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Abstract

In this paper, the Euler–Maruyama (EM) method with random variable stepsize is studied

to reproduce the almost sure stability of the true solutions of stochastic differential equations.

Since the choice of the time step is based on the current state of the solution, the time variable

is proved to be a stopping time. Then the semimartingale convergence theory is employed

to obtain the almost sure stability of the random variable stepsize EM solution. To our best

knowledge, this is the first paper to apply the random variable stepsize (with clear proof of

the stopping time) to the analysis of the almost sure stability of the EM method.

Key words: stopping time, almost sure stability, Euler–Maruyama, variable stepsize, semi-

martingale convergence theory.

1 Introduction

This paper is devoted to the analysis of the numerical reproduction of the almost sure stability

for stochastic differential equations (SDEs) by using the well-known semimartingale convergence

theory. Almost sure stability of solutions to SDEs has been widely studied (see for example,

Chapter 5.8 in [9], Chapter 4.3 in [12], and the references therein). The ability to reproduce the

almost sure stability is one important characteristic of numerical methods. Many papers have
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studied the numerical reproduction of the almost sure stability by adopting the semimartingale

convergence theory, for example [2, 14, 19, 20, 23, 24, 25] and the references therein. However,

in most of the papers the stepsize is either fixed or nonrandom variable.

The classical explicit methods, such as the Euler-Maruyama method, may reproduce the

almost sure stability of SDEs with the global Lipschitz coefficients, but the requirements on the

time stepsize are very restrictive. For SDEs with non-global Lipschitz coefficient, the Euler-

Maruyama method may not preserve this properties with any stepsize (see for example Lemma

3.1 in [8]). To tackle this, the methods with implicit structure are often employed as the

alternatives [13, 19, 23]. Compared with the classical explicit methods, those implicit methods

can reproduce larger ranges of SDEs with less restrictions on the stepsize. Nevertheless, the

implicit methods may require additional computational costs to solve nonlinear equation system

at each iteration.

Bearing those points above in mind, the random variable stepsize is introduced to embed

into the classic Euler-Maruyama (EM) method in this paper. Our key contribution is that

we prove the time variable is a stopping time. Moreover, the stopping time is essential for

the application of the semimartingale convergence theory in our approach. Benefiting from the

random variable stepsize, the sufficient conditions for the almost sure stability of the EM method

obtained in this paper are much weaker than those established in [14] and [23]. To our best

knowledge, this is the first paper to apply the random variable stepsize (with clear proof of the

stopping time) to the analysis of the almost sure stability of the EM method.

It should be noted that the technique of adjusting the size of each step has been broadly

used in the multi-stage methods (see for example [3, 4, 18], and references therein). Due to

the application of the local error control technique, some steps could be rejected then smaller

steps may be retreated. Since the stepsize in those methods is dependent on the state of the

solution, it is indeed a random variable. However, the current stepsize may be decided after

future information available and this indicates the time variable can not be a stopping time [15].

In fact, not like the case in this paper the stopping time is not necessary for those methods [6].

The Euler-type methods with the random variable stepsize, were also considered in different

aspects, for instance in [5] to reproduce the finite time explosion of SDEs, in [11] to study

convergence and ergodicity, and in [16] to optimise the error constant.

We also mention here that there are lots of other approaches to study the almost sure

stability of the numerical methods for SDEs, for example by the local error control, by directly
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applying the the strong law of large numbers, and by the Chebyshev inequality and the Borel-

Cantelli lemma the almost sure stability can be derived from the moment exponential stability.

We refer to some of the works [8, 10, 13, 17, 21] and references therein.

This paper is constructed as follows. Section 2 is devoted to the mathematical notation and

some preparation for the main result. In Section 3 we present our main result, Theorem 3.1,

in which we demonstrate the strategy of choosing the stepsize, give the proof of the stopping

time and conclude the almost sure stability of the EM method with random variable stepsize.

Section 4 sees the computer simulations of the proposed method. In Section 5, alternative

sufficient conditions for the numerical almost sure stability are proposed, which enable the EM

method with random variable stepsize to cover wider range of SDEs. Proofs in the last section

are only briefed as the same techniques to those in Theorem 3.1 are employed.

2 Preliminary

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration

{Ft}t≥0 which is increasing and right continuous, with F0 containing all P-null sets. Let B(t) =

(B1(t), ..., Bm(t))T be an m-dimensional Brownian motion defined on the probability space,

where T denotes the transpose of a vector or a matrix. Let | · | denote both the Euclidean vector

norm and the Frobenius matrix norm. The inner product of x, y in Rn is denoted by 〈x, y〉.

Denote max(a, b) and min(a, b) by a ∨ b and a ∧ b, respectively. Denote the smallest integer

larger than a real number x by dxe. R+ denotes the set of all nonnegative real numbers. N

denotes the set of all nonnegative integers. Z denotes the set of all integers. Q denotes the set

of all rational numbers.

In this paper, we investigate the numerical methods for the n-dimensional SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t), x(0) ∈ Rn, (2.1)

where f : Rn → Rn and g: Rn → Rn×m. The following two conditions are imposed on the drift

and diffusion coefficients. For every integer R ≥ 1, there exists a positive constant C(R) such

that, for all x, y ∈ Rn with |x| ∨ |y| ≤ R,

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ C(R)|x− y|2. (2.2)

And ∀x ∈ Rn

−z(x) := 2〈x, f(x)〉+ |g(x)|2 ≤ 0. (2.3)
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From (2.3), we can see that the coercivity condition holds automatically. Therefore under

(2.2) and (2.3), there exists a unique solution to (2.1) for any given initial value x(0) ∈ Rn (see,

for example Theorem 2.3.5 in [12]). The theorem for the almost sure asymptotic stability for

the SDE (2.1) is presented as follows.

Theorem 2.1 Let (2.2) and (2.3) hold. Assume z(x) = 0 if and only if x = 0, then for any

initial value x(0) ∈ Rn

lim
t→∞

x(t) = 0 a.s.

We refer to the stochastic version of the LaSalle theorem in [22] for the proof of this theorem.

Lemma 2.2 Assume z(x), defined by (2.3), is zero if and only if x = 0. Then both f(x) = 0

and g(x) = 0 if x = 0, and f(x) 6= 0 if x 6= 0.

Proof. We first prove f(x) 6= 0 if x 6= 0. Assume f(x̄) = 0 for some x̄ 6= 0, then by (2.3) we

have −z(x̄) = |g(x̄)|2 ≥ 0. But this contradicts that −z(x) < 0 for x 6= 0.

We now prove f(x) = 0 if x = 0. Assume f(0) 6= 0, that is f(0) = (f1(0), ..., fn(0))T 6= 0.

Without loss of generality, we assume f1(0) < 0. Due to the continuity of f(x), for some

sufficiently small ε > 0 we have f1(x) < 0 for some vector x, where the first entry lies in (−ε, ε)

and all the rest are zeros. Then given x̄ = (−ε/2, 0, ..., 0)T , we have 〈x̄, f(x̄)〉 > 0. But this

contradicts to −z(x̄) < 0.

Suppose x = 0, by (2.3) it is easy to see that |g(0)|2 = −z(0) = 0, i.e. g(0) = 0.

The next lemma is a discrete version of the semimartingale convergence theorem. We refer the

readers to Lemma 4 in [1] for the proof.

Lemma 2.3 Let {Ai} and {Bi} be two nonnegative Fi-measurable processes for i = 0, 1, 2, ...

with A0 = B0 = 0 a.s. and {Mi} be Fi-measurable local martingale for i = 0, 1, 2, ... with M0 = 0.

If a nonnegative stochastic process {Zi}i=0,1,... can be decomposed as Zi = Z0 + Ai − Bi + Mi,

then {
lim
i→∞

Ai <∞
}
⊆
{

lim
i→∞

Bi <∞
}
∩
{

lim
i→∞

Zi exists and is finite

}
a.s.

3 The EM method with random variable stepsize

In this section, we present our main results about the variable stepsize EM method. To keep

the proof simple and clear we specify the choice of the stepsize in the proof, but readers should
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notice that there are other choices. We emphasise here that there are two important properties

of the variable stepsize that the sum of the steps is a stopping time and divergent. The feature

of stopping time is essential to the proof of the local martingale term in Theorem 3.1, and the

divergence guarantees the time is able to tend to infinity.

The first main result is that the variable stepsize method can reproduce the stability of the

SDE shown in Theorem 2.1.

Theorem 3.1 Let (2.2) and (2.3) hold. Assume z(x) = 0 if and only if x = 0, and

lim inf
|x|→0

z(x)

|f(x)|2
> 0. (3.1)

Define the EM method with variable stepsize as

Yi+1 = Yi + f(Yi)∆ti + g(Yi)∆Bi, Y0 = x(0), i ≥ 0, (3.2)

where ∆Bi = B(ti) − B(ti−1) with ti =
∑i

k=0 ∆tk for i = 0, 1, 2... and t−1 = 0, ∆ti is chosen

to be 2−ni with ni = d1 − log2(z(Yi)/|f(Yi)|2)e for |Yi| 6= 0 and 2−2 for |Yi| = 0. Then ti is an

{Ft}-stopping time for each i = 0, 1, 2..., and the sequence of time steps obeys
∑∞

i=0 ∆ti = ∞

a.s. Moreover, for any initial value Y0 ∈ Rn

lim
i→∞

Yi = 0 a.s.

Proof. Taking square on both sides of (3.2), we have

|Yi+1|2 = |Yi|2 + 2〈Yi, f(Yi)∆ti + g(Yi)∆Bi〉+ |f(Yi)∆ti + g(Yi)∆Bi|2

= |Yi|2 + ∆ti(2〈Yi, f(Yi)〉+ |g(Yi)|2 + |f(Yi)|2∆ti) + ∆mi, (3.3)

where ∆mi = 2〈Yi, g(Yi)∆Bi〉+ 2〈f(Yi)∆ti, g(Yi)∆Bi〉+ |g(Yi)|2(|∆Bi|2 −∆ti).

The proof is divided into three parts. Firstly, we demonstrate the strategy of choosing the

stepsize ∆ti in each time step and show that ti is an {Ft}-stopping time for every i = 0, 1, ....

Then we prove that mi =
∑i

k=0 ∆mk is a local martingale for i = 0, 1, .... At last, we give the

proof of the divergence of the sequence of the timesteps and conclude the almost sure stability.

Step 1

Since (2.3), in each step we can choose sufficiently small and rational stepsize ∆ti such that

−U(Yi,∆ti) := −z(Yi) + |f(Yi)|2∆ti ≤ 0. (3.4)
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For example, when Yi 6= 0 (by Lemma 2.2 we know f(Yi) 6= 0) we could choose ∆ti = 2−ni

with ni = d1 − log2(z(Yi)/|f(Yi)|2)e. Then it is obvious that ∆ti ≤ z(Yi)/(2|f(Yi)|2), thus the

inequality (3.4) holds. When Yi = 0 (i.e. z(Yi) = 0 and f(Yi) = 0), any choice of ∆ti will satisfy

(3.4) and we simply choose, for example ∆ti = 2−2. From the iteration (3.2), we know that if

at some time point the solution becomes zero, the solution afterwards will stay at zero. Hence

in this case the stepsize is fixed and the almost sure stability follows naturally. In the following,

we focus on the case when ∆ti = 2−ni with ni = d1 − log2(z(Yi)/|f(Yi)|2)e. We emphasise

here that the requirement that each ∆ti is a rational number is key to the following proof that

ti =
∑i

k=0 ∆tk =
∑i

k=0 2−nk is an {Ft}-stopping time for every i = 0, 1, ....

Assume ti is an {Ft}-stopping time for some i ≥ 0, i.e. {ti ≤ t} ∈ Ft for any t ≥ 0. Note

that Yi+1 is Fti-measurable. Because the choice of ∆ti+1 is dependent on Yi+1 we have that

∆ti+1 is Fti-measurable. Then we need to show ti+1 = ti + ∆ti+1 is an {Ft}-stopping time,

that is to show {ti + ∆ti+1 ≤ t} ∈ Ft for any t ≥ 0. For any s ∈ Z and any j ∈ N with

j2s ∈ [0, t], we have {ti ≤ j2s} ∈ Fj2s ⊆ Ft, and {∆ti+1 ≤ t − j2s} ∈ Fti ⊂ F . Thus we have

{ti ≤ j2s} ∩ {∆ti+1 ≤ t− j2s} ∈ Ft (see for example [12]). As both Z and N are countable sets,

we have that for any t ≥ 0 [7]

{ti + ∆ti+1 ≤ t} =
⋃

{0≤j2s≤t,s∈Z,j∈N}

({ti ≤ j2s} ∩ {∆ti+1 ≤ t− j2s}) ∈ Ft.

Thus we have proved that ti+1 is an {Ft}-stopping time. Since ∆t0 is dependent on the given

initial value Y0, we have ∆t0 and Y0 are Ft−1-measurable (recalling t−1 = 0). By induction we

conclude that ti is an {Ft}-stopping time for each i = 0, 1, .... Substituting (3.4) into (3.3), we

obtain

|Yi+1|2 = |Yi|2 − U(Yi,∆ti)∆ti + ∆mi.

Then taking sum on i we have

|Yi+1|2 = |Y0|2 −
i∑

k=0

U(Yk,∆tk)∆tk +mi, (3.5)

where mi =
∑i

k=0 ∆mk.

Step 2

Due to (3.2) and the definition of ti, it is clear that Yi is Fti−1-measurable for i = 0, 1, .... We de-

fine another filtration {Gi}i=−1,0,1,... by Gi = Fti for i = −1, 0, 1, .... So Yi is Gi−1-measurable and

mi is Gi-measurable. We are going to prove that {mi}i≥0 is a {Gi}-local martingale. Choosing
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R s.t. |x(0)| < R, we define a stopping time

ρR = inf{i ≥ 0, |Yi| > R}.

Clearly, ρR → ∞ a.s. when R → ∞. It is easy to see that ρR is a {Gi−1}-stopping time i.e.

{ρR ≤ i} ∈ Gi−1. This indicates {ρR − 1 ≤ i} ∈ Gi. Denoting τR = ρR − 1, we have τR is a

{Gi}-stopping time. By the definition of ρR, we have that |Yi∧(ρR−1)| ≤ R a.s. and |Yi∧τR | ≤ R

a.s. for all i ≥ 0.

We claim that ti∧τR and t(i−1)∧τR are {Ft}-stopping times. For ti∧τR we have for any t ≥ 0

{ti∧τR ≤ t} = {{ti ≤ t} ∩ {τR ≥ i}} ∪ {{tτR ≤ t} ∩ {τR < i}}.

Since {τR ≥ i} ∈ Gi−1 ⊂ Gi = Fti , we have {ti ≤ t} ∩ {τR ≥ i} ∈ Ft. And

{tτR ≤ t} ∩ {τR < i} =

i−1⋃
j=0

({{tj ≤ t} ∩ {τR = j}),

because {τR = j} ∈ Fti for j = 0, 1, ...i − 1 we have {tτR ≤ t} ∩ {τR < i} ∈ Ft. Hence

{ti∧τR ≤ t} ∈ Ft. Similarly for t(i−1)∧τR , we have

{t(i−1)∧τR ≤ t} = {{ti−1 ≤ t} ∩ {τR ≥ i− 1}} ∪ {{tτR ≤ t} ∩ {τR < i− 1}}.

Since {τR ≥ i− 1} ∈ Gi−2 ⊂ Fti , we have {ti−1 ≤ t} ∩ {τR ≥ i− 1} ∈ Ft. And

{tτR ≤ t} ∩ {τR < i− 1} =

i−2⋃
j=0

({{tj ≤ t} ∩ {τR = j}),

we have {{tτR ≤ t} ∩ {τR < i− 1}} ∈ Ft due to {τR = j} ∈ Gj ⊂ Fti for j = 0, 1, ...i− 2. Thus

{t(i−1)∧τR ≤ t} ∈ Ft.

Due to the iteration (3.2) and the fact that |Yk∧τR | = |YτR | for any k ≥ τR, we define the

Brownian motion increment with the stopping time by ∆Bi∧τR = B(ti∧τR) − B(t(i−1)∧τR) and

the time step with the stopping time by ∆ti∧τR = ti∧τR − t(i−1)∧τR . Since τR → ∞ a.s. when

R → ∞, those two definitions can reproduce the original ones we used in the statement of the

theorem. Thus they are valid. In addition, we have

mi∧τR =

i∧τR∑
k=0

∆mk =

i∑
k=0

∆mk∧τR and mi∧τR = m(i−1)∧τR + ∆mi∧τR .

From condition (2.2) and Lemma 2.2, for |x| ≤ R there exists a constant c(R) dependent
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on R such that |f(x)| ∨ |g(x)| ≤ c(R). By the elementary inequality, we have

|mi∧τR | =

∣∣∣∣∣
i∧τR∑
k=0

∆mk

∣∣∣∣∣
≤

i∑
k=0

|∆mk∧τR |

≤
i∑

k=0

(2|Yk∧τR ||g(Yk∧τR)||∆Bk∧τR |+ 2|f(Yk∧τR)||g(Yk∧τR)|∆tk∧τR |∆Bk∧τR |

+|g(Yk∧τR)|2||∆Bk∧τR |
2 −∆tk∧τR |)

≤
i∑

k=0

(c1(R)|∆Bk∧τR |+ c2(R)|∆Bk∧τR |
2), (3.6)

where c1(R) and c2(R) are constants dependent on R only. Hence we have

E|mi∧τR | ≤
i∑

k=0

(c1(R)E|∆Bk∧τR |+ c2(R)E|∆Bk∧τR |
2) <∞.

Also we have

E(mi∧τR
∣∣Gi−1) = E(m(i−1)∧τR + ∆mi∧τR

∣∣Gi−1) = m(i−1)∧τR + E(∆mi∧τR
∣∣Gi−1). (3.7)

Because {τR > i− 1} ∈ Gi−1 and ∆Bi is independent of Gi−1, we have

E(∆Bi∧τR
∣∣Gi−1)

= E[(B(ti)−B(ti−1))1{τR>i−1}
∣∣Gi−1] + E[(B(tτR)−B(tτR))1{τR≤i−1}

∣∣Gi−1]
= 1{τR>i−1}E[B(ti)−B(ti−1)]

= 0,

E(|∆Bi∧τR |
2
∣∣Gi−1)

= E[|B(ti)−B(ti−1)|21{τR>i−1}
∣∣Gi−1] + E[|B(tτR)−B(tτR)|21{τR≤i−1}

∣∣Gi−1]
= 1{τR>i−1}E[|B(ti)−B(ti−1)|2]

= 1{τR>i−1}(ti − ti−1),

and

E(∆ti∧τR
∣∣Gi−1)

= ∆ti∧τR

= 1{τR>i−1}(ti − ti−1) + 1{τR≤i−1}(tτR − tτR)

= 1{τR>i−1}(ti − ti−1).
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Hence

E(∆mi∧τR
∣∣Gi−1)

= E(2〈Yi∧τR , g(Yi∧τR)∆Bi∧τR〉+ 2〈f(Yi∧τR)∆ti∧τR , g(Yi∧τR)∆Bi∧τR〉

+|g(Yi∧τR)|2(|∆Bi∧τR |
2 −∆ti∧τR)

∣∣Gi−1)
= 2〈Yi∧τR , g(Yi∧τR)〉E(∆Bi∧τR

∣∣Gi−1) + 2〈f(Yi∧τR), g(Yi∧τR)〉∆ti∧τRE(∆Bi∧τR
∣∣Gi−1)

+|g(Yi∧τR)|2(E(|∆Bi∧τR |
2
∣∣Gi−1)− E(∆ti∧τR

∣∣Gi−1))
= 0. (3.8)

Combining (3.7) and (3.8), we achieve the required

E(mi∧τR
∣∣Gi−1) = m(i−1)∧τR .

This means that {mi∧τR}i≥0 is a {Gi}-martingale. Recalling that τR → ∞ a.s. when R → ∞,

we see that {mi}i≥0 is a {Gi}-local martingale.

Step 3

Therefore from (3.5) and Lemma 2.3, we have

lim
i→∞
|Yi|2 <∞ a.s. (3.9)

and
∞∑
k=0

U(Yk,∆ti)∆tk <∞ a.s. (3.10)

From (3.10), we have limi→∞ U(Yi,∆ti)∆ti = 0 a.s. We next show the time step ∆ti will never

tend to zero as i goes to infinity, that is lim infi→∞∆ti > 0 a.s.

According to (3.9) for almost all ω ∈ Ω, there exists C(ω) ∈ R+ such that limi→∞ |Yi(ω)| =

C(ω). Fix any such ω, write C(ω) = C and Yi(ω) = Yi. Consider two cases:

(i) For the case when C 6= 0, there exists a sufficiently large integer i∗1 such that for all

i > i∗1, 0.5C < |Yi| < 1.5C. This indicates either 0.5C < Yi < 1.5C or −1.5C < Yi < −0.5C.

Because that z(x) = 0 and f(x) = 0 if and only if x = 0, in both of the two intervals we have

z(Yi) 6= 0 and f(Yi) 6= 0. Furthermore, due to the continuity of z(x) and f(x), we have

min
0.5C≤|x|≤1.5C

z(x)

|f(x)|2
= η > 0.

So for any i > i∗1, we have
z(Yi)

|f(Yi)|2
≥ η > 0
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then

1− log2(z(Yi)/|f(Yi)|2) ≤ 1− log2(η).

Recalling the choice of the stepsize, we see

ni = d1− log2(z(Yi)/|f(Yi)|2)e ≤ d1− log2(η)e

then

∆ti = 2−ni ≥ 2−d1−log2(η)e > 0.

(ii) For the case when C = 0, suppose the limit of (3.1) be D > 0. There exists a constant

δ = δ(D) > 0 such that |z(x)/|f(x)|2 − D| < 0.5D for all |x| ∈ (0, δ). Also, there exists an

integer i∗2 such that for all i > i∗2, |Yi| ∈ (0, δ), which indicates |z(Yi)/|f(Yi)|2 −D| < 0.5D. So

for any i > i∗2, we have

1− log2(1.5D) < 1− log2(z(Yi)/|f(Yi)|2) < 1− log2(0.5D).

Recalling the choice of the stepsize, we see

∆ti = 2−ni > 2−d1−log2(0.5D)e > 0.

Thus ∆ti will never tend to 0 as i tends to infinity. Hence we have
∑∞

i=0 ∆ti =∞ a.s.

Now we have limi→∞ U(Yi,∆ti) = 0 a.s. Due to (3.4) and the choice of ∆ti that ∆ti ≤

z(Yi)/(2|f(Yi)|2), we have

U(Yi,∆ti) = z(Yi)− |f(Yi)|2∆ti ≥ 0.5z(Yi) ≥ 0.

Therefore limi→∞ z(Yi) = 0 a.s. Given the condition “z(x) = 0 ⇔ x = 0”, we obtain that

limi→∞ Yi = 0 a.s. Hence the proof is complete.

We have three comments on the proof.

• The conditions in Theorem 3.1 for the EM method with variable stepsize is weaker than

the condition for the EM method with fixed stepsize (i.e. when θ = 0) stated in Theorem

5.3 of [14]. For example, a scalar SDE dx(t) = (−x3(t)− x(t))dt+ x2(t)dB(t) satisfies the

conditions in Theorem 3.1, but not in Theorem 5.3 of [14].

• When conducting computer simulation, the stepsize is naturally rational number as com-

puters can only deal with finite number of decimals. Thus we may simply set each stepsize

to be αz(Yi)/(|f(Yi)|2) for any rational number α ∈ (0, 1). We generalise the choice of

stepsize in Theorem 3.1 in the next theorem.
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• The condition (2.3) is the restriction on the relation between the drift and the diffusion

coefficients, which is also required for the almost sure stability of the underlying SDEs.

The condition (3.1) is solely required for the numerical methods. From the proof, we can

see that (3.1) guarantees the sum of the sequence of stepsizes tends to infinity. This is

essential as we are discussing asymptotic behaviour of the numerical solution.

Theorem 3.2 Let (2.2) and (2.3) hold. Assume z(x) = 0 if and only if x = 0, and (3.1).

For the EM method with variable stepsize (3.2), ∆ti is chosen to be rational number satisfying

∆ti = αz(Yi)/(|f(Yi)|2) with α ∈ (0, 1) for |Yi| 6= 0, and any nonzero rational number for

|Yi| = 0. Then ti is an {Ft}-stopping time for each i = 0, 1, 2..., and the sequence of time steps

obeys
∑∞

i=0 ∆ti =∞ a.s. Moreover, for any initial value Y0 ∈ Rn

lim
i→∞

Yi = 0 a.s.

Most part of the proof of Theorem 3.2 is similar to the proof of Theorem 3.1, and the only

different part is the proof of the stopping time as follows.

Assume ti is an {Ft}-stopping time for some i ≥ 0, i.e. {ti ≤ t} ∈ Ft for any t ≥ 0. Note

that Yi+1 is Fti-measurable, because the choice of ∆ti+1 is dependent on Yi+1 we have that

∆ti+1 is Fti-measurable. Then we need to show ti+1 = ti+ ∆ti+1 is an {Ft}-stopping time, that

is to show {ti + ∆ti+1 ≤ t} ∈ Ft for any t ≥ 0. For any rational number s ∈ [0, t], we have

{ti ≤ s} ∈ Fs ⊆ Ft, and {∆ti+1 ≤ t−s} ∈ Fti ⊆ F . Thus we have {ti ≤ s}∩{∆ti+1 ≤ t−s} ∈ Ft

(see for example [12]). As the set of all rational number s ∈ [0, t] is a countable set, we have

that for any t ≥ 0 [7]

{ti + ∆ti+1 ≤ t} =
⋃

{0≤s≤t,s∈Q}

({ti ≤ s} ∩ {∆ti+1 ≤ t− s}) ∈ Ft.

Thus we have proved that ti+1 is an {Ft}-stopping time. Since ∆t0 is dependent on the given

initial value Y0, we have ∆t0 and Y0 are Ft−1-measurable (recalling t−1 = 0). By induction we

conclude that ti is an {Ft}-stopping time for each i = 0, 1, ....

4 Examples

We first consider a scalar SDE

dx(t) = (−x3(t)− x(t))dt+ x2(t)dB(t) (4.1)
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with a given initial value x(0) = 1. It is easy to verify that for any x ∈ R with x 6= 0

−z(x) := 2〈x, f(x)〉+ g2(x) = −2x2 − x4 < 0.

It is clear that ”z(x) = 0⇔ x = 0”, by Theorem 2.1 we have the solution of the underlying SDE

is asymptotically almost surely stable. Moreover,

lim inf
|x|→0

z(x)

|f(x)|2
= lim inf
|x|→0

2x2 + x4

x2 + 2x4 + x6
= 2 > 0.

Choose the stepsize, for example ∆ti = 0.98z(Yi)/|f(Yi)|2 in each step, from Theorem 3.2 we

obtain the variable stepsize EM solution is asymptotically almost surely stable as well. Set

Y0 = 1, we simulated 1000 time steps of one path of the variable stepsize EM solution. The left

plot on Figure 1 is the solution path, from which we can see that the oscillation decays and the

solution tends zero as time increases. This is in line with the theoretical result. The plot on

the right of Figure 1 is the size of each time step. It is clear that with the solution approaching

the origin the stepsize tends to 1.96 and this is due to the limit 2 and the choice of factor 0.98.

In addition, the plot also shows that the stepsize does not need to tend to zero, thus we have∑∞
i=0 ∆ti =∞ a.s.

Figure 1: Left: One simulation path, Right: The stepsize of each time step

Now we consider a two-dimensional case

dx(t) = diag(x1(t), x2(t)) ((b+Adiag(x1(t), x2(t))x(t)) dt+ σdB(t)) , (4.2)

where diag(x1(t), x2(t)) denotes diagonal matrix with nonzero entries x1(t) and x2(t) on the

diagonal, x(t) = (x1(t), x2(t))
T , b = (b1, b2)

T , A = (aij)i,j∈{1,2}, σ = (σij)i,j∈{1,2} and B(t) =

(B1(t), B2(t))
T .

We set b = (−1,−2)T , a11 = a22 = −1, a12 = −2, a21 = 1, σ11 = σ12 = 0.5, σ21 = 1, σ22 =

12



−1. It is easy to verify that for any x ∈ R2 and x 6= 0

2〈x, f(x)〉+ g2(x)

= (2b1 + σ211 + σ212)x
2
1 + (2b2 + σ221 + σ222)x

2
2 + (a12 + a21)x

2
1x

2
2 + a11x

4
1 + a22x

4
2 < 0.

From Theorem 2.1, we know the SDE solution is almost surely stable. In addition, by the

elementary inequality ab ≤ a2 + b2 we have

lim inf
|x|→0

z(x)

|f(x)|2

= lim inf
|x|→0

1.5x21 + 2x22 + x21x
2
2 + x41 + x42

x21 + 2x41 + x61 + 2x21x
4
2 + 5x41x

2
2 + 4x22 + 4x42 + x62

≥ lim inf
|x|→0

|x|2

4|x|2 + 6.5|x|4 + |x|6 + 2.5|x|8

=
1

4
> 0.

By choosing the stepsize, for example ∆ti = 0.1z(Yi)/|f(Yi)|2 in each step, we have from Theo-

rem 3.1 that the variable stepsize EM solution is almost surely stable as well.

Figure 2: Left: One simulation path of Y1,· and Y2,·, Right: The stepsize of each time step.

We simulated 10000 time steps and plotted the two solution paths on the left of Figure 2.

It can be seen that as time increases both the solutions tend to zero. And from the plot on the

right of Figure 2 the size of the time step approaches to 0.025 as the solutions go to zeros, which

shows the stepsize will not tend to zero. Hence both the simulations of the one-dimensional and

the multi-dimensional cases are in line with the theoretical result.

5 Other sufficient conditions

In this section, we propose some other sufficient conditions which can cover some SDEs that are

not included in Section 3.
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Another condition that can be regarded as an extension to (2.3) is to assume there exists a

symmetric positive-definite n× n matrix Q such that for ∀x ∈ Rn

−z̄(x) := 2xTQf(x) + trace(gT (x)Qg(x)) ≤ 0. (5.1)

It is clear to see that when Q is an identity matrix, (2.3) is recovered. Thanks to the stochastic

version of the LaSalle theorem in [22], we have that the underlying solution of (2.1) is almost

surely asymptotically stable if (2.2) and (5.1) hold, and z̄(x) = 0 if and only if x = 0. In

addition, it is obvious that given the condition that z̄(x) = 0 if and only if x = 0 the results

in Lemma 2.2 still hold for f(x) and g(x). Denote the smallest and largest eigenvalue of Q by

λmin(Q) and λmax(Q) respectively. Now we are ready to present the following theorem.

Theorem 5.1 Let (2.2) and (5.1) hold. Assume z̄(x) = 0 if and only if x = 0, and

lim inf
|x|→0

z̄(x)

|f(x)|2
> 0.

For the EM method with variable stepsize (3.2), ∆ti is chosen to be rational number satisfying

∆ti = αz̄(Yi)/(λmax(Q)|f(Yi)|2) with α ∈ (0, 1) for |Yi| 6= 0, and any nonzero rational number

for |Yi| = 0. Then ti is an {Ft}-stopping time for each i = 0, 1, 2..., and the sequence of time

steps obeys
∑∞

i=0 ∆ti =∞ a.s. Moreover, for any initial value Y0 ∈ Rn

lim
i→∞

Yi = 0 a.s.

Proof. Since Q is a symmetric positive-definite n× n matrix, it is clear that for any i ≥ 0

λmin(Q)|Yi|2 ≤ Y T
i QYi ≤ λmax(Q)|Yi|2

and

λmin(Q)|f(Yi)|2 ≤ fT (Yi)Qf(Yi) ≤ λmax(Q)|f(Yi)|2.

From (3.2) we have

Y T
i+1QYi+1 = Y T

i QYi + ∆ti[2Y
T
i Qf(Yi) + trace(gT (Yi)Qg(Yi)) + fT (Yi)Qf(Yi)∆ti] + ∆mi,

where

∆mi = 2Y T
i Qg(Yi)∆Bi+2fT (Yi)Qg(Yi)∆Bi+(g(Yi)∆Bi)

TQ(g(Yi)∆Bi)−trace(gT (Yi)Qg(Yi))∆ti.

Then the proof can be completed by adapting the same procedure used in Theorem 3.1.
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We see condition (5.1) as a generalisation of (2.3) as we can recover (2.3) by choosing Q to be

identity matrix in (5.1).

To keep the notations simple in the next theorem, we investigate the SDEs with the scalar

Brownian motion

dx(t) = f(x(t))dt+ g(x(t))dB(t), x(0) ∈ Rn,

where f : Rn → Rn, g: Rn → Rn and B(t) is a scalar Brownian motion. We still assume

condition (2.2), but replace condition (2.3) by the following condition: there exists a constant

p ∈ (0, 2) such that

−v := sup
x∈Rn,x 6=0

(
2〈x, f(x)〉+ |g(x)|2

|x|2
+ (p− 2)

〈x, g(x)〉2

|x|4

)
< 0. (5.2)

Also we assume f(0) = 0 and g(0) = 0.

Under (2.2) and (5.2), the true solution of SDE (2.1) is almost surely asymptotically stable

[22]. Now we study the numerical solution.

Theorem 5.2 Let (2.2) and (5.2) hold. Assume

lim sup
|x|→0

|f(x)|
|x|

<∞, (5.3)

and

lim sup
|x|→0

|g(x)|
|x|

<∞. (5.4)

Define the EM method with variable stepsize as

Yi+1 = Yi + f(Yi)∆ti + g(Yi)∆Bi, Y0 = x(0), i ≥ 0, (5.5)

where ∆Bi = B(ti)−B(ti−1) with ti =
∑i

k=0 ∆tk for i = 0, 1, 2... and t−1 = 0. For Yi 6= 0, ∆ti

is chosen to be rational number satisfying ∆ti ≤ (p/12) min{j=1,2,3,4,5}{(v/Aj(Yi))(1/j)}, where

{Aj}j=1,2,3,4,5 are defined in the proof. For Yi = 0, ∆ti is chosen to be any nonzero rational

number. Then ti is an {Ft}-stopping time for each i = 0, 1, 2..., and the sequence of time steps

obeys
∑∞

i=0 ∆ti =∞ a.s. Moreover, for any initial value Y0 ∈ Rn

lim
i→∞

Yi = 0 a.s.

The proof of this theorem is tedious but nontrivial. Therefore, we put it in Appendix.

Because of the extra negative term in the condition (5.2), 2〈x, f(x)〉+ |g(x)|2 is not necessarily

less than 0 for all nonzero x. Therefore Theorem 5.2 does cover some SDEs that can not be
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covered by Theorem 3.1. But it should be noted that Theorem 3.1 is not fully included in

Theorem 5.2. For example a scalar SDE with f(x) = −0.5x3 − x5 and g(x) = x2. We check the

conditions (2.3) and (3.1) that for any x ∈ Rn with x 6= 0

2〈x, f(x)〉+ g2(x) = −2x6 < 0 and lim inf
|x|→0

z(x)

|f(x)|2
=

2

0.25
> 0,

i.e. all the conditions in Theorem 3.1 hold. To check the condition (5.2) in Theorem 5.2, we

have
2〈x, f(x)〉+ |g(x)|2

|x|2
+ (p− 2)

〈x, g(x)〉2

|x|4
= −x4 + (p− 2)x2.

But for any p ∈ (0, 2), we can not find a v > 0 to satisfy (5.2).

6 Conclusions

In this paper, we investigate the Euler–Maruyama method with random variable stepsize and

successfully reproduce the almost sure stability of the true solution using this method with the

semimartingale convergence theorem. Conditions we impose on the drift and diffusion coeffi-

cients for the random variable stepsize method are much weaker than those for the fixed or

nonrandom variable stepsize methods. Our key contribution also goes to the proof that the time

variable is a stopping time, and only when this is true the rest of our proof is proper.

Considering that the random variable stepsize method works well for the stability, it is

interesting to investigate other asymptotic properties of this method. Other numerical methods

with random variable stepsize, such as the stochastic θ-method, are also worth to investigate.

The order-of-convergence is also essential for numerical methods. We have been working on

the order of convergence of this newly developed Euler-Maruyama method with random variable

stepsize, but due to the page limit here we will report the results in a follow-up paper.

Appendix

Proof of Theorem 5.2

From the first line of (3.3), we have that for the p given in (5.2) and Yi 6= 0

|Yi+1|p = |Yi|p
(

1 +
2〈Yi, f(Yi)∆ti + g(Yi)∆Bi〉+ |f(Yi)∆ti + g(Yi)∆Bi|2

|Yi|2

)p/2
.

When Yi = 0 (i.e. f(Yi) = 0 and g(Yi) = 0) for some i > 0, due to the iteration (5.5) the solution

will stay at zero afterwards. In this case ∆ti could be set to be any nonzero rational number.
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In the following we focus on the case that Yi 6= 0 for all i ≥ 0. Let

ζ =
2〈Yi, f(Yi)∆ti + g(Yi)∆Bi〉+ |f(Yi)∆ti + g(Yi)∆Bi|2

|Yi|2
,

and by the fundamental inequality that for any ζ ≥ −1

(1 + ζ)p/2 ≤ 1 +
p

2
ζ +

p(p− 2)

8
ζ2 +

p(p− 2)(p− 4)

23 × 3!
ζ3,

we have

|Yi+1|p ≤ |Yi|p
(

1 +
p

2
ζ +

p(p− 2)

8
ζ2 +

p(p− 2)(p− 4)

23 × 3!
ζ3
)
. (6.1)

We compute

ζ =
1

|Yi|2
(∆ti(2〈Yi, f(Yi)〉+ |g(Yi)|2) + ∆t2i |f(Yi)|2

+2〈Yi, g(Yi)〉∆Bi + 2fT (Yi)g(Yi)∆ti∆Bi + |g(Yi)|2(∆B2
i −∆ti)),

ζ2 =

1

|Yi|4
(∆ti(4〈Yi, g(Yi)〉2)

+∆t2i (4〈Yi, f(Yi)〉2 + |g(Yi)|4 + 4〈Yi, f(Yi)〉|g(Yi)|2 + 8〈Yi, g(Yi)〉fT (Yi)g(Yi))

+∆t3i (6|f(Yi)|2|g(Yi)|2 + 4〈Yi, f(Yi)〉|f(Yi)|2) + ∆t4i |f(Yi)|4

+4〈Yi, g(Yi)〉2(∆B2
i −∆ti) + |g(Yi)|4(∆B4

i −∆t2i ) + 4〈Yi, f(Yi)〉|g(Yi)|2∆ti(∆B2
i −∆ti)

+8〈Yi, g(Yi)〉fT (Yi)g(Yi)∆ti(∆B
2
i −∆ti) + 6|f(Yi)|2|g(Yi)|2∆t2i (∆B2

i −∆ti)

+8〈Yi, f(Yi)〉〈Yi, g(Yi)〉∆ti∆Bi + 4|f(Yi)|2fT (Yi)g(Yi)∆t
3
i∆Bi + 4fT (Yi)g(Yi)|g(Yi)|2∆ti∆B3

i

+8〈Yi, f(Yi)〉fT (Yi)g(Yi)∆t
2
i∆Bi + 4〈Yi, g(Yi)〉|f(Yi)|2∆t2i∆Bi + 4〈Yi, g(Yi)〉|g(Yi)|2∆B3

i ),
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and

ζ3 =

1

|Yi|6
(∆t2i (24〈Yi, f(Yi)〉〈Yi, g(Yi)〉2 + 12〈Yi, g(Yi)〉2|g(Yi)|2)

+∆t3i (8〈Yi, f(Yi)〉3 + 12〈Yi, f(Yi)〉2|g(Yi)|2 + 48〈Yi, f(Yi)〉〈Yi, g(Yi)〉fT (Yi)g(Yi)

+12〈Yi, g(Yi)〉2|f(Yi)|2 + 6〈Yi, f(Yi)〉|g(Yi)|4 + |g(Yi)|6 + 24〈Yi, g(Yi)〉|f(Yi)||g(Yi)|3)

+∆t4i (12〈Yi, f(Yi)〉2|f(Yi)|2 + 36〈Yi, f(Yi)〉|f(Yi)|2|g(Yi)|2 + 15|f(Yi)|2|g(Yi)|4

+24〈Yi, g(Yi)〉|f(Yi)|3|g(Yi)|)

+∆t5i (6〈Yi, f(Yi)〉|f(Yi)|4 + 15|f(Yi)|4|g(Yi)|2)

+∆t6i (|f(Yi)|6)

+24〈Yi, f(Yi)〉2〈Yi, g(Yi)〉∆t2i∆Bi + 24〈Yi, f(Yi)〉〈Yi, g(Yi)〉2∆ti(∆B2
i −∆ti)

+8〈Yi, g(Yi)〉3∆B3
i + 24〈Yi, f(Yi)〉2fT (Yi)g(Yi)∆t

3
i∆Bi

+12〈Yi, f(Yi)〉2|g(Yi)|2∆t2i (∆B2
i −∆ti)

+24〈Yi, f(Yi)〉〈Yi, g(Yi)〉|f(Yi)|2∆t3i∆Bi

+48〈Yi, f(Yi)〉〈Yi, g(Yi)〉fT (Yi)g(Yi)∆t
2
i (∆B

2
i −∆ti)

+24〈Yi, f(Yi)〉〈Yi, g(Yi)〉|g(Yi)|2∆ti∆B3
i + 12〈Yi, g(Yi)〉2|f(Yi)|2∆t2i (∆B2

i −∆ti)

+24〈Yi, g(Yi)〉2fT (Yi)g(Yi)∆ti∆B
3
i + 12〈Yi, g(Yi)〉2|g(Yi)|2(∆B4

i −∆t2i )

+24〈Yi, f(Yi)〉|f(Yi)|2fT (Yi)g(Yi)∆t
4
i∆Bi + 36〈Yi, f(Yi)〉|f(Yi)|2|g(Yi)|2∆t3i (∆B2

i −∆ti)

+24〈Yi, f(Yi)〉fT (Yi)g(Yi)|g(Yi)|2∆t2i∆B3
i + 6〈Yi, f(Yi)〉|g(Yi)|4∆ti(∆B4

i −∆t2i )

+6|f(Yi)|4fT (Yi)g(Yi)∆t
5
i∆Bi + 15|f(Yi)|4|g(Yi)|2∆t4i (∆B2

i −∆ti)

+20|f(Yi)|2fT (Yi)g(Yi)|g(Yi)|2∆t3i∆B3
i

+15|f(Yi)|2|g(Yi)|4∆t2i (∆B4
i −∆t2i ) + 6fT (Yi)g(Yi)|g(Yi)|4∆ti∆B5

i + |g(Yi)|6(∆B6
i −∆t3i )

+6〈Yi, g(Yi)〉|f(Yi)|4∆t4i∆Bi + 24〈Yi, g(Yi)〉|f(Yi)|3|g(Yi)|∆t3i (∆B2
i −∆ti)

+36〈Yi, g(Yi)〉|f(Yi)|2|g(Yi)|2∆t2i∆B3
i + 24〈Yi, g(Yi)〉|f(Yi)||g(Yi)|3∆ti(∆B4

i −∆t2i )

+6〈Yi, g(Yi)〉|g(Yi)|4∆B5
i ).

Then we can rearrange (6.1) into

|Yi+1|p ≤ |Yi|p − |Yi|p∆tiU1(∆ti, Yi) + ∆mi, (6.2)
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where

−U1(∆ti, Yi) :=

p

2

(
2〈Yi, f(Yi)〉+ |g(Yi)|2

|Yi|2
+
p− 2

4

4〈Yi, g(Yi)〉2

|Yi|4

)
+ ∆ti

(
p

2

|f(Yi)|2

|Yi|2

+
p(p− 2)

8

4〈Yi, f(Yi)〉2 + |g(Yi)|4 + 4〈Yi, f(Yi)〉|g(Yi)|2 + 8〈Yi, g(Yi)〉fT (Yi)g(Yi)

|Yi|4

+
p(p− 2)(p− 4)

23 × 3!

24〈Yi, f(Yi)〉〈Yi, g(Yi)〉2 + 12〈Yi, g(Yi)〉2|g(Yi)|2

|Yi|6

)
+ ∆t2i

(
p(p− 2)

8

6|f(Yi)|2|g(Yi)|2 + 4〈Yi, f(Yi)〉|f(Yi)|2

|Yi|4
+
p(p− 2)(p− 4)

23 × 3!
×(

8〈Yi, f(Yi)〉3 + 12〈Yi, f(Yi)〉2|g(Yi)|2 + 48〈Yi, f(Yi)〉〈Yi, g(Yi)〉fT (Yi)g(Yi)

|Yi|6

+
12〈Yi, g(Yi)〉2|f(Yi)|2 + 6〈Yi, f(Yi)〉|g(Yi)|4 + |g(Yi)|6 + 24〈Yi, g(Yi)〉|f(Yi)||g(Yi)|3

|Yi|6

))
+ ∆t3i

(
p(p− 2)

8

|f(Yi)|4

|Yi|4
+
p(p− 2)(p− 4)

23 × 3!
×

12〈Yi, f(Yi)〉2|f(Yi)|2 + 36〈Yi, f(Yi)〉|f(Yi)|2|g(Yi)|2

|Yi|6

+
15|f(Yi)|2|g(Yi)|4 + 24〈Yi, g(Yi)〉|f(Yi)|3|g(Yi)|

|Yi|6

)
+ ∆t4i

(
p(p− 2)(p− 4)

23 × 3!

6〈Yi, f(Yi)〉|f(Yi)|4 + 15|f(Yi)|4|g(Yi)|2

|Yi|6

)
+ ∆t5i

(
p(p− 2)(p− 4)

23 × 3!

|f(Yi)|6

|Yi|6

)
,
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and

∆mi =

|Yi|p(
1

|Yi|2
(2〈Yi, g(Yi)〉∆Bi + 2fT (Yi)g(Yi)∆ti∆Bi + |g(Yi)|2(∆B2

i −∆ti))

+
1

|Yi|4
(4〈Yi, g(Yi)〉2(∆B2

i −∆ti)

+|g(Yi)|4(∆B4
i −∆t2i ) + 4〈Yi, f(Yi)〉|g(Yi)|2∆ti(∆B2

i −∆ti)

+8〈Yi, g(Yi)〉fT (Yi)g(Yi)∆ti(∆B
2
i −∆ti) + 6|f(Yi)|2|g(Yi)|2∆t2i (∆B2

i −∆ti)

+8〈Yi, f(Yi)〉〈Yi, g(Yi)〉∆ti∆Bi + 4|f(Yi)|2fT (Yi)g(Yi)∆t
3
i∆Bi + 4fT (Yi)g(Yi)|g(Yi)|2∆ti∆B3

i

+8〈Yi, f(Yi)〉fT (Yi)g(Yi)∆t
2
i∆Bi + 4〈Yi, g(Yi)〉|f(Yi)|2∆t2i∆Bi + 4〈Yi, g(Yi)〉|g(Yi)|2∆B3

i )

+
1

|Yi|6
(24〈Yi, f(Yi)〉2〈Yi, g(Yi)〉∆t2i∆Bi + 24〈Yi, f(Yi)〉〈Yi, g(Yi)〉2∆ti(∆B2

i −∆ti)

+8〈Yi, g(Yi)〉3∆B3
i + 24〈Yi, f(Yi)〉2fT (Yi)g(Yi)∆t

3
i∆Bi

+12〈Yi, f(Yi)〉2|g(Yi)|2∆t2i (∆B2
i −∆ti)

+24〈Yi, f(Yi)〉〈Yi, g(Yi)〉|f(Yi)|2∆t3i∆Bi

+48〈Yi, f(Yi)〉〈Yi, g(Yi)〉fT (Yi)g(Yi)∆t
2
i (∆B

2
i −∆ti)

+24〈Yi, f(Yi)〉〈Yi, g(Yi)〉|g(Yi)|2∆ti∆B3
i + 12〈Yi, g(Yi)〉2|f(Yi)|2∆t2i (∆B2

i −∆ti)

+24〈Yi, g(Yi)〉2fT (Yi)g(Yi)∆ti∆B
3
i + 12〈Yi, g(Yi)〉2|g(Yi)|2(∆B4

i −∆t2i )

+24〈Yi, f(Yi)〉|f(Yi)|2fT (Yi)g(Yi)∆t
4
i∆Bi + 36〈Yi, f(Yi)〉|f(Yi)|2|g(Yi)|2∆t3i (∆B2

i −∆ti)

+24〈Yi, f(Yi)〉fT (Yi)g(Yi)|g(Yi)|2∆t2i∆B3
i + 6〈Yi, f(Yi)〉|g(Yi)|4∆ti(∆B4

i −∆t2i )

+6|f(Yi)|4fT (Yi)g(Yi)∆t
5
i∆Bi + 15|f(Yi)|4|g(Yi)|2∆t4i (∆B2

i −∆ti)

+20|f(Yi)|2fT (Yi)g(Yi)|g(Yi)|2∆t3i∆B3
i

+15|f(Yi)|2|g(Yi)|4∆t2i (∆B4
i −∆t2i ) + 6fT (Yi)g(Yi)|g(Yi)|4∆ti∆B5

i + |g(Yi)|6(∆B6
i −∆t3i )

+6〈Yi, g(Yi)〉|f(Yi)|4∆t4i∆Bi + 24〈Yi, g(Yi)〉|f(Yi)|3|g(Yi)|∆t3i (∆B2
i −∆ti)

+36〈Yi, g(Yi)〉|f(Yi)|2|g(Yi)|2∆t2i∆B3
i + 24〈Yi, g(Yi)〉|f(Yi)||g(Yi)|3∆ti(∆B4

i −∆t2i )

+6〈Yi, g(Yi)〉|g(Yi)|4∆B5
i )).

In each step, we need to choose ∆ti such that U1(∆ti, Yi) < 0. To do this, we could choose ∆ti

such that

−U2(∆ti, Yi) := −p
2
v +A1(Yi)∆ti +A2(Yi)∆t

2
i +A3(Yi)∆t

3
i +A4(Yi)∆t

4
i +A5(Yi)∆t

5
i < 0,
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where

A1(Yi) =
p

2

|f(Yi)|2

|Yi|2
+
p(2− p)

8

4|Yi||g(Yi)|3 + 8|Yi||f(Yi)|2|g(Yi)|
|Yi|4

+
p(p− 2)(p− 4)

23 × 3!

24|Yi|3|f(Yi)||g(Yi)|2 + 12|Yi|2|g(Yi)|4

|Yi|6
,

A2(Yi) =
p(2− p)

8

4|Yi||f(Yi)|3

|Yi|4
+
p(p− 2)(p− 4)

23 × 3!
×(

8|Yi|3|f(Yi)|3 + 12|Yi|2|f(Yi)|2|g(Yi)|2 + 48|Yi|2|f(Yi)|2|g(Yi)|2

|Yi|6

+
12|Yi|2|f(Yi)|2|g(Yi)|2 + 6|Yi||f(Yi)||g(Yi)|4 + |g(Yi)|6 + 24|Yi||f(Yi)||g(Yi)|4

|Yi|6

)
,

A3(Yi) =
p(p− 2)(p− 4)

23 × 3!
×

12|Yi|2|f(Yi)|4 + 36|Yi||f(Yi)|3|g(Yi)|2 + 15|f(Yi)|2|g(Yi)|4 + 24|Yi|f(Yi)|3|g(Yi)|2

|Yi|6
,

A4(Yi) =
p(p− 2)(p− 4)

23 × 3!

6|Yi||f(Yi)|5 + 15|f(Yi)|4|g(Yi)|2

|Yi|6
,

and

A5(Yi) =
p(p− 2)(p− 4)

23 × 3!

|f(Yi)|6

|Yi|6
.

By the elementary inequality 〈a, b〉 ≤ |a||b|, it is clear that −U1(∆ti, Yi) < −U2(∆ti, Yi) a.s. We

choose rational number ∆ti such that

∆ti ≤
p

12
min

{Aj(Yi) 6=0,j=1,2,3,4,5}
{(v/Aj(Yi))(1/j)}.

Apply the same techniques used in Theorem 3.1, we can prove that ti is an {Ft}-stopping time

for each i = 0, 1, ... and {mi =
∑i

k=0 ∆mk}i≥0 is a Gi-local martingale. Now from (6.2), we have

|Yi+1|p ≤ |Y0|p −
i∑

k=0

∆tk|Yk|pU1(∆tk, Yk) +mi.

By Lemma 2.3, we conclude

lim
i→∞
|Yi|p <∞ a.s. and

i∑
k=0

∆tk|Yk|pU1(∆tk, Yk) <∞ a.s.

Hence we have limi→∞∆ti|Yi|pU1(∆ti, Yi) = 0 a.s. For almost all ω ∈ Ω, there exists C(ω) ∈ R+

such that limi→∞ |Yi(ω)| = C(ω). Fix any such ω, write C(ω) = C and Yi(ω) = Yi. Due to the

choice of ∆ti, we have U1 > pv/12 > 0. Since (5.3) and (5.4), applying the same techniques

employed in Theorem 3.1 we have lim infi→∞ v/Aj(Yi) > 0 for each j = 1, 2, 3, 4, 5. That is to

say there is no requirement that ∆ti vanishes as i increases, thus
∑∞

i=0 ∆ti =∞ a.s. Hence we

can only have limi→∞ |Yi|p = 0. The proof is complete.
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