rank-k updates. Note that their entries,
in exact arithmetic, can be extracted from Vs and Ṽs. Nevertheless, as the
authors report in [12], it is recommended performing the computations with
these matrices in case of instabilities.

The updated BIF preconditioner is obtained after applying a dropping strat-
egy to the new computed rows and columns. The strategy employed has been
briefly reviewed in the previous section but, instead of applying the rule ele-
ment by element, to be consistent with the block structure identified, the last
k entries of a row or column are zeroed at once. A new block vector computed
from equations (11) or (12) is dropped if the following conditions are satisfied.
First, for dropping elements in the last k rows of Vs that correspond to UTD,
it is used the criterion

‖d−1j Vn+1,j‖∞‖U−1ej‖ ≤ τ, j = 1, . . . , n (14)

Similarly, for Ṽs that contains the entries of LD

‖d−1j Ṽn+1,j‖∞‖ejL−1‖ ≤ τ, j = 1, . . . , n (15)

Note that in these expressions the norms of the inverse factors of the matrix A
are needed and they are available from its ISM decomposition. By contrast, to
drop entries in the last k columns of Vs and Ṽs the norm of the new rows in
these matrices must be evaluated. The entries in the last k columns contain the
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inverse factors sL−T and sU−1, respectively, and are also dropped blockwise
according to the rules

‖s−1Vj,n+1‖∞‖en+1:n+kL‖ ≤ kτ, j = 1, . . . , n (16)

and
‖s−1Ṽj,n+1‖∞‖Uen+1:n+k‖ ≤ kτ, j = 1, . . . , n (17)

The quantities ‖en+1:n+kL‖ and ‖Uen+1:n+k‖ represent the norm of last k
rows and columns of the LU factors of the matrix B. Observe in equation (19)
below, that they correspond to the norm of the blocks containing the last k
rows of the matrices Ṽs and Vs, respectively. Finally, we recall that dropping
elements in the last diagonal block computed from equation (13) may be not
necessary since we are assuming k � n, and if it is computed after dropping
elements in the new columns of the matrix Vs, fill-in on this block can be
moderate. Algorithm 1 summarizes the steps to update the preconditioner.

Algorithm 1 Preconditioner update computation

Input:Incomplete ISM decompositions of A, AT , and matrices P,Q
Output: Last k rows and columns of Vs and Ṽs.
for j ← 1, n do

Compute Vn+1,j and Ṽn+1,j from equations (11)

Drop entries in Vn+1,j and Ṽn+1,j applying (14) and (15)
end for
for j ← 1, n do

Compute Vj,n+1 and Ṽj,n+1 from equations (12)

Drop entries in Vn+1,j and Ṽn+1,j applying (16) and (17)
end for
Compute Vn+1,n+1 and Ṽn+1,n+1 from equation (13)

4 Preconditioner application

The preconditioning step for a Krylov subspace iterative method tipically con-
sists in obtaining the solution of linear systems of the form My = r, where M
is the preconditioner, r is the residual and y is the preconditioned vector. With
the method proposed the application of the updated BIF preconditioner for the
linear system (2) implies the solution of an augmented linear system of the form

M

[
y

QT y

]
=

[
r
0

]
, (18)

where M is the updated BIF preconditioner for the linear system (6). We recall
that the BIF preconditioner for the matrix B is available from the factors Vs

and Ṽs computed as it was described in the previous section. It follows that
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M = LDU ≈ B with

L =

[
L O

d−11 Ṽn+1,1 · · · d−1n Ṽn+1,n I

]
, U =

 U

d−11 V Tn+1,1
...

d−1n V Tn+1,n

O I

 (19)

and

D =

[
D O
O R

]
, R = sI + Vn+1,n+1. (20)

Thus, the preconditioned vector y is obtained in three steps as it is shown in
Algorithm 2.

Algorithm 2 Preconditioner update application

Input: Matrices Vs and Ṽs and residual vector r.
Output: Preconditioned vector y
1. Solve the linear system LDr̃ = r.
2. Update r̃ as

r̃ ← r̃ +

 d−11 V Tn+1,1
...

d−1n V Tn+1,n

R−1 [ Ṽn+1,1 · · · Ṽn+1,n

]
r̃.

3. Solve the linear system Uy = r̃.

5 Computational complexity

In this section we study the complexity of the updating method proposed. We
observe from equations (19) and (20) that 2k additional vectors of size n, and
a k × k matrix are required to store the L, U and D factors. Nevertheless, the
amount of this extra memory is not large since the vectors are sparse and it is
assumed that k is very small relative to the size of the matrix. As a consequence,
we note that the computational cost of the preconditioning step is slightly higher
compared with a standard preconditioning step with an LU factorization of size
n, and depends on the range of the update k. This extra cost correponds to step
2 in Algorithm 2. With computational cost we mean the number of arithmetic
operations needed to perform a given computational step. Taking into account
both, the computational cost of the preconditioner updating process described
in section 3 and its application, it is possible to estimate the reduction on the
number of matrix-vector products needed to solve the linear system in order to
obtain a performance benefit compared with the option of reusing the initial
(non-updated) preconditioner.
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Proposition 1. Let C0 and Cu be the arithmetic operations needed to solve the
updated linear system with the initial and the updated preconditioner, respec-
tively. Then, Cu < C0 if

mu < m0 −O(k), and k � n ,

where m0 and mu are the number of matrix-vector products performed by an
iterative Krylov method to solve the linear system with the initial and the updated
preconditioners, respectively.

Proof. We recall that the most expensive operation of a Krylov iterative method
is a matrix-vector product with the preconditioned system matrix. The number
of arithmetic operations needed for this product is denoted by c0 and cu for
the initial and the updated preconditioners, respectively. Thefore, C0 = m0c0
and Cu = mucu + Cp, where Cp is the computational cost of updating the
preconditioner described by equations (11), (12) and (13). The nonzero den-
sity of the matrix is denoted by d, such that there are dn2 nonzero elements
evenly distributed, and therefore dn nonzero elements on a given row or column.
Moreover, it is assumed that dn is negligibly compared with n. Equations (11)
implies the computation of 2k matrix-vector products that requires 2k(2dn2−n)
arithmetic operations. The cost of equations (12) is equivalent to the cost of
solving a triangular linear system for each new column of the matrices Vs and
Ṽs. Hence this phase requires 2k(dn2+(d−1)n) arithmetic operations. Finally,
the computational cost of equation (13) is k2(2dn − 1) arithmetic operations.
Adding these costs it follows that Cp = 6kdn2 + 2k2dn+ 2kdn− 4kn− k2 and
therefore, its complexity is O(kdn2) when n is large and k � n.

On the other hand, step 2 consists in two matrix-vector products and the
inversion of the matrix R. The application of the inverse of R is done by
computing its LU factorization, that only is required once and therefore can
be considered as a preconditioner computational cost, and the solution of the
corresponding triangular systems. Thus, this step requires 2k(2dn − 1) + 2k2

operations and therefore, cu = c0 + 2k(2dn− 1) + 2k2. A matrix-vector product
with the preconditioned matrix with the initial preconditioner requires a matrix-
vector product and the solution of two sparse triangular systems since we are
working with BIF preconditioners. Then, c0 = 4dn2 + 2dn− 3n that has order
O(dn2). Observe that the complexity of Cp is O(kc0). One has that, Cu < C0

if, and only if

mu <
c0m0 − Cp

cu
=

c0(m0 −O(k))

c0 + 2k(2dn− 1) + 2k2
.

Clearly, Cu < C0 when
mu < m0 −O(k)

This result implies that a reduction of about order k iterations will compen-
sate the extra cost of computing and applying the update, and it will be used
in section 7 to compare the performance of the updated preconditioner with the
initial one.
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6 Approximation properties of the updated pre-
conditioner

In this section we study the approximation properties of the proposed updated
preconditioner. It is shown that, under appropriate conditions that can be
realistically fulfilled, the spectrum of the preconditioned matrix of the linear
system (6) may be clustered around one. Moreover, in the symmetric and
positive definite case it is possible to determine its full spectrum.

The proposed strategy relies on improving the performance of the precon-
ditioned iterations for solving the linear system (2) by developing a good pre-
conditioner for the equivalent augmented linear system(6). Solving (2) with a
preconditioned Krylov method involves the computation of matrix-vector prod-
ucts with B and an approximation of its inverse operator B−1. We have the
following relations between the linear operators B and B,

B = A+ PQT =
[
I O

] [ A P
−QT I

] [
I
QT

]
=
[
I O

]
B

[
I
QT

]
(21)

and

B−1 = (A+ PQT )−1 =
[
I O

] [ A P
−QT I

]−1 [
I
O

]
=
[
I O

]
B−1

[
I
O

]
. (22)

The preconditioning strategy followed in this paper proposes the computation
of a BIF preconditioner for the augmented linear operator in (21) that it is used
to approximate the inverse linear operator in (22) by direct preconditioning,
i.e., solving the corresponding upper and lower triangular systems. Next result
relates the condition numbers of the matrices B and B.

Proposition 2. Let B and B be the matrices given by equations (1) and (6), re-
spectively. Then, cond (B) ≤ cond (B)

√
1 + σ2

1, where σ1 = min {σ1(Q), σ1(P )}
and σ1(Q), σ1(P ) are the largest singular values of Q and P , respectively.

Proof. One has that,

cond (B) = ‖B‖2‖B−1‖2 =

∥∥∥∥[ I O
]
B

[
I
QT

]∥∥∥∥
2

∥∥∥∥[ I O
]
B−1

[
I
O

]∥∥∥∥
2

≤ cond (B)

∥∥∥∥[ I
QT

]∥∥∥∥
2

Since, ∥∥∥∥[ I
QT

]∥∥∥∥2
2

= ρ(I +QQT ) = λmax(I +QQT ) = 1 + σ2
1(Q),
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it follows that

cond (B) ≤ cond (B)
√

1 + σ2
1(Q).

Reasoning similarly with BT one has, cond (B) ≤ cond (B)
√

1 + σ2
1(P ). Thus,

cond (B) ≤ cond (B)
√

1 + σ2
1 , where σ1 = min {σ1(Q), σ1(P )}.

This proposition suggests that one can expect a faster convergence of the
iterative method used to solve the linear system (2) if the condition number of
the matrix B is improved with a proper preconditioner.

To study the quality of the updated preconditioner, first we evaluate the
approximation error norm. A comparison with the non-updated preconditioner
is also presented. These preconditioners are given by

M = LDU =

[
Â P̂

−Q̂T I

]
and M0 =

[
Â O
O I

]
, (23)

where Â = LDU denotes the initial BIF preconditioner for A, the matrices P̂ =
L [Vn+1,1 . . . Vn+1,n]

T
= LL̂−1P and Q̂T = −[Ṽn+1,1 . . . Ṽn+1,n]U = QT Û−1U

are the approximations of P and QT , respectively. Note that L̂−1P ≈ L−1P
is obtained after dropping elements in the product of Z̃TP , see equation (11).
Similarly, QT Û−1 ≈ QTU−1. Since the difference between the error matrices
M−B and M0 −B is located into the offdiagonal blocks, the Frobenius norm
is a natural and straightforward choice to study their norm.

Theorem 2. Let Â = LDU be an incomplete LDU factorization of A. Let M
and M0 be the matrices given in (23). Let ε =‖ Â−A ‖2F , δ =‖ P ‖2F + ‖ Q ‖2F
and c = max {‖ LL̂−1 − I ‖2F , ‖ I − Û−1U ‖2F }. Then

‖M−B ‖2F≤ ε+ cδ.

Moreover, if c ≤ 1 then

‖M−B ‖F≤‖M0 −B ‖F

.

Proof. From (23) we have that

M−B =

[
Â−A P̂ − P

−Q̂T +QT O

]
=

[
Â−A (LL̂−1 − I)P

QT (I − Û−1U) O

]
Then

‖M−B ‖2F = ‖ Â−A ‖2F + ‖ (LL̂−1 − I)P ‖2F + ‖ QT (I − Û−1U) ‖2F
≤ ‖ Â−A ‖2F +c(‖ P ‖2F + ‖ Q ‖2F )
≤ ε+ cδ .
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If c ≤ 1, then

‖M−B ‖2F≤‖ Â−A ‖2F + ‖ P ‖2F + ‖ Q ‖2F=‖M0 −B ‖2F

As it could be expected, the above theorem shows that the approximation
degree of M depends on Â, P̂ and Q̂ being a good approximation of A, P and
Q, respectively. We note that these conditions depend on the quality of the ISM
decomposition of A and also on how accurately the new k rows and columns
of Vs and Ṽs are computed. This accuracy is influenced also by the dropping
strategy employed. Moreover, we have proved that if these approximations are
good enough, the updated preconditioner M is closer to the matrix B than the
initial one, M0.

While Theorem 2 analyses the approximation of M to B as a matrix, the
next results study the preconditioned matrix itself and its spectral properties.

Theorem 3. Let the assumptions of Theorem 2 hold. Then the preconditioned
matrix M−1B can be written as

M−1B = I + M−1E,

where
‖M−1E ‖2F≤‖M−1 ‖2F (ε+ cδ) (24)

Proof.

‖M−1E ‖2F=‖M−1(B−M) ‖2F≤‖M−1 ‖2F ‖M−B ‖2F≤‖M−1 ‖2F (ε+ cδ)

Corollary 1. Let the assumptions of Theorem 2 hold. Then, there exist ε∗

and c∗ such that for any 0 < ε ≤ ε∗ and 0 < c ≤ c∗, the eigenvalues of the
preconditioned matrix M−1B are clustered at 1 in the right half complex plane.

Proof. Consider the bound (24), and let ε∗ and c∗ be a couple of real positive
numbers such that for any 0 < ε ≤ ε∗ and 0 < c ≤ c∗

ε+ cδ <
1

‖M−1 ‖2F
Then ρ(M−1E) ≤‖M−1E ‖F< 1 and therefore the eigenvalues of the precon-
ditioned matrix are clustered at 1 in the right half complex plane.

With a clustered spectrum one can expect a faster convergence of an iterative
method although we recall that other aspects may influence the behaviour of
Krylov-based iterative methods, as for instance the loss of linear independence
of the generated basis of non-optimal Krylov subspace methods [29].

Next, we consider the symmetric and positive definite (spd) case. We con-
sider that the matrix of the linear system (2) has the form B = A+QQT where
A is a symmetric and positive definite matrix. The following result characterizes
the spectrum of M−1B.
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Theorem 4. Let B and M be the matrices given by

B =

[
A Q
−QT I

]
and M =

[
Â Q̂

−Q̂T I

]
.

Assume that A is spd, Q and Q̂ have full rank k, and the error matrix E = Q−Q̂
has rank p, p ≤ k. Then, the eigenvalues of M−1B are either one or real positive
and bounded by

λmin((Â+ ηI)−1(A+ ηI)) ≤ λ ≤ λmax((Â+ ηI)−1(A+ ηI)),

for some positive η, or

λmin((Â+QQT )−1(A+QQT )) ≤ λ ≤ λmax((Â+QQT )−1(A+QQT )),

or complex bounded by

|λ| ≤ 1 +
‖ E ‖√

1 + σ2
min(Q̂)

where σmin(Q̂) represents the smallest singular value of Q̂.

Proof. The technique to prove the result is standard and similar to the one that
can be found in [5]. The eigenvalues and eigenvectors of M−1B are solutions of
the following generalized eigenvalue problem[

A Q
−QT I

] [
x
y

]
= λ

[
Â Q− E

−(Q− E)T I

] [
x
y

]
.

One has equivalently that,

Ax+Qy = λÂx+ λQy − λEy ,
QTx = λQTx− λETx+ (1− λ)y .

(25)

We distinguish the following cases:

1. x = 0. From the second equation in (25) it follows that 0 = (1−λ)y. Then
λ = 1 and therefore Ey = 0 from the first equation. Since y ∈ kerE that

has dimension k − p, we obtain that there are k − p eigenvectors

[
0
y

]
associated to the unit eigenvalue.

2. x 6= 0.

(a) QTx = 0. Since Q has rank k it follows that there are n− k linearly
independent vectors satisfying this condition. From the second equa-
tion we have λETx = (1− λ)y. By substituting in the first equation
and multiplying by xT one has

xTAx = λxT Âx− (1− λ)yT y ,

14



that can be writen as

xT (A+ ηI)x = λxT (Â+ ηI)x,

where η =‖ y ‖2 / ‖ x ‖2. Since the matrices A+ ηI and Â+ ηI are
spd, it follows that the eigenvalues are bounded by

λmin((Â+ ηI)−1(A+ ηI)) ≤ λ ≤ λmax((Â+ ηI)−1(A+ ηI)) .

(b) QTx 6= 0 and ETx = 0. In this case k − p linearly independent
vectors satisfy these conditions. The second equation reduces to

(1− λ)QTx = (1− λ)y

and it is satisfied for eigenvalues equal to 1 or when y = QTx. In
this last case, by substituting in the first equation one has

Ax+QQTx = λÂx+ λQQTx− λEQTx .

Multiplying by xT we obtain

xT (A+QQT )x = λxT (Â+QQT )x .

Reasoning as in 2.(a) these eigenvalues are bounded by

λmin((Â+QQT )−1(A+QQT )) ≤ λ ≤ λmax((Â+QQT )−1(A+QQT )) .

(c) QTx 6= 0 and ETx 6= 0. Multiplying the first equation by xH and
the second by yH one has

xHAx+ xHQy = λxHÂx+ λxHQ̂y ,

yHQTx = λyHQ̂Tx+ (1− λ)yHy .
(26)

Adding both equations in (26) we obtain

xHAx+ 2Re(xHQy)− yHy = λ(xHÂx+ 2Re(xHQ̂y)− yHy).

The eigenvalue λ can be complex if xHÂx+ 2Re(xHQ̂y)− yHy = 0.
From the second equation in (25) one has (QTx− y) = λ(Q̂Tx− y).
Note that Q̂Tx − y 6= 0 since we are considering ETx 6= 0. By
denoting with w = [ xy ] the corresponding eigenvector, it follows that

|λ| = ‖ Q
Tx− y ‖

‖ Q̂Tx− y ‖
=
‖
[
QT −I

]
w‖

‖
[
Q̂T −I

]
w ‖
≤ 1 +

‖
[
ET O

]
w ‖

‖
[
Q̂T −I

]
w ‖

≤ 1 +
‖ E ‖‖ w ‖

‖
[
Q̂T −I

]
w ‖
≤ 1 +

‖ E ‖√
1 + σ2

min(Q̂)
,

where σmin(Q̂) is the smallest singular value of Q̂.

On the other hand, if xHÂx+2Re(xHQ̂y)−yHy 6= 0 then λ ∈ R. By
subtracting the transpose of the second equation from the first one,
we obtain the same equation and the corresponding bound as in 2.(a).
Note that 2p is the maximum number of complex eigenvalues.

15



As in the general case, Theorem 4 indicates that the quality of the updated
preconditioner depends on Â being a good approximation of A, and also the
norm of E being as small as possible that may be more important than its
rank. Both requirements help to keep both, the real and complex eigenvalues of
the preconditioned matrix clustered around the unit. Next example illustrates
Theorem 4.

Example 1. We consider the spd linear system B = A+QQT where the matrix
A corresponds to the 5-point stencil discretization of the 2D Laplacian operator.
The columns of the matrix Q are vectors of the canonical basis scaled either by
ε or 1/ε, for some real number ε. With a suitable value of ε we can control the
norm of the matrix and also which columns have the largest norm. Therefore,
we can generate in a straightforward manner matrices Q̂ that produce error
matrices with small norm but large rank, or the opposite. For instance, for the
following 3−rank matrices

Q =

 1/ε 0 0 0 0
0 ε 0 0 0
0 0 ε 0 0

T , Q̂1 =

 ε 0 0 0 0
0 ε 0 0 0
0 0 ε 0 0

T and Q̂2 =

 1/ε 0 0 0 0
0 ε2 0 0 0
0 0 ε2 0 0

T ,
their associated error matrices E1 = Q− Q̂1 and E2 = Q− Q̂2 have rank 1 and

2, and spectral norm
1

ε
− ε and ε− ε2, respectively.

Table 1 show, for different values of ε, the rank (p) and spectral norm of the
error matrix E (‖E‖), the condition number of the preconditioned augmented
matrix M−1B (κ), the bound for the complex (Cb) and real eigenvalues, (Rb)
as predicted by Theorem 4, and also the measured extreme values for the real
and complex eigenvalues (|λC|max, λRmin, λRmax). Column Its. reports the
number of iterations spent by the preconditioned conjugate gradient method to
solve the updated linear system (A + QQT )x = b, with b corresponding to the
solution of all ones. Two different approximations of the matrix A have been
considered. The first block of results correspond to Â = A, and the second
one to Â = diag (A). With these extreme choices we study the influence of the
matrices Â and Q̂ on the spectral distribution of the preconditioned matrix.
In addition Figures 2 and 3 show the complete eigenvalues distribution of the
matrix M−1B for ε = 10−2 and both approximations of A.

We observe that the distribution of the real eigenvalues depends on the
matrix Â that approximates A. For Â = A the real eigenvalues are equal to 1
and convergence is achieved very fast for different values of the norm and rank of
E. For Â = diagA the real eigenvalues are spread in the interval [0.04, 1.96] and
the convergence is degraded. Note that these bounds are tight since there are
real eigenvalues at both extremes of the interval predicted by Theorem 4. With
respect to the complex eigenvalues, its number is determined by the rank of E,
that is there are 2p complex eigenvalues, while the norm of the error matrix has
influence on how these eigenvalues are clustered. Thus, even for larger values
of the rank of E, as the norm values become smaller the complex eigenvalues
approach one and their number of iterations needed to converge decrease. Also
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Figure 2: Eigenvalues distribution of the matrix M−1B for Example 1 with
ε = 10−2 and Â = A.
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Figure 3: Eigenvalues distribution of the matrix M−1B for Example 1 with
ε = 10−2 and Â = diag (A).
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ε p ‖E‖ κ Cb |λC|max Rb λRmin/λRmax Its.
10−1 5 101 200.7 10.99 8.06 [1.0,1.0] 1.0/1.0 6

15 10−1 1.88 1.09 1.01 [1.0,1.0] 1.0/1.0 4
10−2 5 102 1799 101.0 80.08 [1.0,1.0] 1.0/1.0 6

15 10−2 1.071 1.01 1.0001 [1.0,1.0] 1.0/1.0 2
10−3 5 103 17723 1001.0 800.71 [1.0,1.0] 1.0/1.0 7

15 10−3 1.001 1.001 1.0 [1.0,1.0] 1.0/1.0 1
10−1 5 101 393.71 10.99 5.13 [0.04,1.96] 0.04/1.96 53

15 10−1 69.90 1.09 1.01 [0.04,1.96] 0.04/1.96 40
10−2 5 102 3371.80 101.0 50.01 [0.04,1.96] 0.04/1.96 54

15 10−2 66.60 1.01 1.0001 [0.04,1.96] 0.04/1.96 34
10−3 5 103 33172 1001.0 500.0 [0.04,1.96] 0.04/1.96 43

15 10−3 66.26 1.001 1.0 [0.04,1.96] 0.04/1.96 24

Table 1: Spectral analysis of the matrix M−1B for Example 1 according to
Theorem 4. Matrix A has size 100 and Q has rank 20. The first block of rows
correspond to Â = A and the second one corresponds to Â = diag(A).

note that the bound stated for complex eigenvalues by Theorem 4 is sharper
for small norms of the error matrix. Finally, observe that for a given ε, i.e., a
given norm of the update Q, the condition number of the preconditioned matrix
increases with the norm of E.

7 Numerical experiments

In this section we study the numerical performance of the preconditioner update
method proposed. We present results obtained with nonsymmetric matrices
arising in different areas of scientific computing. Our numerical experiments
point out that the proposed algorithm is competitive and robust.

The performance of the updated preconditioner is compared with two dif-
ferent preconditioning strategies. The first one consists in reusing the initial
preconditioner for the matrix A, while the second strategy corresponds to the
computation of a new BIF preconditioner for the updated matrix A+PQT from
scratch. Clearly, the former strategy is the one we wanted to avoid and it is
included as a benchmark.

The experiments test the performance for different sizes (rank) of the matri-
ces P and Q and different values of the Frobenius norm of the updating matrix
PQT . Moreover, we considered two different nonzero patterns of PQT . For the
first one the matrices P and Q were generated such that only nonzero elements
of A are modified, i.e., the sparse pattern of A does not change with the up-
date. For the second pattern this restriction was not applied and any entry of
the matrix could be updated. We think that these experiments, although are
somehow artificial, provide a good insight into the performance of the update
method and can be representative for a wide range of scientific applications.
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Matrix name n nz cond Application
1138 BUS 1138 2596 107 Power systems admittance matrices
ADD20 2395 17319 104 Computer component design
FS 541 4 541 4285 1011 Atmospheric pollution problem
HOR131 434 4710 105 Flow network problem
JPWH 991 991 6027 103 Circuit physics modelling
NOS7 729 2673 109 Diffusion equation
ORSIRR1 1030 6858 105 Oil reservoir simulation
ORSREG1 2205 14133 104 Oil reservoir simulation
RDB968 968 5632 101 Reaction-diffusion Brusselator Model
SHERMAN1 1000 3750 104 Oil reservoir simulation
WATHEN(40,20) 2521 38081 103 Matlab gallery finite element matrix
MEMPLUS 17758 126150 105 Computer component design
CHEM MASTER1 40401 201201 103 Markov model

Table 2: Set of tested matrices

The test matrices are shown in table 2. Except for the matrix WATHEN, all
the problems tested belong to the University of Florida Sparse Matrix Collec-
tion [15]. For each matrix we provide its dimension n, the number of its nonzero
entries nz, its condition number rounded to the nearest power of 10, and the
application field.

The ISM shift parameter s was set to 1. The preconditioned BiCGStab
method [30], full GMRES and restarted GMRES(m) [28] iterative methods were
used for a relative initial residual decrease of 10−8, allowing a maximum number
of 2, 000 iterations. Results for full GMRES are included as a reference for
GMRES(m) that is commonly used in practice. The right hand side vector was
computed as b = Ae, where e is the vector of all ones. The initial approximation
to the solution x was the vector of all zeros. The experiments where obtained
with MATLAB. The BIF algorithm was coded according to Algorithm 3.1 in
[12], and the update method as described in Algorithm 1. For the application
of the update, in step 2 of Algorithm 2 the inversion of the matrix R was done
by computing first its LU factors with the function lu(), and then solving the
corresponding triangular systems at each iteration. The dropping parameter
for computing the BIF preconditioner for A was also used in Algorithm 1 for
computing the update. For simplicity, it was set to 0.1 for almost all the tested
matrices.

We first conduct a detailed analysis of the results obtained with the smallest
matrices tested and the BiCGStab method. The effect of the rank when the
updated matrix has the same pattern as A is reported in table 3. This table
shows the rank of the update k and the number of iterations needed to converge.
The preconditioner density is indicated with ρ1 and ρ2. In the first case the
size of the preconditioner is relative to the number of nonzero elements of the
matrices A, P and Q, and in the second the density is relative to the number
of nonzeros of the full matrix B = A + PQT . Moreover, it is indicated the
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number α for which cond(B) ≈ 10α cond(A). The updating matrix PQT is
generated at random in such a way that only the nonzero elements of a subset
of k rows of A are modified. This update is done in such a way that the sign
of the elements are preserved and its Frobenius norm is equal to the norm of
the updated submatrix. Results for the non-preconditioned iterations are also
reported.

The first consideration that can be made is that in general the results ob-
tained with the updating method proposed are better than the ones obtained
with the initial one for the majority of the tested matrices. Without precondi-
tioning the iterative methods performed poorly and failed to converge in most
cases. The reduction observed in the number of iterations tends to be larger with
the rank of the update. The exception are the matrices JPWH991, RDB968 and
WATHEN(40,10), for which the performance of the initial preconditioner does
not degrade with the rank and norm of the update. A possible explanation is
that the condition number of these matrices is quite small and does not increase
with the rank of the update. Under this situation the initial preconditioner re-
mains competitive and there is not too much room for improvement. Also note
that with the updated preconditioner the number of iterations are not far from
the results obtained when computing from scratch a new preconditioner and, in
some cases, they are even better as will be further explained later. On the other
hand, although the size of the preconditioner increases with the rank, we think
that the storage requirements are not prohibitive for relative small values of k.

The effect of the norm of the update, for a fixed value of the rank k = 10, is
illustrated in Figures 4 to 6 for the matrices FS 541 4, JPWH 991 and HOR131.
For the rest of the matrices tested a similar behaviour was observed. It can be
seen how increasing the norm of the matrix PQT the number of iterations of
the initial preconditioner deteriorates progressively, while the behaviour of the
updated preconditioner remains closer to the recomputed one. Observe that the
condition number of the updated matrix tends to increase with the norm and
it appears to affect adversely the performance of the initial preconditioner. For
larger values of k the effect is more pronounced. In [18] the authors report a
similar behaviour for PGMRES in the context of skew-hermitian updates.

Table 4 shows the effect of the rank when the update changes not only the
elements but also the sparse pattern of the matrix. In this case, the matrix PQT

is also generated at random but in such a way that any entry of a subset of k rows
of A may be replaced, the modified rows are kept sparse and its norm remains
approximately equal. First, as for the previous sparse pattern, it can be observed
that the updated preconditioner performs better than the initial one but in this
case the benefits seem to be bigger for some matrices. Note that in this case
the increment of the rank of the update is paired with a bigger increment of
the condition number of the updated matrix. This fact seems to impact more
negatively the performance of the initial preconditioner. Moreover, although the
performance of the updated preconditioner remains closer to the recomputed one
as before, there are some cases where its performance was considerably better.
For instance, the results for the matrix NOS7 show that if the increment of the
rank leads to a very bad conditioned matrix it can be a source of instabilities.
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For this matrix we computed a second denser preconditioner to get a similar
iteration count for k = 25, 50. Figures 7 and 8 show the sparse pattern of
the incomplete LU factors computed for the augmented matrix B and for the
updated matrix B = A + PQT , respectively. It can be seen that new fill-in
in the updated preconditioner is quite moderate and located into the last rows
and columns of these factors. By contrast, it appears that the increment on
the condition number of the updated matrix makes difficult to compute from
scratch a robust preconditioner with a moderate amount of fill-in. Thus, a
possible advantage obtained by working with the augmented matrix is that the
structure of the preconditioner helps to preserve a good deal of sparsity since
new fill-in can occur only in the last k rows and columns. Moreover, because
all the new computed entries correspond to the approximation of the rank-k
update part of the matrix, a more robust preconditioner may be obtained for
a given amount of fill-in. The same can be said for the matrices FS 541 4 and
HOR131.

Tables 5 and 6 report the results for the GMRES and GMRES(30) methods
for a subset of the matrices tested, respectively. With full GMRES convergence
is obtained easily with all the methods and a significant improvement with the
updated preconditioner is only attained for the larger values of the rank of the
update for which a bigger reduction of the number of iterations is observed. In
contrast, there is a considerable improvement for GMRES(30) with the updated
preconditioner in number of iterations and time for the largest rank values. It
showed to be fairly robust and only failed to converge in 3 occasions.

The updated BIF preconditioner was also compared with ILUT [27] and
the results for the BiCGSTAB and GMRES(30) preconditioned methods are
shown in Table 7. Results with full GMRES are not reported since similar
conclusions to the case mentioned above can be made. We used the Matlab
implementation without pivoting and with drop tolerance equal to 0.1. The
results listed correspond to ILUT applied to A and also to the updated matrix,
namely non-updated and recomputed preconditioners. In general, ILUT per-
formed similarly to BIF and therefore, a similar comparison with the proposed
update preconditioner algorithm can be made.

Finally, Tables 8 and 9 show the results for the larger matrices of the test
MEMPLUS and CHEM MASTER1, for the three iterative methods considered
preconditioned with BIF and ILUT. The iterative solution CPU time is also re-
ported. Preconditioner computation and setup timings are not included because
the initial computations are common to the three strategies considered and in
principle can be used for many updates. Moreover, the cost of computing the
update is negligible for the rank of the updates and problems tested, especially
for these matrices which are the biggest ones of the set. We observe that the
results are in line with the analysis of the data for the smaller matrices. The
updated BIF preconditioner is almost always better than the non-updated ones,
especially for BiCGSTAB and GMRES(30). In addition, it shows a similar per-
formance compared with the recomputed BIF and ILUT preconditioners and in
some cases it can be even better, probably due to the reasons explained before.
According to Proposition 1 it is observed that the reduction on the number of
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iterations is large enough to compensate the application of the update and it
leads to a better overall performance of the preconditioned iterative method. Of
course, there are cases where the additional cost of computing a new precondi-
tioner can be amortized by the reduction on the solution time as, for instance, in
the case of CHEM MASTER1 and preconditioned GMRES(50) with ILUT, but
overall we think that the results show that the technique proposed for updating
a preconditioner is a good alternative.

8 Conclusions

In this paper we have presented a method for updating an initial BIF precon-
ditioner after a rank-k update of the coefficient matrix. Numerical experiments
for a variety of matrices and different iterative methods preconditioned with BIF
and ILUT have been obtained. The results show that the strategy proposed is
effective and robust. The observed reduction on the number of iterations and
solution time for most of the problems tested is enough to compensate the com-
putational cost of the algorithm even for relative small values of k. In general,
the performance benefits increase with the rank and also with the norm of the
updating matrix. Moreover, its convergence rate is close to the one obtained
with a new preconditioner recomputed from scratch. Indeed, it can present
even a better performance when the update produces an increment on the con-
dition number of the matrix, probably due to the structure of the preconditioner
that helps to confine all the new fill-in induced by the update into a set of 2k
sparse vectors. This behaviour was observed for different nonzero patterns of
the updating matrix.
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Matrix k α non-prec non-updated updated recomputed
Its. Its./ρ1 Its./ρ1 Its./ρ2

1 0 † 69/1.51 60/1.51 60/1.51
5 0 † 89/1.51 70/1.51 70/1.52

1138 BUS 10 1 † 193/1.49 101/1.52 105/1.53
25 1 1582 460/1.47 115/1.55 128/1.54
50 2 † 1006/1.43 153/1.58 148/1.60

1 0 366 9/0.71 8/0.71 8/0.71
5 1 398 14/0.71 8/0.71 8/0.71

ADD20 10 1 565 31/0.71 9/0.72 24/0.72
25 1 † 54/0.70 10/0.72 10/0.74
50 1 † 238/0.70 25/0.74 39/0.72

1 0 1148 13/0.83 8/0.83 8/0.83
5 0 1044 30/0.83 8/0.83 8/0.84

FS 541 4 10 0 1348 77/0.81 13/0.86 17/0.88
25 0 † 203/0.79 21/0.91 24/0.93
50 1 † 613/0.78 25/0.97 21/1.00

1 0 † 20/1.08 19/1.09 19/1.09
5 0 † 30/1.07 23/1.14 25/1.16

HOR131 10 1 † 58/1.05 43/1.17 31/1.26
25 1 † 110/1.01 40/1.42 35/1.47
50 2 † 281/0.96 123/1.67 357/2.75

1 0 34 13/1.18 13/1.18 13/1.18
5 0 35 13/1.17 12/1.18 12/1.18

JPWH991 10 0 37 13/1.17 12/1.18 12/1.18
25 0 42 15/1.15 13/1.18 12/1.18
50 0 36 14/1.12 12/1.19 14/1.12

1 1 † 18/0.98 21/0.98 25/0.98
5 1 † 38/0.97 29/0.98 21/0.98

NOS7 10 1 † 49/0.96 31/0.99 29/1.13
25 1 1994 1545/0.94 27/1.06 31/1.14
50 1 † †/0.91 66/1.15 76/1.21

1 0 368 36/0.58 30/0.58 33/0.58
5 0 501 86/0.58 50/0.58 99/0.59

ORSREG1 10 0 740 133/0.58 76/0.58 94/0.59
25 1 † 427/0.57 263/0.59 246/0.61
50 2 † 1446/0.57 544/0.59 625/0.62

1 0 1170 36/0.56 35/0.56 30/0.56
5 1 1652 66/0.56 39/0.56 65/0.57

ORSIRR1 10 0 † 136/0.55 53/0.57 50/0.59
25 1 † 316/0.54 105/0.57 118/0.60
50 1 † 1025/0.53 269/0.59 285/0.69

1 0 † 6/2.27 5/2.27 5/2.27
5 0 † 6/2.26 6/2.27 5/2.28

RDB968 10 0 † 7/2.24 6/2.26 5/2.28
25 0 † 7/2.21 6/2.25 6/2.28
50 0 † 6/2.14 6/2.24 6/2.29

1 0 337 25/1.13 23/1.14 25/1.13
5 0 504 50/1.13 37/1.14 34/1.14

SHERMAN1 10 0 528 43/1.12 28/1.16 38/1.16
25 3 1840 73/1.10 52/1.20 47/1.22
50 3 1226 123/1.06 49/1.23 48/1.22

1 0 84 9/0.94 9/0.94 7/0.91
5 0 88 8/0.94 8/0.95 7/0.96

WATHEN 10 0 86 8/0.94 8/0.94 7/0.91
25 0 98 7/0.95 8/0.96 7/0.96
50 0 103 7/0.95 8/0.96 7/0.96

Table 3: Effect of the rank of the update when the matrices A and A + PQT

have the same sparse pattern. Solution obtained with BiCGStab.
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Matrix k α non-prec non-updated updated recomputed
Its. Its./ρ1 Its./ρ1 Its./ρ2

1 0 † 54/1.51 54/1.51 54/1.51
5 1 † 60/1.50 54/1.51 53/1.52

1138 BUS 10 1 1345 120/1.49 100/1.51 112/1.66
25 1 † 129/1.47 100/1.56 110/1.71
50 1 † 332/1.43 201/1.58 291/1.90
1 1 447 10/0.71 7/0.71 7/0.71
5 1 402 9/0.70 8/0.72 8/0.72

ADD20 10 1 434 9/0.70 8/0.72 9/0.71
25 2 561 13/0.70 9/0.73 13/0.72
50 2 1910 113/0.69 24/0.78 48/0.73
1 1 808 8/0.83 8/0.83 7/1.21
5 2 † 24/0.82 14/0.84 13/1.56

FS 541 4 10 3 † 35/0.81 14/0.85 11/1.62
25 5 † 400/0.79 147/0.91 1755/2.70

221/13.15
50 9 † †/0.75 113/1.51 †/6.75

731/17.23
1 0 † 24/1.07 22/1.08 23/1.15
5 0 1727 33/1.06 25/1.10 32/1.10

HOR131 10 1 † 43/1.05 24/1.18 23/1.64
25 2 862 101/1.01 44/1.35 71/1.89
50 3 † 116/0.96 39/1.71 410/2.80

82/7.08
1 0 36 13/1.18 13/1.18 13/1.18
5 0 41 12/1.18 12/1.18 12/1.18

JPWH991 10 0 43 13/1.17 13/1.18 13/1.18
25 0 40 12/1.15 12/1.15 12/1.17
50 0 43 13/1.11 13/1.16 12/1.14
1 0 913 14/1.26 15/1.26 15/1.26
5 1 1684 20/1.25 22/1.27 39/1.63

NOS7 10 4 1922 40/1.24 32/1.27 53/1.63
25 6 † 564/1.21 96/1.36 †/7.83

504/2.18 44/2.69 203/12.42
50 7 † †/2.09 65/2.81 †/11.74
50 1960/4.31 47/5.28 588/19.56
1 2 406 48/0.58 48/0.58 48/0.58
5 2 983 75/0.58 63/0.58 65/0.59

ORSREG1 10 2 † 128/0.58 97/0.58 91/0.60
25 3 † 354/0.57 240/0.59 235/0.61
50 3 † 1023/0.57 535/0.59 561/0.62
1 2 1827 40/0.56 37/0.56 37/0.56
5 2 † 55/0.56 46/0.56 44/0.57

ORSIRR1 10 2 † 186/0.55 104/0.56 110/0.55
25 3 † 322/0.54 154/0.58 144/0.66
50 3 † 653/0.53 325/0.59 320/0.74
1 0 † 6/2.27 5/2.27 5/2.27
5 0 † 6/2.26 6/2.27 5/2.28

RDB968 10 0 † 7/2.24 6/2.26 5/2.28
25 0 † 7/2.21 6/2.25 6/2.28
50 0 † 6/2.14 6/2.24 6/2.29
1 1 350 24/1.13 24/1.14 23/1.13
5 1 401 24/1.13 27/1.15 27/1.16

SHERMAN1 10 1 438 26/1.13 28/1.15 28/1.16
25 1 730 42/1.10 33/1.18 30/1.17
50 2 614 50/1.07 35/1.25 36/1.26
1 0 74 7/0.96 7/0.95 7/0.96
5 0 76 7/0.96 7/0.95 7/0.96

WATHEN 10 0 68 7/0.95 7/0.94 7/0.95
25 0 71 7/0.95 7/0.95 7/0.94
50 0 73 7/0.95 7/0.96 7/0.94

Table 4: Effect of the rank of the update when the matrices A and A + PQT

have a different sparse pattern. Solution obtained with BiCGStab.
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Matrix k α non-prec non-updated updated recomputed
Its. Its./ρ1 Its./ρ1 Its./ρ2

1 0 481 74/1.51 73/1.51 72/1.51
5 0 517 71/1.51 72/1.51 74/1.51

1138 BUS 10 0 535 83/1.49 75/1.52 79/1.53
25 0 558 87/1.47 71/1.55 72/1.54
50 0 519 102/1.43 75/1.58 79/1.60
1 0 301 16/0.71 16/0.71 16/0.71
5 1 313 18/0.71 16/0.71 16/0.71

ADD20 10 1 327 21/0.71 17/0.72 16/0.72
25 1 420 33/0.70 18/0.72 18/0.74
50 0 618 56/0.70 23/0.74 30/0.72
1 0 217 15/0.83 15/0.83 15/0.83
5 0 233 20/0.82 17/0.83 19/0.84

FS 541 4 10 0 250 28/0.81 21/0.86 23/0.88
25 0 252 36/0.79 24/0.91 24/0.93
50 1 278 60/0.78 30/0.97 25/1.00
1 0 421 32/1.08 32/1.09 32/1.09
5 0 420 32/1.07 26/1.14 31/1.14

HOR 131 10 1 424 38/1.05 35/1.17 36/1.28
25 1 425 49/1.01 41/1.42 37/1.47
50 2 432 67/0.95 53/1.67 74/2.75
1 1 351 24/0.98 24/0.98 24/0.98
5 1 401 22/0.97 24/0.98 24/0.98

NOS7 10 1 390 24/0.96 24/0.99 24/1.13
25 1 477 38/0.94 29/1.06 31/1.34
50 1 415 59/0.91 49/1.15 56/2.02
1 0 285 48/0.58 48/0.58 57/0.58
5 0 363 64/0.58 59/0.58 57/0.59

ORSREG1 10 0 393 74/0.58 60/0.58 50/0.59
25 1 625 109/0.57 97/0.59 91/0.61
50 2 922 152/0.57 124/0.59 118/0.62
1 0 437 46/0.56 45/0.56 51/0.56
5 1 470 49/0.56 47/0.56 51/0.57

ORSIRR1 10 0 503 56/0.55 51/0.57 51/0.59
25 1 658 83/0.54 69/0.57 64/0.60
50 1 823 120/0.53 100/0.59 90/0.69
1 0 324 35/1.13 35/1.14 35/1.13
5 0 372 44/1.13 39/1.14 41/1.14

SHERMAN1 10 0 356 40/1.12 35/1.16 36/1.16
25 3 387 53/1.10 42/1.20 54/1.22
50 3 419 63/1.06 46/1.23 49/1.22

Table 5: Effect of the rank of the update when the matrices A and A+PQT have
the same sparse pattern. Solution obtained with full GMRES. The density of the
preconditioners and the condition number of the updated matrices (parameter
α) are the same which are listed in table 3.
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Matrix k α non-prec non-updated updated recomputed
Its. Its./ρ1 Its./ρ1 Its./ρ2

1 0 † 397/1.51 384/1.51 382/1.51
5 0 † 201/1.51 234/1.51 205/1.51

1138 BUS 10 0 † 1110/1.49 240/1.52 335/1.53
25 0 † †/1.47 326/1.55 320/1.54
50 0 † †/1.43 319/1.58 1399/1.60
1 0 301 16/0.71 16/0.71 16/0.71
5 1 313 48/0.71 46/0.71 46/0.71

ADD20 10 1 † 51/0.71 46/0.72 47/0.72
25 1 † 80/0.70 48/0.72 48/0.74
50 0 † 988/0.69 53/0.74 60/0.72
1 0 † 15/0.83 15/0.83 15/0.83
5 0 † 20/0.82 17/0.83 19/0.84

FS 541 4 10 0 † 28/0.81 19/0.86 23/0.88
25 0 † 232/0.79 24/0.91 24/0.93
50 0 † †/0.78 30/0.96 25/1.00
1 0 † 66/1.08 66/1.09 66/1.09
5 0 † 71/1.07 59/1.14 66/1.30

HOR 131 10 1 † 81/1.07 78/1.17 77/1.28
25 1 † 180/1.01 100/1.42 85/1.47
50 2 † †/0.95 980/1.67 †/2.75
1 1 † 53/0.98 54/0.98 54/0.98
5 1 † 52/0.97 53/0.98 54/0.98

NOS7 10 1 † 54/0.96 54/0.99 54/1.13
25 1 † †/0.94 57/1.06 67/1.34
50 1 † †/0.91 59/1.15 †/2.02
1 0 748 81/0.58 80/0.58 88/0.58
5 0 † 116/0.58 111/0.58 116/0.59

ORSREG1 10 0 † 169/0.58 104/0.58 89/0.59
25 1 † †/0.57 †/0.59 †/0.61
50 2 † †/0.57 †/0.59 †/0.62
1 0 † 79/0.56 78/0.56 84/0.56
5 1 † 99/0.56 98/0.56 95/0.57

ORSIRR1 10 0 † 141/0.55 101/0.57 8/0.59
25 1 † †/0.54 323/0.57 268/0.60
50 1 † †/0.53 †/0.59 †/0.69
1 0 † 70/1.13 70/1.14 67/1.13
5 0 † 115/1.13 90/1.14 90/1.14

SHERMAN1 10 0 † 88/1.12 72/1.16 81/1.16
25 3 † 226/1.10 1181.22 299/1.22
50 3 † 474/1.06 111/1.23 110/1.22

Table 6: Effect of the rank of the update when the matrices A and A + PQT

have the same sparse pattern. Solution obtained with GMRES(30). The den-
sity of the preconditioners and the condition number of the updated matrices
(parameter α) are the same which are listed in table 3.
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BiCGSTAB GMRES(30)
Matrix k [ρmin/ρmax] non-updated recomputed non-updated recomputed

Its. Its. Its. Its.
1 56 66 270 272
5 98 113 232 238

1138 BUS 10 [1.42, 1.46] 168 82 567 176
25 405 100 † 310
50 1018 144 † 326
1 36 30 47 52
5 44 37 83 80

ADD20 10 [0.64, 0.66] 76 40 90 84
25 213 45 207 93
50 908 157 † 1015
1 10 6 11 10
5 26 9 17 12

FS 541 4 10 [0.62, 0.79] 63 12 22 15
25 185 9 120 14
50 500 13 † 20
1 28 25 89 89
5 51 36 104 86

HOR 131 10 [0.97, 2.01] 69 32 101 80
25 124 36 239 89
50 300 102 † 833
1 19 21 55 55
5 43 22 53 56

NOS7 10 [0.92, 1.00] 43 23 56 58
25 1686 53 † 150
50 † 129 † †
1 36 36 82 91
5 87 93 119 121

ORSREG1 10 [0.55, 0.57] 147 80 173 119
25 431 316 † †
50 1636 616 † †
1 37 37 81 86
5 68 42 104 92

ORSIRR1 10 [0.54, 0.59] 147 57 143 105
25 369 123 † 778
50 1182 519 † †
1 26 22 76 77
5 54 37 122 101

SHERMAN1 10 [1.02, 1.07] 45 29 100 85
25 83 53 190 119
50 126 73 447 159

Table 7: Effect of the rank of the update when the matrices A and A + PQT

have the same sparse pattern. Solution obtained with ILUT as preconditioner.
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BIF ILUT
It. Method k non-prec non-updated updated recomputed non-updated recomputed

Its./Time Its./Time Its./Time Its./Time Its./Time
5 1882/3.25 305/0.89 163/0.52 218/0.64 320/0.92 227/0.71
10 † 700/1.90 139/0.42 156/0.46 662/1.87 166/0.47

BiCGSTAB 25 † † 460/1.42 445/1.34 † 484/1.40
50 † † 453/1.49 443/1.45 † 412/1.35
5 730 / 80.28 146/3.57 151/3.98 171/4.88 146/3.51 166/4.65
10 779 / 87.02 139/3.17 165/4.25 177/4.85 142/3.25 174/4.55

GMRES 25 1085/168.16 166/4.32 166/4.17 214/6.92 162/4.16 208/6.05
50 1183/219.46 217/6.99 209/6.07 223/6.55 213/6.88 221/6.45
5 † 727/4.30 746/4.31 907/5.65 727/4.22 918/5.72
10 † 465/2.75 378/2.10 439/2.37 455/2.52 427/2.31

GMRES(30) 25 † † † † † †
50 † † † † † †

Table 8: Effect of the rank of the update when the matrices A and A + PQT

have different sparse pattern for the matrix MEMPLUS. The relative density
for all the preconditioners is in the range [0.69, 0.73].

BIF ILUT
It. Method k non-prec non-updated updated recomputed non-updated recomputed

Its./Time Its./Time Its./Time Its./Time Its./Time
5 536/2.10 160/1.15 135/0.97 151/1.06 125/0.80 123/0.80
10 † 224/1.56 186/1.29 182/1.29 218/1.51 216/1.44

BiCGSTAB 25 † 513/2.95 289/1.81 369/2.34 347/2.20 298/1.79
50 † 774/5.38 579/3.69 619/3.83 603/3.86 499/2.93
5 789/207.5 194/13.34 176/10.29 199/13.84 186/12.24 185/11.87
10 832/231.2 204/14.41 195/13.08 204/14.42 192/12.61 185/11.97

GMRES 25 821/230.1 226/15.81 200/13.15 226/15.74 216/14.54 193/12.14
50 948/300.0 255/20.61 217/15.08 248/19.35 246/18.98 197/13.36
5 † 794/14.39 583/9.89 741/13.31 650/11.49 554/9.79
10 † 1282/23.51 1091/19.90 1350/25.08 1045/18.66 900/16.46

GMRES(50) 25 † † 1446/24.25 † † 1353/23.17
50 † † † † † †

Table 9: Effect of the rank of the update when the matrices A and A + PQT

have the same sparse pattern for the matrix CHEM MASTER1. The relative
density for all the preconditioners is around 1.14 for BIF and 1.05 for ILUT.
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