
ar
X

iv
:1

61
2.

02
74

9v
3

 [
m

at
h.

N
A

]
 8

 A
pr

 2
01

7

Adaptive mesh point selection for the efficient
solution of scalar IVPs 1

Boles law Kacewicz 2

Abstract

We discuss adaptive mesh point selection for the solution of scalar IVPs. We consider a

method that is optimal in the sense of the speed of convergence, and aim at minimizing

the local errors. Although the speed of convergence cannot be improved by using the

adaptive mesh points compared to the equidistant points, we show that the factor in the

error expression can be significantly reduced. We obtain formulas specifying the gain

achieved in terms of the number of discretization subintervals, as well as in terms of the

prescribed level of the local error. Both nonconstructive and constructive versions of the

adaptive mesh selection are shown, and a numerical example is given.

Mathematics Subject Classification: 65L05, 65L50, 65L70

1 This research was partly supported by the Polish Ministry of Science and Higher Education

2AGH University of Science and Technology, Faculty of Applied Mathematics,

Al. Mickiewicza 30, paw. A3/A4, III p., pok. 301,

30-059 Krakow, Poland

E-mail: kacewicz@agh.edu.pl

http://arxiv.org/abs/1612.02749v3

1 Introduction

We deal with the question how much an adaptive choice of mesh points pays off in the

solution of initial-value problems

z′(t) = f(z(t)), t ∈ [a, b], z(a) = η, (1)

where a < b, f : R → R is a Cr function and η ∈ R.

Numerical analysts have been using adaptive techniques in numerical codes for solving

various problems with considerable success. Adaption is a standard tool in numerical

packages, see e.g. the package QUADPACK [8] for numerical integration, or, among

many others, the well known solver DIFSUB by C.W. Gear or the library ODEPACK by

A. Hindmarsh devoted to various types of ODEs. A measure of practical efficiency of an

adaptive strategy is usually the performance for a number of computational examples.

A method is considered ’good’ if it works well for large number of problems, and fails

in small number of cases. Many papers have reported the advantage of adaption over

nonadaption in that sense, to mention only as samples the old paper [6], more recent

one [2], or [7], where a mesh selection strategy is discussed for Runge-Kutta methods.

Such an approach obviously gives us a considerable practical knowledge, but it is not

complete. Many step size control strategies are not supported by a theoretical analysis.

For instance, an important question how a particular strategy influences the cost of the

process most often remains open. Recently, advantages of adaptive selection of mesh

points were rigorously studied for problems with singularities, see e.g. [5], [10].

In this paper we present results explaining potential gain of adaptive mesh point selection

for a regular problem (1). In particular, we rigorously discuss the accuracy and cost

of an adaptive process for a well precised class of problems, not only for a number of

computational examples. For the integration of scalar C4 functions similar questions have

recently been addressed for the Simpson rule in [9], where it is shown that the adaptive

mesh selection allows us to reduce the error by reducing the asymptotic constant of the

method. Adaptive mesh points for the approximation of univariate W 2,∞ functions is

discussed in [1] .

We consider in this work the Cr right-hand side functions f in (1). It is well known that

in the worst-case or asymptotic settings, with m + 1 mesh points one can achieve local

errors of order m−(r+1) as m → ∞. This by standard means translates to the global

error O(m−r). The exponent −r has been shown best possible, for details see e.g. [3].

Furthermore, the best speed of convergence as m → ∞ can be achieved by using the

equidistant mesh points. We have to add that for systems of IVPs the information about

2

f that gives us the global error O(m−r) must itself be adaptive, in spite of the fact that the

mesh points can be equidistant, see [4] for explanation of a difference between adaptive

mesh and adaptive information.

In these results a constant in the ′O′- notation depends on a class of functions f in

the worst-case setting, and on a particular f in the asymptotic setting. The size of the

constant is not controlled; it depends on a global behavior of derivatives of f in the domain.

In order to reduce local errors, in the next sections we will include the constant in the
′O′- notation to the analysis. To study possible advantages of adaptive selection of mesh

points, we consider one of the methods with best convergence O(m−r), given by (7). We

show formulas for the local error of the method, which will serve us to define mesh points

with asymptotically minimal maximum local error. The selected points are adapted to

a local behavior of f . We express the local errors in terms of m, or, alternatively, for a

given ε > 0, we ask what m should be to achieve local errors proportional to ε.

The formulas obtained for the optimal mesh points are not constructive. We next show

how the method can be modified to get computable mesh points and approximations.

Compared to the ’ideal’ result, the local error bound and the cost bound are in this

version increased by (known) factors dependent only on r (but not on f). It turns out

that the adaptive choice of the mesh points allows us to achieve the maximum local error

((b− a)/m)r+1 S(m). The factor S(m) is bounded from above and below by positive

constants dependent on f , so that it does not improve the rate of convergence. However,

the advantage of using adaptive mesh points is hidden in S(m), since the value of S(m)

can be much smaller for adaptive than nonadaptive points.

The paper is organized as follows. In Section 2 we define the class of functions f and

precise the aim of the paper. Section 3 presents the method under consideration and a

convergence result. In Section 4 we give local error expressions which are used in Section

5 to define optimal (nonconstructive) mesh points. Section 6 is devoted to a constructive

modification of the method which is finally described in the algorithm ADMESH. The

error and cost properties of ADMESH are shown in Theorem 1 which summarizes the

results of the paper. In Remark 3 we shortly comment on generalization of the results

to systems of IVPs. The behavior of the algorithm ADMESH is illustrated in Section 7

by a numerical example. The experiment shows how much one can gain using adaptive

mesh over the equidistant mesh for a right hand side function with derivatives of varying

magnitude in parts of the domain.

3

2 Problem formulation

Let m ∈ N. We wish to compute approximations to the solution z of (1) at m+ 1 points

a = x0,m < x1,m < . . . < xm,m = b, that is, to find pairs (xi,m, yi,m), i = 0, 1, . . . , m, where

yi,m is a (good) approximation to z(xi,m). Let l(m) be any sequence convergent to 0 as

m → ∞. We consider for any f a class of partitions of [a, b]. We assume that there exist

K = K(f, a, b, η) and k0 = k0(f, a, b, η) such that for all m ≥ k0 and any partition it holds

max
0≤i≤m−1

(xi+1,m − xi,m) ≤ K l(m). (2)

Note that we always have max
0≤i≤m−1

(xi+1,m − xi,m) ≥ (b − a)/m for m ≥ 1. Thus, the

condition (2) implies that l(m) cannot go to zero faster than 1/m. The convergence of

l(m) can be arbitrarily slow, and the constant K can be arbitrarily large.

To shorten the notation, we shall omit in the sequel the second subscript m, remembering

that the choice of points xi and yi can be different for varying m.

We denote by zi the solution of the local problem

z′i(t) = f(zi(t)), t ∈ [xi, xi+1], zi(xi) = yi. (3)

If the pairs (xi, yi) are outputs of a certain method, then the local errors of the method

are given by |zi(xi+1) − yi+1|, i = 0, 1, . . . , m − 1. Our aim is to minimize the maximal

local error

max
0≤i≤m−1

|zi(xi+1) − yi+1| → min (4)

with respect to all possible choices of the mesh points x0, . . . , xm, and to find minimizing

(optimal) pairs (x∗
i , y

∗
i).

The class of right-hand functions f under consideration is given as follows. For r ∈ N,

Fr = {f = 1/g : g ∈ Cr(R), g and g(r) have constant sign in R, f is Lipschitz in R}.
(5)

We denote the Lipschitz constant of f by L, and assume without loss of generality that f is

a positive function. Regarding the constant sign of g(r), we note that the same assumption

about constant sign of the fourth derivative (r = 4) of the integrand was essential in [9]

in the analysis of adaptive integration of scalar C4 functions .

In the next sections we aim at choosing a subdivision of [a, b], possibly adapting it to a

local behavior of f , in order to minimize the local errors. Our goal will be to propose a

rigorous strategy of mesh point selection, keeping the cost of the process under control,

and to establish possible gain of adaption.

4

3 The method under consideration

We shall use the identity

t− xi =

zi(t)
∫

yi

1

f(y)
dy =

zi(t)
∫

yi

g(y) dy, t ∈ [xi, xi+1]. (6)

For a positive f , the solutions z and zi are increasing functions.

Let r be even. For a given interval [yi, yi+1], let ĝi be the Lagrange interpolation poly-

nomial of degree ≤ r − 2 for g in [yi, yi+1] based on r − 1 equidistant nodes p0 =

yi, p1, . . . , pr−3, pr−2 = yi+1 for r ≥ 4, and one node p0 = (yi+1 + yi)/2 for r = 2. For odd

r, we define p0 = yi, p1, . . . , pr = yi+1 as equidistant points in [yi, yi+1]. The interpolation

polynomial ĝi of degree ≤ r − 1 is now based on the nodes p0, . . . , pr−1.

Let x0 = a, y0 = η. We shall study the following method relating sequences {xi} and

{yi} :

xi+1 − xi =

yi+1
∫

yi

ĝi(y) dy. (7)

Note that the right-hand side is the Newton-Cotes type quadrature approximating

yi+1
∫

yi

g(y) dy,

and it continuously depends on yi+1.

We shall now derive convenient expressions for the remainder of the Newton-Cotes for-

mulas for even and odd r. Denote êi(y) = g(y) − ĝi(y). For even r, r ≥ 4, we recall that

the remainder of the Newton-Cotes quadrature is given by

yi+1
∫

yi

êi(y) dy =
g(r)(ξi)

r!

yi+1
∫

yi

(y − p0)
2(y − p1) · . . . · (y − pr−2) dy, (8)

where ξi ∈ [yi, yi+1]. Denoting ∆i = yi+1 − yi and changing variables y = ∆ix + yi,

x ∈ [0, 1], we get for r ≥ 4

yi+1
∫

yi

êi(y) dy =
g(r)(ξi)

r!
∆r+1

i Cr, (9)

where

Cr =

1
∫

0

(x− p̄0)
2 · . . . · (x− p̄r−2) dx (Cr < 0), (10)

5

and p̄j are equidistant nodes in [0, 1]. For r = 2, (9) holds with C2 = 1/12.

Let r be odd, r ≥ 3. We have for y ∈ [yi, yi+1]

êi(y) =
g(r)(ξi,y)

r!
(y − p0) . . . (y − pr−1), for some ξi,y ∈ [yi, yi+1].

The second integral in the splitting

yi+1
∫

yi

êi(y) dy =

pr−1
∫

yi

+

yi+1
∫

pr−1

can be written as
yi+1
∫

pr−1

êi(y) dy =
g(r)(ηi)

r!

yi+1
∫

pr−1

(y − p0) . . . (y − pr−1) dy, for some ηi ∈ [yi, yi+1].

Since
pr−1
∫

yi

(y − p0) . . . (y − pr−1) dy = 0,

the first intergral is equal to

pr−1
∫

yi

êi(y) dy =

pr−1
∫

yi

g(r)(ξi,y)

r!
(y − p0) . . . (y − pr−1) dy

=
g(r)(ηi)

r!

pr−1
∫

yi

g(r)(ξi,y) − g(r)(ηi)

g(r)(ηi)
(y − p0) . . . (y − pr−1) dy.

We denote

γy
i =

g(r)(ξi,y) − g(r)(ηi)

g(r)(ηi)
. (11)

The quantity γy
i continuously depends on y; this follows from the well known interpolation

remainder formula written with the use of the divided difference of g expressed in the

integral form. Summing up the two integrals we get for odd r, r ≥ 3

yi+1
∫

yi

êi(y) dy =
g(r)(ηi)

r!

yi+1
∫

pr−1

(y − p0) . . . (y − pr−1) dy (1 + κi), (12)

where

κi =

pr−1
∫

yi

γy
i (y − p0) . . . (y − pr−1) dy

yi+1
∫

pr−1

(y − p0) . . . (y − pr−1) dy

. (13)

6

It is easy to see that

|κi| ≤
2rr+1

(r − 1)!
sup

y∈[yi,yi+1]
|γy

i |. (14)

Changing variables as above in the integral in (12), we get

yi+1
∫

yi

êi(y) dy =
g(r)(ηi)

r!
∆r+1

i Cr(1 + κi), (15)

where

Cr =

1
∫

1−1/r

(x− p̄0) . . . (x− p̄r−1) dx , (16)

and p̄j , j = 0, 1, . . . , r are equidistant points in [0, 1]. It is easy to see that the case r = 1

is included in (15) with κi = 0. The formulas (9) and (15) will be used in the next section.

For any sequence a = x0 < x1 < . . . < xm = b under consideration there is a sequence

η = y0 < y1 < . . . < ym which satisfies (7), and has the global error bounded (as it can

be expected) as in the following proposition. Some bounds obtained in the proof will be

used in the sequel. Let hi = xi+1 − xi, i = 0, 1, . . . , m− 1.

Proposition 1 Let f ∈ Fr. There is m0 ∈ N such that for any m ≥ m0, for any partition

a = x0 < x1 < . . . < xm = b satisfying (2) there exists a sequence η = y0 < y1 < . . . < ym

satisfying (7) such that

|yi − z(xi)| ≤ Mi max
0≤j≤i−1

hr
j , i = 0, 1, . . . , m (with max

0≤j≤−1
= 1). (17)

Here M0 = 0, and Mi+1 = exp(Lhi)Mi + M̃hi, i = 0, 1, . . . , m− 1, where M̃ is given by

(26). Hence, Mi ≤ M := exp(L(b− a))(b− a)M̃ .

Proof We prove (17) by induction with respect to i. The statement holds for i = 0.

Suppose that there exist y0 < y1 < . . . < yi satisfying (7) and (17), and Mi ≤ M . Let

F (y) =

y
∫

yi

g(z) dz, F̂ (y) =

y
∫

yi

ĝi(z, y) dz and H(y) = F (y) − F̂ (y), y ≥ yi

(the notation ĝi(·, y) reflects the fact that the interpolation polynomial is defined on

the interval [yi, y]). Note that F and F̂ are continuous functions, F ′(y) = g(y) > 0,

and F (zi(xi+1)) = xi+1 − xi. Our aim is to show the existence of a solution yi+1 > yi

of the equation F̂ (y) = xi+1 − xi. Note that F̂ (yi) = 0 < xi+1 − xi. We show that

7

there is ȳ > zi(xi+1) (which depends on i) such that F̂ (ȳ) ≥ xi+1 − xi. This holds iff

H(ȳ) ≤ F (ȳ)−F (zi(xi+1)). Using (9) or (15) with the interval [yi, yi+1] replaced by [yi, y]

we have that

H(y) =
g(r)(ξ̄i,y)

r!
(y − yi)

r+1Cr (1 + κ̄y
i) (where κ̄y

i = 0 for even r), (18)

for some ξ̄i,y ∈ [yi, y]. Since F (y) − F (zi(xi+1)) = g(ξ̃i,y)(y − zi(xi+1)) for some ξ̃i,y ∈
conv(zi(xi+1), y), the equivalent condition on ȳ reads

g(r)(ξ̄i,ȳ)

r!
(ȳ − yi)

r+1Cr (1 + κ̄ȳ
i) ≤ g(ξ̃i,ȳ)(ȳ − zi(xi+1)). (19)

We now show that (19) holds for ȳ = yi + 2f(yi)(xi+1 − xi). The following auxilliary

inequalities hold for sufficiently large m (where the starting value of m only depends

on f)

yi ≤ z(xi) + |yi − z(xi)| ≤ z(xi) + Mi max
0≤j≤i−1

hr
j ≤ z(b) + 1, (20)

zi(xi+1) ≤ z(xi+1) + |zi(xi+1) − z(xi+1)| ≤ z(xi+1) + exp(Lhi)|yi − z(xi)|

≤ z(b) + 1, (21)

and

ȳ = yi + 2f(yi)hi ≤ z(xi) + Mi max
0≤j≤i−1

hr
j + 2f(yi)hi

≤ z(b) + 1. (22)

Let now

C = sup
y∈[η,z(b)+1]

|g(r)(y)| and c = inf
y∈[η,z(b)+1]

g(y).

We come back to (19). In order to bound |κ̄ȳ
i |, we use (11) and (14), where the working

variable y in these formulas is replaced by z and yi+1 replaced by y, with y = ȳ. Since

g(r) is uniformly continuous on [η, z(b) + 1], we have for ȳ as above that |κ̄ȳ
i | ≤ 1/2 for m

sufficiently large, where the limit value of m only depends on g. A sufficient condition for

(19) can now be written as

C|Cr| 2r+1/(cr+1r!)(xi+1 − xi)
r ≤ 1/3,

which holds true for sufficiently large m. Consequently, there exists yi+1 ∈ (yi, yi +

2f(yi)(xi+1 − xi)] such that F̂ (yi+1) = xi+1 − xi, as claimed.

It remains to show that

|yi+1 − z(xi+1)| ≤ Mi+1 max
0≤j≤i

hr
j (23)

8

and Mi+1 ≤ M . We remember that

H(yi+1) = F (yi+1) − F (zi(xi+1)) = g(ξ̃i,yi+1
)(yi+1 − zi(xi+1)),

and ξ̃i,yi+1
∈ conv(zi(xi+1), yi+1) ⊂ [η, z(b)+1]. From this the local error can be expressed

as

yi+1 − zi(xi+1) =
g(r)(ξ̄i,yi+1

)

r!

1

g(ξ̃i,yi+1
)

(yi+1 − yi)
r+1Cr (1 + κ̄

yi+1

i). (24)

Taking into account that yi+1 − yi ≤ 2f(yi)(xi+1 − xi) we get for sufficiently large m that

|yi+1 − zi(xi+1)| ≤
C |Cr|
cr!

(yi+1 − yi)
r+1(3/2) ≤ M̃hr+1

i , (25)

where

M̃ = (3/2)C |Cr| 2r+1/(cr+2r!). (26)

Finally, the bound (23) on the global error together with the formula for Mi+1 follow from

the inductive assumption and the inequality

|yi+1 − z(xi+1)| ≤ |yi+1 − zi(xi+1)| + |zi(xi+1) − z(xi+1)| ≤ M̃hr+1
i + exp(Lhi)|yi − z(xi)|.

This holds for m ≥ m0, where m0 only depends on f (and is indeiendent of i). The proof

is completed.

In particular, for hj = O(m−1) the global error of the method is

max
0≤i≤m

|yi − z(xi)| = O(m−r), m → ∞,

which is known to be optimal, as far as the speed of convergence is concerned. The

constant in the ′O′-notation however depends on a global behavior of f , and it can be

large, see the constant M̃ in the statement of Proposition 1. We now take into account

a local behavior of f in order to adjust the step sizes hj to the size of derivatives of f in

particular subintervals.

4 Local error expressions

The local error of the method can be expressed due to (24) as

yi+1 − zi(xi+1) =
g(r)(ξ̄i,yi+1

)

r!

1

g(ξ̃i,yi+1
)

(yi+1 − yi)
r+1Cr (1 + κ̄

yi+1

i) (27)

9

with ξ̄i,yi+1
∈ [yi, yi+1] and ξ̃i,yi+1

∈ conv(zi(xi+1), yi+1).

We shall adopt in what follows a convenient notation for relative errors used in the round

off error analysis of numerical algorithms. We have that yi+1− zi(xi+1) = yi+1 − yi + yi −
zi(xi+1) = yi+1 − yi − f(zi(αi))hi, so that

yi+1 − yi = f(zi(αi))hi(1 + κi),

for some αi ∈ [xi, xi+1], where κi = (yi+1 − zi(xi+1))/(f(zi(αi)) hi). We can alternatively

write the local error as

yi+1 − zi(xi+1) =
g(r)(ξ̄i,yi+1

)

r!g(ξ̃i,yi+1
) (g(zi(αi)))r+1

Cr (xi+1 − xi)
r+1 (1 + κ̄

yi+1

i)(1 + κi)
r+1, (28)

where zi(αi) ∈ [yi, zi(xi+1)] and max
0≤i≤m−1

|κi| tends to zero as m → ∞. The last convergence

is uniform with respect to the class of partitions {xi}.

The following remarks will be used in what follows.

Remarks

1. Let γ : [η, z(b) + 1] → R be a continuous function of constant sign, and [αi,m, βi,m] ⊂
[η, z(b) + 1], αi,m < βi,m, i = 0, 1, . . . , m − 1. Assume that max

0≤i≤m−1
(βi,m − αi,m) tends to

zero as m → ∞. Then by the uniform continuity, for any z1, z2 ∈ [αi,m, βi,m] we have that

γ(z1) = γ(z2)(1 + κ̄i,m),

for some κ̄i,m, where max
0≤i≤m−1

|κ̄i,m| tends to zero as m → ∞.

2. Let lim
m→∞

max
0≤i≤m−1

|κ̄j
i,m| = 0 for j = 1, 2. Define κ̄3

i,m by

1+κ̄3
i,m = (1+κ̄1

i,m)(1+κ̄2
i,m) or 1+κ̄3

i,m = (1+κ̄1
i,m)/(1+κ̄2

i,m) or 1+κ̄3
i,m = (1+κ̄1

i,m)r+1.

Then obviously lim
m→∞

max
0≤i≤m−1

|κ̄3
i,m| = 0.

By these remarks we have the following lemma.

Lemma 1 The absolute local error of the method (7) is given by

|yi+1 − zi(xi+1)| = ci ∆r+1
i (1 + κ1

i), (29)

where ci = sup
y∈[yi,yi+1]

(

|g(r)(y)|/g(y)
)

|Cr| /r!, and lim
m→∞

max
0≤i≤m−1

|κ1
i | = 0.

Alternatively,

|yi+1 − zi(xi+1)| = c̄i h
r+1
i (1 + κ2

i), (30)

10

where c̄i = sup
y∈[z(xi),z(xi+1)]

(

|g(r)(y)|/ (g(y)r+2)
)

|Cr| /r!, and lim
m→∞

max
0≤i≤m−1

|κ2
i | = 0.

The convergence of max
0≤i≤m−1

|κ1
i | and max

0≤i≤m−1
|κ2

i | in (29) and (30), respectively, is uniform

with respect to the partition.

Proof To show (29) we use (27). Let si ∈ [yi, yi+1] be a point at which the supremum

in the definition of ci is achieved. We use Remark 1 with αi,m = min{yi, z(xi)} and

βi,m = max{yi+1, zi(xi+1), z(xi+1)}, with function γ(y) = |g(r)(y)| or γ(y) = g(y) and a

point z1 suitably chosen, and with z2 fixed to be z2 = si. The number κ1
i absorbes all

numbers κ̄i,m that appear when applying Remark 1, in accordance with Remark 2.

To show (30), we use (28) and Remarks 1 and 2 in a similar way.

The unknown numbers ci and c̄i depend on a local behavior of the function g.

5 Adaptive (nonconstructive) selection of mesh points

We now show how to (approximately) minimize the maximal absolute local error skipping

for a moment the question whether the mesh points can be constructed or not. From (30)

|yi+1 − zi(xi+1)| = c̄i (xi+1 − xi)
r+1(1 + κ2

i). (31)

with c̄i = sup
y∈[z(xi),z(xi+1)]

(

|g(r)(y)|/ (g(y)r+2)
)

|Cr|/r!.

We note that for any f and α ∈ (0, 1/2) there exists m0 such that for any m ≥ m0 and

any partition {xi} under consideration it holds

(1−α) max
0≤i≤m−1

c̄i(xi+1−xi)
r+1 ≤ max

0≤i≤m−1
|yi+1−zi(xi+1)| ≤ (1+α) max

0≤i≤m−1
c̄i(xi+1−xi)

r+1.

(32)

Consider now the minimization problem

max
0≤i≤m−1

c̄i (xi+1 − xi)
r+1 → MIN with respect to x1, x2, . . . , xm−1, (33)

with x0 = a and xm = b.

Define the functions of variables x1, x2, . . . , xm−1 by

p(xi, xi+1) = c̄i(xi+1 − xi)
r+1, xi+1 ≥ xi,

and

Pm(x0, x1, . . . , xm) = max
0≤i≤m−1

p(xi, xi+1).

11

Note that p is a continuous function of (xi, xi+1), it is an increasing function of xi+1 for

fixed xi, and a decreasing function of xi for fixed xi+1. The function Pm is continuous on

the compact set a = x0 ≤ x1 ≤ . . . ≤ xm = b, so that it attains its infimum for some

a = x∗
0 ≤ x∗

1 ≤ . . . ≤ x∗
m = b. The corresponding c̄i are denoted by c̄∗i . We note that the

infimum

inf
x0,x1,...,xm

Pm(x0, x1, . . . , xm)

is a nonincreasing function of m, since Pm(x0, x1, . . . , xm) is equal to Pm+1(x0, x1, . . . , xm, xm)

for any x0 ≤ x1 ≤ . . . ≤ xm.

Proposition 2 It holds

p(x∗
i , x

∗
i+1) = c̄∗i (x∗

i+1 − x∗
i)

r+1 = k∗
m = const, i = 0, 1, . . . , m− 1. (34)

The number k∗
m equals the minimal value in (33), k∗

m = min
x0,x1,...,xm

max
0≤i≤m−1

c̄i (xi+1−xi)
r+1.

The points a = x∗
0, x

∗
1, . . . , x

∗
m−1, x

∗
m = b are unique.

Furthermore,

x∗
i+1 − x∗

i = (b− a)
(1/c̄∗i)

1/(r+1)

m−1
∑

i=0
(1/c̄∗i)

1/(r+1)

and k∗
m =

(b− a)r+1

(

m−1
∑

i=0
(1/c̄∗i)

1/(r+1)

)r+1 . (35)

Proof The proof of (34) follows from the following observation. Suppose that there is i

such that

p(x∗
i , x

∗
i+1) < p(x∗

i+1, x
∗
i+2)

(the case ′ >′ is analogous). Then we can decrease max{p(x∗
i , x

∗
i+1), p(x∗

i+1, x
∗
i+2)} by

slightly increasing x∗
i+1. Applying this observation if necessary a number of times, we can

also decrease Pm(x∗
0, x

∗
1, . . . , x

∗
m), which is a contradiction.

Given x∗
i , the point x∗

i+1 is a solution of p(x∗
i , xi+1) = k∗

m, where k∗
m = inf

x0,x1,...,xm

Pm(x0, x1, . . . , xm).

The solution is unique, since p(x∗
i , ·) is an increasing function.

Relations (35) follow from (34) and the fact that
m−1
∑

i=0
(x∗

i+1 − x∗
i) = b− a.

The sequence {k∗
m} is nonincreasing. A convenient expression for k∗

m is the following

k∗
m =

(

b− a

m

)r+1

S(m), (36)

12

where

S(m) =
1

(

1
m

m−1
∑

i=0
(1/c̄∗i)

1/(r+1)

)r+1 . (37)

Note that S(m) plays here the role of a constant, since the dependence on m is weak: for

any m ≥ 1 we have

0 < c(f) ≤ S(m) ≤ C(f), (38)

where

c(f) = inf
y∈[η,z(b)]

bg(y) and C(f) = sup
y∈[η,z(b)]

bg(y)

with bg(y) =
(

|g(r)(y)|/ (g(y)r+2)
)

|Cr|/r!. We see that the factor S(m) in (36) does not

improve the speed of convergence of k∗
m, which remains of order Θ

(

m−(r+1)
)

as m → ∞.

However, the gain in the coefficient can be significant. The number C(f) in the ’a priori’

bound (38) can be large; it reflects a global behavior of the function g in the entire interval

[η, z(b)]. This bound is sharp if c̄∗i are essentially constant. In the opposite case, when c̄∗i

are all small except for a single large one equal to C(f), the sum
m−1
∑

i=0
(1/c̄∗i)

1/(r+1) can be

much larger than

m







1

max
0≤i≤m−1

c̄∗i







1/(r+1)

.

In this case S(m) is much smaller than C(f) and k∗
m is much smaller than the ’a priori’

bound,

k∗
m <<

(

b− a

m

)r+1

C(f). (39)

The gain from adjusting the mesh points to c̄∗i is then significant.

For comparison, consider the equidistant mesh points, xi = a + i(b− a)/m. Then

max
0≤i≤m−1

c̄i (xi+1 − xi)
r+1 = max

0≤i≤m−1
c̄i

(

b− a

m

)r+1

= C(f)

(

b− a

m

)r+1

.

Hence, for the equidistant mesh the ’a priori’ upper bound in (39) is attained. The points

x∗
i defined in Proposition 2 can do much better.

We stress again that the points x∗
i for which the gain is achieved depend on unknown

quantities; we do not show at this point how to construct them.

Note also that

max
0≤i≤m−1

(x∗
i+1 − x∗

i) ≤
b− a

m
·
(

C(f)

c(f)

)1/(r+1)

,

13

so that {x∗
i } is an admissible partition (for any l(m) ≥ 1/m and K ≥ (b−a) (C(f)/c(f))1/(r+1)

in (2)).

In many cases we are interested in computing approximations with the absolute local

error not exceeding a prescribed level ε ∈ (0, 1). That is, we wish to find the minimal

number m = m(ε) such that k∗
m ≤ ε. Hence,

k∗
m =

(

b− a

m

)r+1

S(m) ≤ ε,

which gives us that m(ε) is the minimal m such that

m ≥ (b− a)S(m)1/(r+1)
(

1

ε

)1/(r+1)

. (40)

The ’a priori’ bounds on S(m) lead to ’a priori’ bounds on m(ε)

(b− a)c(f)1/(r+1)
(

1

ε

)1/(r+1)

≤ m(ε) < (b− a)C(f)1/(r+1)
(

1

ε

)1/(r+1)

+ 1, (41)

so that m(ε) = Θ
(

(1/ε)1/(r+1)
)

as ε → 0. The actual value of m(ε) can be however much

smaller than the upper bound, since S(m) for all m can be much smaller than C(f).

It is clear that the number of subdivision intervals m(ε) will be crucial for establishing

the minimal cost of computing a constructive approximation with the absolute local error

at most ε.

Proposition 2 leads to the following result about minimization of the maximal absolute

local error. Let

Lm = min
x0,x1,...,xm

max
0≤i≤m−1

|yi+1 − zi(xi+1)|. (42)

The value of Lm is asymptotically equal to k∗
m, up to an arbitrarily small positive constant

α.

Proposition 3 For any f and α ∈ (0, 1/2) there exists m0 such that for any m ≥ m0

the minimal error satisfies

(1 − α)k∗
m ≤ Lm ≤ (1 + α)k∗

m, (43)

and

(1 − 2α) max
0≤i≤m−1

|y∗i+1 − zi(x
∗
i+1)| ≤ Lm ≤ max

0≤i≤m−1
|y∗i+1 − zi(x

∗
i+1)|. (44)

Hence, up to a (possibly small) constant α, the mesh points {x∗
i } are optimal.

(Here {y∗i } are given for {x∗
i } by (7), and zi denotes the solution of the local problem with

the initial condition zi(x
∗
i) = y∗i .)

14

Proof The proof follows from (32).

Hence, the quantity k∗
m is equal to the minimal maximum local error, and the points x∗

i

define the best partition (up to the constant α). The method (7) needs at each step to

compute the interpolation polynomial ĝi. In order to have local errors at level ε, the cost

is thus at least r m(ε) evaluations of the function g. In the next section we effectively

construct the mesh points and modify (7) to compute approximations with the local errors

proportional to ε, with cost proportional to m(ε).

6 Adaptive constructive selection of mesh points

Let ε ∈ (0, 1). We shall slightly modify (7) by replacing the interpolation polynomial ĝi

(defined on [yi, yi+1]) by an interpolation polynomial ĝ1i defined on the interval dependent

only on yi. The approximation to yi+1 will be obtained by a number of steps of the bisec-

tion method. The replacement will allow us to use the same polynomial in all iterations.

This makes it possible to avoid the log 1/ε factor in the cost bound, at expence of an

additional factor dependent only on r in the error bound. The dependence of the cost on

g and ε, and possible gain discussed in the previous section, will be hidden in the quantity

m(ε).

To be specific, we define points x̂i as follows. We set x̂0 = a, ŷ0 = η. For a given x̂i and

ŷi, we compute the divided difference

g[z̄i0, z̄
i
1, . . . , z̄

i
r],

where z̄ij are equidistant points from [ŷi, ŷi + ε1/(r+1)] (including the end points).

Then we set

ĉi = ĉi(ŷi) =
2r+1|g[z̄i0, z̄

i
1, . . . , z̄

i
r]|

g(ŷi)r+2
. (45)

The point x̂i+1 is defined as the solution of

ĉi(ŷi)(x̂i+1 − x̂i)
r+1 =

2r+1

|Cr|
1

1 − α
ε, i = 0, 1, (46)

Let ȳi = ŷi + 2f(ŷi)(x̂i+1 − x̂i). Let ĝ1i be the Lagrange interpolation polynomial for g of

degree at most r − 1 based on r equidistant points from [ŷi, ȳi] for r ≥ 2 (including the

end points), and ĝ1i (y) ≡ g(ŷi) for r = 1. We define ŷi+1 as the solution of

F̂ 1(y) :=

y
∫

ŷi

ĝ1i (z) dz = x̂i+1 − x̂i

15

in the interval [ŷi, ȳi]. The existence of ŷi+1 follows (for sufficiently small ε) from the

arguments used in the proof of Proposition 1 with {xi} and {yi} replaced by {x̂i} and

{ŷi}. We use the function H1(y) = F (y) − F̂ 1(y), where

F (y) =

y
∫

ŷi

g(z) dz.

By the standard interpolation error formula we have

|H1(y)| ≤ sup
ξ∈[ŷi,ȳi]

|g(r)(ξ)|(ȳi − ŷi)
r(y − ŷi)/r!

= sup
ξ∈[ŷi,ȳi]

|g(r)(ξ)|2r(x̂i+1 − x̂i)
rf(ŷi)

r(y − ŷi)/r!, y ∈ [ŷi, ȳi].

We define m̂ to be the minimal i for which x̂i ≥ b.

Consider now the local errors ŷi+1 − zi(x̂i+1) of the pairs (x̂i, ŷi) (zi is the solution of (3)

such that zi(x̂i) = ŷi). Similarly as in the proof of Proposition 1, we have that

ŷi+1 − zi(x̂i+1) = H1(ŷi+1)/g(ηi),

for some ηi ∈ conv(ŷi+1, zi(x̂i+1)). Hence

|ŷi+1 − zi(x̂i+1)| ≤ γi(x̂i+1 − x̂i)
r+1,

where

γi =

sup
ξ∈[ŷi,ȳi]

|g(r)(ξ)| f(ŷi)
r+1 2r+1

r! inf
ξ∈conv(ŷi+1,zi(x̂i+1))

g(ξ)
.

We now use Remarks 1 and 2 to replace γi by ĉi to get

|ŷi+1 − zi(x̂i+1)| ≤ ĉi(x̂i+1 − x̂i)
r+1(1 + κ2

i), (47)

with some κ2
i such that max

0≤i≤m̂−1
|κ2

i | tends to 0 as ε → 0. This together with the definition

of x̂i+1 yields that for sufficiently small ε we have

|ŷi+1 − zi(x̂i+1)| ≤
1 + α

1 − α

2r+1

|Cr|
ε. (48)

We now show that m̂ ≤ m(ε), where m(ε), which is our reference quantity, has been

defined to be the minimal value of m such that k∗
m ≤ ε. This will follow from the fact

that for the optimal points we have x∗
i ≤ x̂i, i = 0, 1, Indeed, this holds for i = 0. Let

16

x∗
i ≤ x̂i for some i. If x∗

i+1 ≤ x̂i, then obviously x∗
i+1 ≤ x̂i+1, so that it suffices to consider

the case x̂i < x∗
i+1. Then

ε ≥ k∗
m = c̄i(x

∗
i , x

∗
i+1)(x

∗
i+1 − x∗

i)
r+1 ≥ c̄i(x̂i, x

∗
i+1)(x

∗
i+1 − x̂i)

r+1.

For convenience, we have explicitly written here the arguments that c̄i depends on. It

follows from Remarks 1 and 2 that for sufficiently small ε

ε ≥ c̄i(x̂i, x
∗
i+1)(x

∗
i+1 − x̂i)

r+1 = ĉi(ŷi)(x
∗
i+1 − x̂i)

r+1|Cr|(1 + κ3
i)/2r+1

≥ ĉi(ŷi)(x
∗
i+1 − x̂i)

r+1|Cr|(1 − α)/2r+1.

Thus,

ĉi(ŷi)(x
∗
i+1 − x̂i)

r+1 ≤ 2r+1/(|Cr|(1 − α)) ε,

which yields that x̂i+1 ≥ x∗
i+1, as claimed.

It remains to show how we compute an approximation to ŷi+1. We apply the bisection

method to the equation F̂ 1(y) = x̂i+1− x̂i, starting from the interval [ŷi, ŷi+2f(ŷi)(x̂i+1−
x̂i)] (see the proof of Proposition 1). After li ≥ 1 steps the length of the interval is reduced

to f(ŷi)(x̂i+1 − x̂i)/2li−1. We choose li to the minimal number such that

f(ŷi)(x̂i+1 − x̂i)/2li−1 ≤ ε/2. (49)

Equivalently, inserting x̂i+1 − x̂i, we get that li is the minimal number such that

8f(ŷi)

ĉ
1/(r+1)
i |Cr|1/(r+1)

(

1

1 − α

)1/(r+1)

ε1/(r+1)−1 ≤ 2li. (50)

We note that the bisection process does not require any new evaluations of g.

Any point of the last bisection interval can be taken as an approximation to ŷi+1. We

denote the selected approximation by the same symbol ŷi+1, and get

|ŷi+1 − zi(x̂i+1)| ≤
(

1 + α

1 − α

2r+1

|Cr|
+

1

2

)

ε. (51)

We will refer to the above bisection procedure as BISEC. These considerations are sum-

marized in the following algorithm for solving (1).

17

Algorithm ADMESH

1 Set ε ∈ (0, 1), α ∈ (0, 1/2), x̂0 = a, ŷ0 = η, i = −1

2 i := i + 1

3 Compute dir = g[z̄i0, z̄
i
1, . . . , z̄

i
r], where z̄ij are equidistant points

in [ŷi, ŷi + ε1/(r+1)] (including the end points)

4 Compute ĉi = 2r+1|dir|f(ŷi)
r+2 and x̂i+1 = x̂i + 2/ (|Cr| ĉi (1 − α))1/(r+1) ε1/(r+1).

If x̂i+1 ≥ b then x̂i+1 := b

5 Compute the interpolation polynomial ĝ1i
6 Compute ŷi+1 by the algorithm BISEC applied to the equation F̂ 1(y) = x̂i+1 − x̂i

with li steps starting from [ŷi, ŷi + 2f(ŷi)(x̂i+1 − x̂i)], with li given by (50).

If x̂i+1 = b then go to STOP

7 Go to 2

STOP

The following theorem summarizes the error and cost properties of the algorithm ADMESH.

Theorem 1 Let f ∈ Fr and α ∈ (0, 1/2). There exists ε0 = ε0(f, α) such that for any

ε ≤ ε0 the algorithm ADMESH computes pairs (x̂i, ŷi), i = 0, 1, . . . , m̂, with the following

error/cost properties. The maximum local error is bounded by

max
0≤i≤m̂−1

|ŷi+1 − zi(x̂i+1)| ≤
(

1 + α

1 − α

2r+1

|Cr|
+

1

2

)

ε, (52)

where zi is the solution of the local problem (3) with the initial condition zi(x̂i) = ŷi.

The cost of the algorithm cost(f, α, ε) measured by the number of evaluations of f is

bounded by

cost(f, α, ε) ≤ 2rm(ε), (53)

where m(ε) is the (almost optimal) number of subintervals given in (40).

Proof The bound (52) follows from (51). The cost related to the ith interval consists

of r + 1 function evaluations to compute dir and additional r − 1 function evaluations to

compute the interpolation polynomial ĝ1i . This and the bound m̂ ≤ m(ε) yield the cost

bound (53).

We comment on this result. Note first that α can be an arbitrary small positive number

which does not play any crucial role. The accuracy achieved by the algorithm ADMESH

18

differs from the accuracy achieved by the almost optimal points x∗
i only by the explicitly

known factor dependent on r (and independent of f), see Proposition 3. The cost of

ADMESH is proportional, with coefficient 2r, to the reference value m(ε). It follows from

the discussion after Proposition 2, see (41), that the ’a priori’ upper bound on the cost is

cost(f, α, ε) ≤ 2r

(

(b− a)C(f)1/(r+1)
(

1

ε

)1/(r+1)

+ 1

)

. (54)

This upper bound is essentially achieved by the equidistant mesh. The advantage of the

mesh points constructed in the algorithm ADMESH lies in the fact that m(ε), where the

dependence on f is hidden, can be much smaller than the upper bound given in (41), see

the discussion after Proposition 2. Consequently, the actual cost of getting the accuracy

proportional to ε can be much smaller than the upper bound in (54).

Note also that we can have the error bound in (52) equal to a given number ε1, by running

the algorithm with ε := ε1

(

1 + α

1 − α

2r+1

|Cr|
+

1

2

)−1

.

Remark 3 It would be of interest to generalize the above results to systems of IVPs. One

can see that a straightforward generalization is not possible, since there is no counterpart

of (6) for systems of IVPs. Preliminary analysis however indicates that a progress in that

direction is possible using a different technique. This will be a topic of our future work.

7 Numerical example

To illustrate the behavior of ADMESH, we consider a problem with r = 2, dependent on

a parameter δ > 0

z′(t) =
3

4
(z(t) − 1)−3/2, t ∈ [0, 1], z(0) = 1 + δ. (55)

The right hand side function f has the form f = 1/g, where g(z) = (4/3)(z − 1)3/2.

The second derivative g′′(z) = (z − 1)−1/2 taken at the initial condition grows to infinity

as 1/
√
δ with δ → 0+. For such a function and small δ we should observe a significant

advantage of adaptive mesh points over the equidistant points. The solution satisfying

the initial condition z(x) = y (x ≥ 0, y > 1) is given by

z(t) =
(

15

8
(t− x) + (y − 1)5/2

)2/5

+ 1.

19

The testing program was translated to the C++ code by P. Morkisz and B. Bożek.

The following table shows results computed by ADMESH for number of values of ε and

δ. In the successive columns we show the values of IADAPT (the number of adap-

tive mesh points), MAXERR (the maximum local error), MAXERR/BOUND (BOUND

is the upper bound given in Theorem 1), MAXERRG (the maximum global error),

EQUIDIST/MAXERR (EQUIDIST is the maximal local error obtained with 2∗IADAPT

equidistant mesh points), EQUIDISTG/MAXERRG (the same ratio for the maximal

global errors). Since ADMESH requires 4 evaluations of f in each subinterval, and the

equidistant mesh algorithm 2 evaluations, the results in the latter case are computed for

twice as much points. The computer precision is 10−16. We took α = 0.25.

ε δ IADAPT MAXERR
MAXERR

BOUND
MAXERRG

EQUIDIST

MAXERR

EQUIDISTG

MAXERRG

0.01 0.1 5 0.23 0.014 0.035 7.39 4.9

0.01 10−4 11 0.02 0.011 0.032 19.57 11.96

0.01 10−8 11 0.02 0.012 0.039 17.79 11.00

10−4 0.1 15 7.3∗10−4 0.046 3.1∗10−3 90.56 21.06

10−4 10−4 27 6.7∗10−4 0.042 3.0∗10−3 369.89 84

10−4 10−8 30 6.7∗10−4 0.042 3.0∗10−3 371.69 101

10−8 0.1 252 1.09∗10−7 0.068 8.24∗10−6 8291 109

10−8 10−4 418 1.85∗10−7 0.115 8.28∗10−6 436463 9732

10−8 10−8 435 2.30∗10−7 0.143 8.32∗10−6 373152 12562

10−16 0.1 115332 1.59∗10−15 0.099 3.87∗10−11 17051 95

10−16 10−4 192546 1.59∗10−15 0.099 3.90∗10−11 3.7∗1012 1.5∗108

10−16 10−8 200023 1.39∗10−14 0.866 3.90∗10−11 5.3∗1011 2.2∗108

The 5th column verifies the statement of Theorem 1; all its entries should be at most 1.

The 7th column shows how much the local error for equidistant mesh points exceeds that

for the adaptive points used by ADMESH. We see that a significant advantage of using

adaption is observed for all values of ε and δ. The gain grows when ε or δ go to 0.

Acknowledgments I thank L. Plaskota and P. Przyby lowicz for their comments on

the manuscript.

References

[1] Choi, S.T., Ding, Y., Hickernell, F.J, Tong, X. (2017), Lo-

20

cal adaption for approximation and minimization of univariate functions,

http://dx.doi.org/10.1016/j.jco.2016.11.005, to appear in J. Complexity.

[2] Jackiewicz, Z. (2002), Implementation of DIMSIMs for stiff differential systems,

Appl. Numer. Math., 42, No. 1-3, 251–267.

[3] Kacewicz, B., (1988), Minimum asymptotic error of algorithms for solving ODE, J.

Complexity, 4, 373–389.

[4] Kacewicz, B., (1990), On sequential and parallel solution of initial value problems,

J. Complexity, 6, 136–148.

[5] Kacewicz, B., Przyby lowicz, P., (2015), Complexity of the derivative-free so-

lution of systems of IVPs with unknown singularity hypersurface, J. Complexity, 31,

75–97.

[6] Lyness, J.N., (1983), When not to use an automatic quadrature routine?, SIAM

Review , 25, 63–87.

[7] Mazzia, F., Nagy, A.M, (2015), A new mesh selection strategy with stiffness de-

tection for explicit Runge Kutta methods, Applied Math. and Comp., 255, 125–134.

[8] Piessens, R., De Doncker-Kapenga,E., Überhuber,C. W., (1983), QUAD-

PACK: a subroutine package for automatic integration, Springer, ISBN: 3-540-12553-1.

[9] Plaskota, L., (2015), Automatic integration using asymptotically optimal adaptive

Simpson quadrature, Numer. Math., 131, 173–198.

[10] Plaskota, L., Wasilkowski, G.W., (2009), The power of adaptive algorithms

for functions with singularities, J. Fixed Point Theory Appl., 6, 227–248.

21

http://dx.doi.org/10.1016/j.jco.2016.11.005

	1 Introduction
	2 Problem formulation
	3 The method under consideration
	4 Local error expressions
	5 Adaptive (nonconstructive) selection of mesh points
	6 Adaptive constructive selection of mesh points
	7 Numerical example

