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Best L1 approximation of Heaviside-type functions in Chebyshev

and weak-Chebyshev spaces

Laurent Gajny1, Olivier Gibaru1,2, Eric Nyiri1, Shu-Cherng Fang3

Abstract

In this article, we study the problem of best L1 approximation of Heaviside-type functions in
Chebyshev and weak-Chebyshev spaces. We extend the Hobby-Rice theorem [2] into an appro-
priate framework and prove the unicity of best L1 approximation of Heaviside-type functions in
an even-dimensional Chebyshev space under the condition that the dimension of the subspace
composed of the even functions is half the dimension of the whole space. We also apply the
results to compute best L1 approximations of Heaviside-type functions by polynomials and Her-
mite polynomial splines with fixed knots.

Keywords : Best approximation, L1 norm, Heaviside function, polynomials, polynomial
splines, Chebyshev space, weak-Chebyshev space.

Introduction

Let [a, b] be a real interval with a < b and ν be a positive measure defined on a σ-field of subsets of
[a, b]. The space L1([a, b], ν) of ν-integrable functions with the so-called L1 norm :

‖ · ‖1 : f ∈ L1([a, b], ν) 7−→ ‖f‖1 =

∫ b

a
|f(x)| dν(x)

forms a Banach space. Let f ∈ L1([a, b], ν) and Y be a subset of L1([a, b], ν) such that f /∈ Y where
Y is the closure of Y . The problem of the best L1 approximation of the function f in Y consists in
finding a function g∗ ∈ Y such that :

‖f − g∗‖1 ≤ ‖f − g‖1, ∀g ∈ Y. (1)

If Y is a compact set or a finite dimensional subspace of L1([a, b], ν), then such a function exists
for any f ∈ L1([a, b], ν). In this article, we focus on the finite-dimensional case. An important
characterization theorem when ν is a non-atomic measure (See for example [3, 7] and a development
in [15]) claims that finding a best L1 approximation of a function f remains to define a sign-changes
function s (i.e. a function for which values alternate between -1 and 1 at certain abscissae) such
that : ∫ b

a
s(x)g(x) dν(x) = 0, ∀g ∈ Y.
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The Hobby-Rice theorem [2] enables to show the existence of such functions. This major result helps
characterize and compute solutions of best L1 approximation of a continuous function in Chebyshev
and weak-Chebyshev spaces. It has been widely studied in the litterature [4, 8, 12, 16, 20, 21]. We
recall that an n-dimensional Chebyshev space (resp. weak-Chebyshev space) on [a, b] is a subspace
of C0[a, b] composed of functions which have at most n − 1 distinct zeros on [a, b] (resp. strong
changes of sign) [5, 19]. Classical examples of such spaces are respectively polynomial functions and
polynomial spline functions with fixed knots.
To the best of our knowledge, there are few references in the litterature that deal with the challenging
problem of best L1 approximation of discontinuous functions, especially Heaviside-type functions.

Definition 1. We say that f is a Heaviside-type function on [a, b] with a jump at δ ∈ (a, b) if
f ∈ C0([a, b]\{δ}) and if the limits of the function |f | on both sides of δ exist and are finite.
We denote by Jδ[a, b] the vector space of such functions.

Existing papers focusing on one or two-sided best L1 approximation deal with specific spaces.
Bustamante et al. have shown that best polynomial one-sided L1 approximation of the Heaviside
function can be obtained by Hermite interpolation at zeros of some Jacobi polynomials [1]. Moskona
et al. have studied the problem of best two-sided Lp (p ≥ 1) approximation of the Heaviside
function using trigonometrical polynomials [9]. Saff and Tashev have done a similar work using
polygonal lines [18]. We propose in this article a more general framework for best (two-sided) L1

approximation of Heaviside-type functions in Chebyshev and weak-Chebyshev spaces which includes
the two previous cases. This problem is presented in Section 1. We evidence the encountered
difficulties that lead us to extend the classical Hobby-Rice theorem. This extension is presented
in details in Section 2. In the third section, we strongly use this result to characterize best L1

approximations of Heaviside-type functions in a Chebyshev space. We give sufficient conditions on
the Chebyshev space to obtain a unique L1 best approximation for every Heaviside-type function.
We apply these results to polynomial approximation. In Section 4, we study the problem of best L1

approximation of Heaviside-type functions in a weak-Chebyshev space. In particular, this theory is
applied to the Hermite polynomial spline case in Section 4.

1 Best L1 approximation

In this section, we recall an important characterization theorem of best L1 approximation (See for
example [3, 7]) and the Hobby-Rice theorem. We evidence the reason why the Hobby-Rice theorem
fails to give a more precise characterization of best L1 approximations of Heaviside-type functions.
For convenience, we define the zero set Z(f) = {x ∈ [a, b], f(x) = 0} and the sign function :

sign : x ∈ R 7−→ sign(x) =





1 if x > 0,
0 if x = 0,

−1 if x < 0.

Theorem 1.1. Let Y be a subspace of L1([a, b], ν) and f ∈ L1([a, b], ν)\Y . Then g∗ is a best L1

approximation of f in Y if and only if :
∣∣∣∣
∫ b

a
sign(f(x)− g∗(x))g(x) dν(x)

∣∣∣∣ ≤
∫

Z(f−g∗)
|g(x)| dν(x), for all g ∈ Y. (2)

In particular, if ν(Z(f − g∗)) = 0, then g∗ is a best L1 approximation of f in Y if and only if :

∫ b

a
sign(f(x)− g∗(x))g(x) dν(x) = 0, (3)
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for all g ∈ Y .

The second part of the latter theorem claims that finding a best L1 approximation of a function f
may remain to find a sign-changes function s, that alternates between −1 and 1 at certain abscissae,
such that: ∫ b

a
s(x)g(x) dν(x) = 0, ∀g ∈ Y. (4)

If there exists a function g∗ ∈ Y which interpolates f at these abscissae and no others, then g∗ is a
best L1 approximation of f in Y . Thus, the non-linear problem of best L1 approximation remains
to a simple Lagrange interpolation problem.
Actually, based on a result by Phelps (Lemma 2 in [13]), it can be shown that if ν is a non-atomic
measure then g∗ is a best L1 approximation of f in Y if and only if there exists a sign changes
function satisfying (4) and which coincides ν-almost everywhere with sgn(f−g∗) on [a, b]\Z(f−g∗)
(see also Theorem 2.3 in [15]). From now, we consider in this article that we are in this case. Thus,
either if a best L1 approximation coincides or not with its reference function on a set of non-zero
measure, the determination of a sign-changes function verifying (4) is fundamental. Indeed, it
characterizes a best L1 approximation in both cases. The Hobby-Rice theorem [2] enables to show
the existence of such a sign-changes function with the number of sign-changes lower or equal to the
dimension of Y .

Theorem 1.2 (Hobby, Rice, 1965). Let Y be an n-dimensional subspace of L1([a, b], ν) where ν is
a finite, non-atomic measure. Then there exists a sign-changes function :

s(x) =

r+1∑

i=1

(−1)i1[αi−1,αi[(x), (5)

such that for all g ∈ Y : ∫ b

a
s(x)g(x) dν(x) = 0, (6)

where r ≤ n and :
a = α0 < α1 < α2 < · · · < αr < αr+1 = b.

Remark. A simple proof of this theorem can be found in [14] using the Borsuk antipodality theorem
(See for example [10], page 21).

One cannot guarantee in general that a sign function with r ≤ n changes of sign as stated
in the Hobby-Rice theorem enables us to define a function g∗ that coincides with the function to
approximate f at these abscissae and no others. In Figure 1, we can observe a best L1 approximation
of a continuous function, x 7→ sin(3x), in a 4-dimensional space - the space of cubic functions on the
interval [−1, 1] - having five intersections with the above function. The following corollary partially
explains this observation.

Corollary 1. Let Y be an n-dimensional subspace of L1([a, b], ν) where ν is a finite, non-atomic
measure and m be an integer such that m ≥ n. Then there exist a sign-changes function :

s(x) =

rm+1∑

i=1

(−1)i1[αi−1,αi[(x), (7)

3
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Figure 1: Best L1 cubic approximation (solid line) of x 7→ sin(3x) (dashed line) on [−1, 1].

such that for all g ∈ Y : ∫ b

a
s(x)g(x) dν(x) = 0, (8)

where rm ≤ m :
a = α0 < α1 < α2 < · · · < αrm < αrm+1 = b.

Proof. Complete Y in a m-dimensional subspace of L1([a, b], ν). Then apply the Hobby-Rice theo-
rem.

The Hobby-Rice theorem is very useful to characterize best L1 approximations of continuous
functions in Chebyshev and weak-Chebyshev spaces. In particular in an n-dimensional Chebyschev
space, it can be shown that there exists a unique set of n real values, sometimes called canonical
points, which satisfies (6). This leads to the following classical result (see for example [6], page
339-340 or [11], page 73) that proves that for a class of continuous functions, best L1 approximation
can be obtained by Lagrange interpolation.

Theorem 1.3. Let Y be an n-dimensional Chebyshev space on [a, b]. Then any continuous function
on [a, b] has a unique best L1 approximation in Y .
Moreover, if span(Y, f) is a (n + 1)-dimensional Chebyshev space on [a, b] then g∗, the best L1

approximation of f in Y , is fully determined by the Lagrange interpolation conditions :

g∗(αi) = f(αi), i = 1, . . . , n,

where the αi values are those given in the Hobby-Rice theorem.

There is an analogous result for weak-Chebyshev spaces proved by Michelli [8]. Our goal is to
prove similar results for the problem of best L1 approximation of Heaviside-type functions. This case
is different because a change of sign in the difference function between the function to approximation
f and a best L1 approximation g∗ must occur at the discontinuity ξ0 (see Figure 2). However the
Hobby-Rice theorem cannot guarantee that one of the αi is equal to ξ0. So we decide to look for a
solution of (6) with one of the αi values fixed at ξ0. This will be the object of the next section.
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Figure 2: Best L1 cubic polynomial approximation of the Heaviside function.

2 Extented Hobby-Rice theorem

Without loss of generality, we give this result on L1([−1, 1], ν) and with ξ0 = 0. Indeed, we can
show that Jξ0 [a, b] and J0[−1, 1] are homeomorphic by mean of an homography. This enables us to
establish a symmetric version of the Hobby-Rice theorem by eliminating the even functions. This
new version will be essential to characterize solutions of best L1 approximation of Heaviside-type
functions in Chebyshev and weak-Chebyshev spaces.

Theorem 2.1. Let Y be an n-dimensional subspace of L1([−1, 1], ν) where ν is a finite, non-atomic
measure. Let Z be the subspace of Y composed of the even functions and q = n− dim Z. Then for
any fixed m ≥ q, there exists a sign-changes function :

s(x) =

rm+1∑

i=−rm

(−1)i1[αi−1,αi[(x). (9)

such that for any g ∈ Y : ∫ 1

−1
s(x)g(x) dν(x) = 0, (10)

where :

−1 = α−rm−1 < α−rm < · · · < α−1 < α0 = 0 < α1 < · · · < αrm < αrm+1 = 1,

with rm ≤ m, α−i = −αi, i = 1, . . . , rm.

Proof. The idea of the proof is to find the positive part of the real sequence {αi, i = 1, . . . , rm} by
applying the Corollary 10 to a well-chosen space Ŷ ⊂ L1([0, 1], ν) of dimension q̂ ≤ q. Then, we
deduce (10) by symmetry.
Firstly, let us not that for any odd sign-changes function s and for any g ∈ Y , we have :

∫ 1

−1
s(x)g(x)dν(x) =

∫ 1

0
s(x)(g(x) − g(−x))dν(x).
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This proves that the equality (10) is automatically satisfied for any g ∈ Z. Define the space W of
dimension q such that Z ⊕W = Y . The problem is to find a sign-changes function s such that :

∫ 1

0
s(x)(g(x) − g(−x))dν(x) = 0 for all g ∈W.

This property is obtained by applying the Corollary 1 to the space Ŷ (of dimension at most q)
defined as follows :

Ŷ = {ĝ : x ∈ [0, 1] 7→ g(x) − g(−x), g ∈W}.

Finally, we obtain an odd sign-changes function satisfying (10).

3 Best L1 approximation of Heaviside-type functions in a Cheby-

shev space

In this section, we firstly give a lemma about the dimension of the subspace of an n-dimensional
Chebyshev space on [−1, 1] composed of the even functions. This lemma will be very helpful in
giving a version of the extended Hobby-Rice theorem in a Chebyshev space.

Lemma 1. Let Y be an n-dimensional Chebyshev space on [−1, 1]. The dimension of the subspace
of Y composed of the even functions is at most ⌈n/2⌉ where ⌈·⌉ is the ceiling function.

Proof. Assume to the contrary that Z, the subspace of Y composed of the even functions, has
dimension ⌈n/2⌉ + 1. One can construct an even function with ⌈n/2⌉ zeros on the interval (0, 1).
Since this function is even, it has 2⌈n/2⌉ zeros on the interval [−1, 1]. This is impossible because Y
is an n-dimensional Chebyshev space on [−1, 1].

Now we can give a version of the extended Hobby-Rice theorem in a Chebyshev space.

Proposition 1. Let Y be an n-dimensional Chebyshev space on [−1, 1] and Z be the subspace of Y
composed of the even functions. Assume dim Z = ⌈n/2⌉. Then there exists a unique sign-changes
function :

s(x) =

⌊n/2⌋+1∑

i=−⌊n/2⌋

(−1)i1[αi−1,αi[(x). (11)

such that for any g ∈ Y :

∫ 1

−1
s(x)g(x) dν(x) = 0, j = 1, 2, . . . , n, (12)

where :

−1 = α−⌊n/2⌋−1 < α−⌊n/2⌋ < · · · < α−1 < α0 = 0 < α1 < · · · < α⌊n/2⌋+1 = 1,

with α−i = −αi, i = 1, . . . , ⌊n/2⌋ .
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Proof. We apply the Theorem 2.1, page 5 for m = ⌊n/2⌋. We obtain a real sequence {αi, i =
−rm, . . . , rm} with α0 = 0 and α−k = −αk, k = 1, . . . , rm such that (10) is satisfied. Assume
rm < ⌊n/2⌋.
Since Y is a Chebyshev space, there exists g ∈ Y that vanishes and changes of sign at the αi on
[−1, 1].
Then the function x 7→ s(x)g(x) has constant sign on [−1, 1] and :

∫ 1

−1
s(x)g(x)dν(x) 6= 0.

This contradicts (12).
Assume now that there exists another sequence of real values not all equals to the αi satisfying (12)
and denoted by {βi, i = −⌊n/2⌋, . . . , ⌊n/2⌋}. We have β0 = α0 = −1 and β⌊n/2⌋+1 = α⌊n/2⌋+1 = 1.
Define the two following sign-changes functions:

sα(x) =

⌊n/2⌋+1∑

i=−⌊n/2⌋

(−1)i1[αi−1,αi[(x),

sβ(x) =

⌊n/2⌋+1∑

i=−⌊n/2⌋

(−1)i1[βi−1,βi[(x).

This proof of unicity is derived from the one given in [11], page 61, for the classical version of the
Hobby-Rice theorem. Set :

αp = min
i
{αi | αi 6= βi}.

We may assume that αp < βp. Otherwise, we exchange the roles of αp and βp. It follows that :

sα(x)− sβ(x) = 0, x ∈ [−1, αp),

(−1)p(sα(αp)− sβ(αp)) > 0,

(−1)i(sα(x)− sβ(x)) ≥ 0, x ∈ [αi, αi+1], i = p, . . . , ⌊n/2⌋.

Now, define the function :

g(x) = det(φk(γl))
l=1...,n
k=1...,n, x ∈ [−1, 1],

where (γ1, . . . , γn) = (α1, . . . , αj−1, αj+1, . . . , x). Since {φj}j is a Chebyshev system, by replacing g
by −g if necessary, we have :

(−1)ig(x) ≥ 0, x ∈ [αi, αi+1], i = p, . . . , ⌊n/2⌋,

and (−1)pg(αp) > 0. We then have :

g(x)(sα(x)− sβ(x)) ≥ 0, x ∈ [αi, αi+1], i = p, . . . , ⌊n/2⌋,

and g(αp)(sα(αp)− sβ(αp)) > 0. This contradicts the fact that both of {αi} and {βi} are solutions
of (12).

We are now able to show the following unicity theorem.
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Theorem 3.1. Let Y be an n-dimensional Chebyshev space on [−1, 1] where n is even. Assume
that the subspace of Y composed of the even functions has dimension n/2. Then every function
f ∈ J0[−1, 1] has a unique best L1 approximation in Y .
Moreover,

if every element of span(Y, f) has a most n simple zeros, (13)

then the best L1 approximation L1 g
∗ of f in Y is fully determined by :

g∗(αi) = f(αi), i = −n/2,−n/2 + 1, . . . ,−1, 1, . . . , n/2,

where the αi are those given in Proposition 1.

Proof. The scheme of the unicity proof is derived from a proof of Rice in [17] (Theorem 4.4, page
109). Assume that g1, a best L1 approximation of f in Y , is such that ν(Z(f − g1)) = 0. Since n
is even, by the Proposition 1, Z(f − g1) contains at least n elements. Assume also that there exists
another best L1 approximation g2. Then, Z(f − g2) contains at least n elements. We must have
(see [15], page 17) :

(f − g1)(f − g2) ≥ 0, ν − a.e. on [−1, 1].

If there exists x ∈ Z(f − g1) such that g1(x) 6= g2(x) then f(x) − g2(x) 6= 0. The last inequality
cannot hold almost everywhere on [−1, 1]. So g1 and g2 must be equal on Z(f − g1), i.e. at at least
n points. But Y is n-dimensional Chebyshev space on [−1, 1] then g1 − g2 = 0.
Assume now that f has two best L1 approximations, g1 and g2 such that ν(Z(f − g1)) 6= 0 and
ν(Z(f − g2)) 6= 0. For any λ ∈ [0, 1], λg1 + (1− λ)g2 is also a best L1 approximation of f . Let the
function ψ be defined on [0, 1] × [−1, 1] by

ψ(λ, x) = f(x)− λg1(x)− (1− λ)g2(x).

If there exists λ ∈ [0, 1] such that ν(Z(ψ(λ, ·)) = 0 then we conclude by the first part of the proof.
We assume now that for all λ ∈ [0, 1], ν(Z(ψ(λ, ·)) > 0. We use Lemma 4.7. from [17] page 120. It
claims that there exist λ1 and λ2 such that ν(Z(ψ(λ1, ·)) ∩ Z(ψ(λ2, ·)) 6= 0.
In particular, Z(ψ(λ1, ·)) ∩ Z(ψ(λ2, ·)) contains at least n points and so :

λ1g1 + (1− λ1)g2 = λ2g1 + (1− λ2)g2.

It comes g1 = g2.
We apply the Proposition 1. There exists a unique sequence of n real values αi such (12) holds.
From [22], Chapitre 1, page 1, we know that there exists a function g∗ ∈ Y which vanishes at the
αi. Since every non trivial element of span(Y, f) has at most n simple zeros, g∗ − f vanishes only
at the αi. The fonction g∗ is the best L1 approximation L1 of f in Y .

We consider now best L1 approximation by an algebraic polynomial function of degree n − 1
in [−1, 1]. The space of such functions is an n-dimensional Chebyshev space on [−1, 1]. Moreover,
its canonical base has ⌈n/2⌉ even functions. So we can apply the Proposition 1. Moreover we can
explicitely determine the αi values. One can show that for any integer m ≥ ⌊n/2⌋, we have :

∀P ∈ Pn−1[−1, 1],
m+1∑

i=−m

(−1)i
∫ αi

αi−1

P (x) dx = 0, (14)

for :

αi = cos

(
(m+ 1− i)π

2m+ 2

)
, i = −m− 1, . . . ,m+ 1. (15)
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These αi, i = −m, . . . ,m are the zeros of the second order Chebyshev polynomial of degree 2m+1
defined as follows :

Tm+1(cos(θ)) =
sin((m+ 2)θ)

sin(θ)
, θ ∈ [−π, π]. (16)

Under the condition (13), these values enable to determine best L1 approximation of certain
Heaviside-type functions by a polynomial function. We can for example determine best L1 poly-
nomial approximations of the Heaviside function on [−1, 1]. In particular, we have illustrated in
Figure 2 the unique best cubic approximation of the Heaviside which interpolation these function at
cos(iπ/6), i = 1, . . . , 5. Indeed, one can show that span(P3,H) satisfies the property (14). Assume
to the contrary that there exists a cubic function g ∈ P3 such that g − H has five simple zeros
on [−1, 1]. It is impossible that four or all of these zeros lie on [−1, 0] or [0, 1] because g has at
most three zeros. If g − H vanishes three times on [−1, 0] (respectively [0,1]) and twice on [0, 1]
(respectively [-1,0]), then g has two inflexion points, which is impossible for a cubic function.

4 Best L1 approximation of Heaviside-type functions in a weak-

Chebyshev space

In this section, we first extend Proposition 1 to the case of weak-Chebyshev space.

Proposition 2. Let Y be an n-dimensional weak-Chebyshev space on [−1, 1] and Z be the subspace
of Y composed of the even functions. Assume dim Z = ⌈n/2⌉. Then there exists a sign-changes
function :

s(x) =

⌊n/2⌋+1∑

i=−⌊n/2⌋

(−1)i1[αi−1,αi[(x). (17)

such that for any g ∈ Y :

∫ 1

−1
s(x)g(x) dν(x) = 0, j = 1, 2, . . . , n, (18)

where :

−1 = α−⌊n/2⌋−1 < α−⌊n/2⌋ < · · · < α−1 < α0 = 0 < α1 < · · · < α⌊n/2⌋+1 = 1,

with α−i = −αi, i = 1, . . . , ⌊n/2⌋.

Proof. We prove the result for n being even. The odd case follows in a similar way. Since {φj , j =
1, 2, . . . , n} is a weak-Chebyshev system, there exists a sequence of Chebyshev systems {φj,p, j =
1, 2, . . . , n}p∈N such that :

lim
p→+∞

‖φj − φj,p‖∞ = 0, j = 1, 2, . . . , n.

Moreover, we can define φj,p, for j = 1, 2, . . . , n and p ∈ N, as follows (see for example [11], page
84) :

φj,p(t) =

∫

R

φj(s)Kp(s, t) dν(s),

9



where Kp is the Gauss kernel. Then if φj is even, so is φj,p. Indeed, we have :

φj,p(−t) =

∫

R

φj(s)Kp(s,−t) dν(s),

=

∫

R

φj(−s)Kp(−s,−t) dν(s),

=

∫

R

φj(s)Kp(s, t) dν(s),

= φj,p(t).

From Proposition 1, we can find sequences {αi,p}p∈N defined on [−1, 1] for i = −m′, . . . ,m′ with
α−j,p = αj,p for j = 1, . . . ,m′ and p ∈ N such that :

m′+1∑

i=−m′

(−1)i
∫ αi+1,p

αi,p

φj,p(x) dν(x) = 0, for j = 1, 2, . . . , n.

In particular, α0,p = 0 and αm′+1,p = 1 for all p ∈ N.
Since [−1, 1] is compact, for i = 1, 2, . . . , n, {αi,p}m′∈N admits a convergent subsequence and we
denote the limit by αi. It follows that :

m′+1∑

i=−m′

(−1)i
∫ αi

αi−1

φj(x) dν(x) = 0, j = 1, 2, . . . , n. (19)

The proposition follows.

The next proposition is a direct consequence of Proposition 2.

Proposition 3. Let Y be n-dimensional weak-Chebyshev space on [−1, 1] such that dimZ = ⌈n/2⌉
basis functions being even. A best L1 approximation of a Heaviside-type function f ∈ J0[−1, 1] from
Y interpolates f at at least n points if n is even and n− 1 points if n is odd.

5 Application to Hermite polynomial splines with fixed knots

Let us define firsty these polynomial splines.

Definition 2. A Hermite spline of order k with nodes x = {x1 < x2 < · · · < xn} is a Ck-continuous
function which is a polynomial function of degree lower or equal to 2k+1 on each interval [xi, xi+1].
We denote S̃k,x (or simply S̃k) the vectorial space of such functions.

A basis of S̃k is given in the next proposition.

Proposition 4. Let x = {x1 < x2 < · · · < xn}. Consider the following n(k + 1) functions :

pj(x) = (x− x1)
j , j = 0, 1, . . . , 2k + 1,

ϕj,q(x) = (x− xj)
q
+, j = 2, 3, . . . , n− 1; q = k + 1, k + 2, . . . , 2k + 1.

(20)

Then, the set {pj}j=0,...,2k+1 ∪ {ϕj,q}
q=k+1,...,2k+1
j=1,...,n−1 is a basis of S̃k,x and dim S̃k,x = n(k + 1).
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Proof. First, the functions {pj}j=0,...,2k+1 and {ϕj,q}
q=k+1,...,2k+1
j=1,...,n−1 belong to S̃k. It is obvious for

{pj}j=0,...,2k+1 since they are C∞ polynomial functions of degree lower or equal to 2k+1. Moreover,

ϕ
(m)
j,q (xj) = 0, m = 0, 1, . . . , q − 1, q = k + 1, k + 2, . . . , 2k + 1,

and ϕ
(q)
j,q (xj) = q!. Then the functions {ϕj,q}

q=k+1:2k+1
j=1:n−1 belong to S̃k.

We proceed now by induction on the number of knots. For convenience, we define xk = {x1, . . . , xk},
k = 1, . . . , n.
For n = 2, {pj}j=0,...,2k+1 is the Taylor basis for S̃k,x2 . We assume that the proposition is true for
n− 1 knots.
Let z ∈ S̃k,xn

, then :
z|[x1,xn−1]

∈ S̃k,xn−1 .

By the induction hypothesis, there exist unique reals :

α0, . . . , α2k+1, β1,q, . . . , βn−2,q, q = k + 1, . . . , 2k + 1,

such that :

z̃(x) = z|[x1,xn−1]
(x) =

2k+1∑

j=0

αjpj(x) +

n−2∑

j=1

2k+1∑

q=k+1

βj,qϕj,q(x).

Then we consider the function :

ψ = z − z̃ −
2k+1∑

q=k+1

βn−1,qϕn−1,q,

for some real values βn−1,q. For q = k + 1, . . . , 2k + 1, we have :

ψ(q)(x+n−1) = z(q)(x+n−1)− z̃(q)(x+n−1)− βn−1,qq!

= z(q)(x+n−1)− z̃(q)(x−n−1)− βn−1,qq!

= z(q)(x+n−1)− z(q)(x−n−1)− βn−1,qq!.

Then we set, for q = k + 1, . . . , 2k + 1,

βn−1,q =
z(q)(x+n−1)− z(q)(x−n−1)

q!
.

Hence, the property holds for n and the proof is complete.

We give an important property of the spline space S̃k.

Proposition 5. For any x = {x1 < · · · < xn} ∈ Rn and k ∈ N, the spline space S̃k,x is an
(n(k + 1))-dimensional weak-Chebyshev space on [x1, xn].

Proof. If n = 2, S̃k,x2 = P2k+1 which is a Chebyshev space and then is a weak-Chebyshev space.
If k = 0, we observe that S̃k,xn

= S1,xn
which is a weak-Chebyshev space (see for example [11], page

95).
We assume now k > 1, n > 2 and by contradiction, that s ∈ S̃k,xn

has n(k + 1) changes of
sign. By the Rolle’s theorem, s′ has n(k + 1) − 1 changes of sign. Then inductively, s(k) has
n(k + 1)− k = (n− 1)k + n changes of sign.
However, s(k) is a C0 polynomial spline of degree k+1. Such a function has at most (n−1)(k+1) =
(n− 1)k + n− 1 changes of sign. Thus we have a contradiction.
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Unfortunately, the basis defined in (20) does not satisfy the property of having at least half of
its functions being even. However, we can show the following proposition.

Proposition 6. Let x = {−xn < · · · < −x1 < 0 < x1 < · · · < xn} ∈ R2n+1. Then there exists a
basis of the vector space S̃k,x with at least half of its functions being even.

Proof. Without loss of generality, we may consider x = {−n,−n+ 1, . . . , n− 1, n}. The dimension
of S̃k,x is (2n + 1)(k + 1). We would like to find ⌈(2n + 1)(k + 1)/2⌉ functions being even and
independent in S̃k,x. Then we may apply the incomplete basis theorem.
We prove the proposition when k is odd. The odd case is similar. We consider firstly the pj
functions. We can replace them by the canonical polynomial basis 1, x, . . . , x2k+1 and select k + 1
even functions 1, x2, . . . , x2k.
Then, consider the functions ϕj,q(x) with modifications, for j = 1, . . . , n − 1,

ϕ̂j,q(x) =

{
(x− j)q if x ≥ j,
(−x− j)q if x ≤ −j.

q = k + 1, k + 2, . . . , 2k + 1.

These (k + 1)(n − 1) functions ϕ̂j,q are even by construction and belong to S̃k,x.
Finally, we consider the functions ϕ0,q(x) and we modify them as follows :

ϕ̂0,q(x) = |x|q, for q being odd in {k + 1, k + 2, . . . , 2k + 1}.

These (k + 1)/2 functions ϕ̂0,q are also even by construction and belong to S̃k,x.
Therefore, we have defined

(k + 1) + (k + 1)(n − 1) + (k + 1)/2 =
1

2
(2n+ 1)(k + 1)

even functions of S̃k,x. They are clearly linearly independent since they have different supports. We
may conclude the proof by applying the incomplete basis theorem.

By applying the results of the prior section, we evidence then best L1 approximations of
Heaviside-type functions using polynomial Hermite splines. A closed form of the real values of
Proposition 2 is not currently available. Further work will concentrate on the solvation of (18) in
the polynomial Hermite spline case. However, we are able to compute them numerically and then
define best L1 approximation of the Heaviside function (see Figures 3 and 4). As we said before, we
may have more intersections with the Heaviside-type function than the dimension of the space. We
evidence this case in Figure 5. In this case, we have then fourteen intersections while the dimension
of the cubic spline space is only ten. Moreover on some Heaviside-type functions, the repartition of
the abscissae may not be symmetric. This will be the topic of future research.

6 Conclusion

In this article, we have studied the problem of best L1 approximation of Heaviside-type functions
in Chebyshev and weak-Chebyshev spaces. We have made a supplementary hypothesis on the di-
mension of the subspace composed of the even functions which is satisfied by some very classical
spaces such as polynomials, trigonometric polynomials or spline functions with symmetrically dis-
tributed knots. Under that hypothesis, we have proved the uniqueness of best L1 approximation
of Heaviside-type functions in a Chebyshev space. Moreover, we have shown that for a class of
Heaviside-type functions, the unique best L1 approximation can be obtained by Lagrange inter-
polation at some abscissae determined in an adapted extension of the Hobby-Rice theorem. This
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Figure 3: Best L1 approximation of the Heaviside function with five evenly spaced knots and
pointwise error graph.
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Figure 4: Best L1 approximation of the Heaviside function with seven evenly spaced knots and
pointwise error graphs.

result can be apply to compute best L1 approximations in practical cases such as polynomial or
trigonometric polynomial approximations.
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Figure 5: Best L1 approximation (solid line) of an oscillating Heaviside-type function (dashed line)
with five evenly spaced knots and pointwise error graph.

We have given first results about best L1 approximation of Heaviside-type functions in weak-
Chebyshev spaces. We have seen that the minimal amount of intersections between the graphs
of a best L1 approximation and the one of its reference function is equal to n − 1 where n is the
dimension of the weak-Chebyshev space. We have studied the practical case of Hermite polynomial
splines and evidenced a Gibbs phenomenon for best L1 approximation of the Heaviside function.
Further work will focus on the determination of the abscissae in this case. Future research will
concentrate on best L1 approximation of challenging Heaviside-type functions which require an
asymmetric distribution of the real values in the extension of the Hobby-Rice theorem. The case of
functions with multiple discontinuities is also on study.
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