
Efficient implementation of symplectic implicit
Runge-Kutta schemes with simplified Newton

iterations

Mikel Antoñana, Joseba Makazaga, Ander Murua
KZAA saila, Informatika Fakultatea, UPV/EHU

Donostia / San Sebastián

Abstract

We are concerned with the efficient implementation of symplectic implicit Runge-
Kutta (IRK) methods applied to systems of (non-necessarily Hamiltonian) ordinary
differential equations by means of Newton-like iterations. We pay particular attention
to symmetric symplectic IRK schemes (such as collocation methods with Gaussian
nodes). For a s-stage IRK scheme used to integrate a d-dimensional system of ordi-
nary differential equations, the application of simplified versions of Newton iterations
requires solving at each step several linear systems (one per iteration) with the same
sd × sd real coefficient matrix. We propose rewriting such sd-dimensional linear
systems as an equivalent (s + 1)d-dimensional systems that can be solved by per-
forming the LU decompositions of [s/2] + 1 real matrices of size d × d. We present
a C implementation (based on Newton-like iterations) of Runge-Kutta collocation
methods with Gaussian nodes that make use of such a rewriting of the linear system
and that takes special care in reducing the effect of round-off errors. We report some
numerical experiments that demonstrate the reduced round-off error propagation of
our implementation.

1 Introduction

The main goal of the present work is the efficient implementation of symplectic implicit
Runge-Kutta (IRK) schemes for stiff ODE (non-necessarily Hamiltonian) problems. Our
primary interest is on geometric numerical integration, which motivates us to solve the
implicit equations determining each step to full machine precision. The stiff character of
the target problems leads us to solving the implicit equations by some modified version
of Newton method. This typically requires repeatedly solving linear systems of equations
with coefficient matrix of the form

(Is ⊗ Id − hA⊗ J) ∈ Rsd×sd (1)

1

ar
X

iv
:1

70
3.

07
69

7v
1

 [
m

at
h.

N
A

]
 2

2
M

ar
 2

01
7

where A ∈ Rs×s is the coefficient matrix of the RK scheme, and J is some common
approximation of the Jacobian matrices evaluated at the stage values.

An standard approach, independently introduced in [12], [5], and [3], to efficiently
solve such linear systems takes advantage of the special structure of the matrix (1). More
specifically, (1) is similar to a block-diagonal matrix with s blocks Id − hλjJ ∈ Rd×d

(j = 1, . . . , s), one per eigenvalue λj of A. Typically, the coefficient matrix A of standard
high order implicit RK schemes have [s/2] complex conjugate pairs of eigenvalues (plus a
real one for odd s).

The main contribution of the present paper is a technique for transforming s d-dimensional
systems with coefficient matrix (1) into an equivalent (s+1)d-dimensional systems that can
be solved by performing the LU decomposition of [s/2] + 1 real matrices of size d× d (and
some additional multiplication of matrices of the same size). We pay particular attention
to implicit Runge-Kutta schemes that are both symmetric and symplectic. However, our
technique is also applicable for non-symmetric symplectic IRK schemes, and also for some
symmetric non-symplectic IRK schemes (see last paragraph in Subsection 3.3 for more
details).

In addition, we present an algorithm that implements symmetric sympletic IRK schemes
(such as RK collocation methods with Gaussian nodes) by making use of the above tech-
nique. Special care is taken to try to reduce the effect of round-off errors by adapting
some techniques used (for the implementation of sympletic IRK schemes with fixed-point
iterations) in [1].

The plan of the paper is as follows: Section 2 summarizes some standard material about
implicit Runge-Kutta methods and Newton-like iterations and fix some notation. Section 3
presents our new technique to solve the simplified linear system of Newton iterations for
symplectic IRK schemes. Section 4 is devoted to describe our implementation of symplectic
IRK methods with Newton-like iterations. Some numerical results are reported in Section 5.
A few concluding remarks can be found in Section 6.

2 Implementation of Implicit Runge-Kutta schemes

with Newton-like iterations

2.1 Implicit Runge-Kutta schemes

We consider initial value problems of systems of ODEs of the form

d

dt
y = f(t, y), y(t0) = y0, (2)

where f : Rd+1 → Rd is a sufficiently smooth map and y0 ∈ Rd.
Given a time discretization t0 < t1 < t2 < · · · , the numerical approximations yn ≈

y(tn), (n = 1, 2, . . .) to the solution y(t) of the initial value problem (2) is obtained by
means of a one-step integrator as

yn+1 = Φ(yn, tn, tn+1 − tn), n = 0, 1, 2, . . . , (3)

2

for a map Φ : Rd+2 → Rd determined in some way from f : Rd+1 → Rd.
In the case of a s-stage implicit Runge-Kutta method, the map Φ is determined in terms

of the real coefficients aij (1 6 i, j 6 s) and bi, ci (1 6 i 6 s) as

Φ(y, t, h) := y + h
s∑
i=1

bi f(t+ cih, Yi), (4)

where the stage vectors Yi are implicitly defined as functions of (y, t, h) ∈ Rd+2 by

Yi = y + h

s∑
j=1

aij f(t+ cjh, Yj), i = 1, . . . , s. (5)

Typically,

ci =
s∑
j=1

aij, i = 1, . . . , s.

The equations (5) can be solved for the stage vectors Yi by means of some iterative

procedure, starting, for instance, from Y
[0]
i = y, i = 1, 2, . . . , s. (In the non-stiff case, it

is usually more efficient initializing the stage vectors with some other procedure that uses
the stage values of the previous steps [6]).

A very simple iterative procedure is fixed point iteration. For stiff problems, fixed-
point iteration is not appropriate, and Newton iteration may be used to compute the stage
vectors Yi from (5). For non-stiff problems, Newton iteration may still be an attractive
option in some cases, in particular for very high precision computations (for quadruple
precision or in arbitrary precision arithmetic calculations) if implemented with mixed-
precision strategies [2] (which reduce the cost of the linear algebra and the evaluation of
the Jacobians, performed in lower precision arithmetic than the evaluations of the right-
hand side of the system of ODEs).

In any case, since at each Newton iteration s evaluations of the Jacobian matrix ∂f
∂y

and a LU decomposition of a sd × sd matrix are required, some computationally cheaper
variants are often used instead.

3

2.2 Newton-like iterations

Recall that a Newton iteration can be used to compute for k = 1, 2, . . . the approximations
Y

[k]
i of Yi (i = 1, . . . , s) in (5) as follows:

1) r
[k]
i := −Y [k−1]

i + y + h
s∑
j=1

aij f(t+ cjh, Y
[k−1]
j), i = 1, . . . , s, (6)

2) Solve ∆Y
[k]
i from

∆Y
[k]
i − h

s∑
j=1

aij J
[k]
j ∆Y

[k]
j = r

[k]
i i = 1, . . . , s,

where J
[k]
i =

∂f

∂y
(t+ cih, Y

[k]
i) for i = 1, . . . , s,

(7)

3) Y
[k]
i := Y

[k−1]
i + ∆Y

[k]
i , i = 1, . . . , s, (8)

Observe that, s evaluations of the Jacobian matrix ∂f
∂y

and a LU decomposition of a sd×sd
matrix are required (in addition to s evaluations of f) at each iteration. This is typi-
cally computationally too expensive, and some variants of the full Newton algorithm are
implemented instead. Among others, the following alternatives are possible:

• Application of simplified Newton iterations. This consists on replacing the Jacobian
matrices J

[k]
i in (7) by J

[0]
i = ∂f

∂y
(t+cih, Y

[0]
i). In that case, LU decomposition is done

only once and the linear system

∆Y
[k]
i − h

s∑
j=1

aij J
[0]
j ∆Y

[k]
j = r

[k]
i i = 1, . . . , s, (9)

has to be solved at each of the simplified Newton iterations. If the simple initialization
Y

[0]
i = y (i = 1, . . . , s) is considered (this is typically the case when solving stiff

systems) and f does not depend on t, then J
[0]
i = J := ∂f

∂y
(y) for each i = 1, . . . , s,

and the linear system (9) reduces to

(Is ⊗ Id − hA⊗ J) ∆Y [k] = r[k], (10)

where

Y [k] =

Y
[k]
1
...

Y
[k]
s

 ∈ Rsd, r[k] =

r
[k]
1
...

r
[k]
s

 ∈ Rsd.

Even in the case where some initialization procedure other than Y
[0]
i = y is used, in

practice the linear system (9) is often replaced by (10), where J is some common

approximation of ∂f
∂y

(t + cih, Y
[0]
i), i = 1, . . . , s. An appropriate choice [16] is J :=

∂f
∂y

(t+c̄ h, ȳ), where c̄ = 1
s

∑s
i=1 ci (which for symmetric methods gives c̄ = 1

2
) and ȳ =

4

1
s

∑s
i=1 Y

[0]
i . Often, it will be sufficient to evaluate instead of ∂f

∂y
a computationally

cheaper approximation of it.

• Applying the original Newton iteration by solving the linear systems (7) with some
iterative method [14] preconditioned by the inverse of the matrix

Is ⊗ Id − hA⊗ J. (11)

In practice, the linear systems (7) are only approximately solved with the iterative
method. In such case, the resulting scheme is sometimes referred to as inexact New-
ton iteration [14]. Further variants of Newton-like iterations will be obtained if the
Jacobian matrices are not updated at each iteration.

In any of the two alternatives above, one needs to repeatedly solve linear systems of the
form

(Is ⊗ Id − hA⊗ J) ∆Y = r, (12)

for given r ∈ Rsd. From now on, we will refer to (12) as simplified linear system (of
Newton-like iterations).

Of course, (12) may be solved by previously computing the LU decomposition of the
full sd× sd matrix (11), but this may be done more efficiently.

An standard approach [12][5][3] consists on diagonalizing the matrix A as Λ = S−1AS =
diag(λ1, . . . , λs), and computing the LU decomposition of the matrix

Is ⊗ Id − hΛ⊗ J = (S−1 ⊗ Id) (Is ⊗ Id − hA⊗ J) (S ⊗ Id).

In that case, one needs to compute the LU decomposition of a real (resp. complex) d× d
matrix for each distinct real eigenvalue (for each distinct pair of complex eigenvalues) of
A.

Alternatively, some authors [4][10] propose solving (12) by an iterative procedure pre-
conditioned by the inverse of

Is ⊗ Id − h Ã⊗ J, (13)

where Ã ∈ Rs×s is a matrix chosen so that the LU decomposition of (13) can be more
efficiently computed than that of (11).

In next section, we propose a new technique to efficiently solve simplified linear systems
(12) of Newton iterations, provided that the IRK scheme is symplectic.

3 Efficient solution of simplified linear systems for

symplectic IRK schemes

3.1 Symplectic IRK schemes

In what follows, we consider symplectic IRK schemes, that is [15], IRK schemes whose
coefficients satisfy

biaij + bjaji − bibj = 0, 1 6 i, j 6 s. (14)

5

Condition (14) guarantees that the discrete flow resulting from the application of the
IRK scheme to an autonomous Hamiltonian system is symplectic, with important favorable
consequences in the long-term behavior of the numerical solution [6]. Condition (14) also
implies that, when applied to an ODE system with a quadratic invariant, then it is also a
conserved quantity for the numerical solution provided by the IRK scheme.

Nevertheless, our interest in condition (14) is of a completely different nature: We will
see that such a condition allows to solve efficiently linear systems of the form (12) for
a given d × d real matrix J and a given r ∈ Rsd. We will pay particular attention to
symplectic IRK schemes that additionally satisfy (possibly after some reordering of the
stage values Yi) the symmetry condition [6]

bs+1−i = bi, cs+1−i = 1− ci, 1 6 i 6 s,

bj = as+1−i,s+1−j + ai,j, 1 6 i, j 6 s,
(15)

In particular, the IRK schemes of collocation type with Gaussian nodes are both symplectic
and symmetric.

3.2 Alternative symplecticity and symmetry characterizations

The map Φ determining the steps (3) of a IRK scheme can be alternatively written as

Φ(y, t, h) := y + z,

where the stage vectors Yi ∈ Rd and the increment z ∈ Rd are implicitly defined as functions
of (y, t, h) ∈ Rd+2 by

Yi = y +
z

2
+ h

s∑
j=1

āij f(t+ cjh, Yj), i = 1, . . . , s, (16)

z = h

s∑
i=1

bi f(t+ cih, Yi), (17)

where

āij = aij −
bj
2
, 1 6 i, j 6 s. (18)

Condition (14) may be equivalently characterized in terms of the matrix Ā = (āij)
s
i,j=1

and the diagonal matrix B with diagonal entries b1, . . . , bs. Indeed, (14) is equivalent to
the requirement that the real s× s matrix (BĀ) be antisymmetric.

As for the symmetry condition (15), it reads

bs+1−i = bi, c̄s+1−i = −c̄i, 1 6 i 6 s,

ās+1−i,s+1−j = −āi,j, 1 6 i, j 6 s,
(19)

where c̄i = ci − 1
2

for i = 1, . . . , s.

6

3.3 Efficient solution of the linear systems of the form (12)

From now on, we will only consider, without loss of generality1, symplectic IRK schemes
with invertible B. Since BĀ is antisymmetric, so is B

1
2 ĀB−

1
2 , which implies that Ā is

diagonalizable with all eigenvalues in the imaginary axis. This is equivalent to the existence
of a s× s invertible matrix Q such that

Q−1ĀQ =

(
0 D
−DT 0

)
(20)

where D is a real diagonal matrix (with non-negative diagonal entries) of size m× (s−m),
where m = [(s+ 1)/2] (and s−m = [s/2]).

We will next show that (20) may be exploited to solve efficiently linear systems of the
form (12). Consider the implicit equations (16)–(17). Application of simplified Newton
iteration to such implicit equations leads to linear systems of the form(

Is ⊗ Id − h Ā⊗ J
)

∆Y − 1
2
(es ⊗ Id) ∆z = r,(

−h eTs B ⊗ J
)

∆Y + ∆z = 0,
(21)

where es = (1, . . . , 1)T ∈ Rs. Clearly, if (∆Y,∆z) is solution of (21), then ∆Y is solution
of (12).

By virtue of (20), the linear system (21) is equivalent, with the change of variables
∆Y = (Q⊗ Id)W to(

Im ⊗ Id −hD ⊗ J
hDT ⊗ J Is−m ⊗ Id

)
W − 1

2
(Q−1es ⊗ Id) ∆z = (Q−1 ⊗ Id) r,

−h (eTs BQ⊗ J)W + ∆z = 0,

(22)

The blockwise sparsity pattern of the system (22) allows obtaining its LU decomposition
by computing, in addition to several multiplications of matrices of size d × d, the LU
decompositions of [s/2] + 1 real matrices of size d× d: the matrices

Id + h2σ2
i J

2, i = 1, . . . , [s/2],

where σ1, . . . , σ[s/2] > 0 are the diagonal entries in D, and an additional d × d matrix
obtained from the former. We will give more details in Subsection 3.4 in the case of
symmetric symplectic IRK schemes.

It is worth remarking that such a technique for solving linear systems of the form (12)
is not restricted to symplectic IRK schemes. It is enough that the corresponding matrix
Ā be diagonalizable with all its eigenvalues in the imaginary axis. This seems to be the
case of several families of (non-symplectic) symmetric IRK methods of collocation type,
in particular, for the nodes of Lobatto quadrature formulas, or if the nodes are either the
zeros or the extrema of Chebyshev polynomials of the first kind.

1Any symplectic IRK method with bi = 0 for some i is equivalent to a symplectic IRK scheme with
fewer stages and bi 6= 0 for all i [8]

7

3.4 The case of symmetric symplectic IRK schemes

In the present section, in addition to the symplecticity conditions, that guarantee that the
matrix B

1
2 ĀB−

1
2 is antisymmetric, we assume that the symmetry conditions (19) hold.

Consider the s×s orthogonal matrix P = (P1 P2) such that, for x = (x1, . . . , xs)
T ∈ Rs,

P T
1 x = (y1 · · · ym)T , and P T

2 x = (ym+1, · · · ys)T , where

yi =

√
2

2
(xs+1−i + xi), for i = 1, . . . , [s/2],

ym = xm, if s is odd,

yi =

√
2

2
(xs+1−i − xi), for i = m+ 1, . . . , s,

with m = [(s+ 1)/2].

The symmetry condition (19) implies that P T
i B

1
2 ĀB−

1
2Pi = 0 for i = 1, 2, and since

by symplecticity B
1
2 ĀB−

1
2 is an antisymmetric matrix, we conclude that the matrix Ā is

similar to

P TB
1
2 ĀB−

1
2P =

(
0 K
−KT 0

)
(23)

where K = P T
1 B

1
2 ĀB−

1
2P2 (which is a real matrix of size m× (s−m) = [(s+1)/2]× [s/2]).

Let K = UDV T be the singular value decomposition of K, (where U ∈ Rm×m and V ∈
R(s−m)×(s−m) are orthonormal matrices, and D ∈ Rm×(s−m) is a diagonal matrix with the
singular values σ1, . . . , σs−m of K as diagonal entries). We have that (20) holds with

Q = (Q1 Q2) = B−1/2(P1 P2)

(
U 0
0 V

)
= B−1/2

(
P1U P2V

)
,

and Q−1 = QTB. This implies that the linear system (21), with the change of variables

∆Y = (Q⊗ Id)W = (Q1 ⊗ Id)W ′ + (Q2 ⊗ Id)W ′′ (24)

is equivalent to (22). Due to the first symmetry conditions in (19), eTs BP2 = 0, and hence
eTs BQ2 = eTs BP2V = 0, so that (22) reads

W ′ − h (D ⊗ J)W ′′ − 1
2

(QT
1Bes ⊗ Id) ∆z = (QT

1B ⊗ Id) r,
h (DT ⊗ J)W ′ +W ′′ = (QT

2B ⊗ Id) r,
−h (eTs BQ1 ⊗ J)W ′ + ∆z = 0.

By solving for W ′′ from the second equation of the linear system above,

W ′′ = −h (DT ⊗ J)W ′ + (QT
2B ⊗ Id) r. (25)

and substitution in the remaining two equations, one obtains

(Im ⊗ Id + h2DDT ⊗ J2)W ′ − 1
2

(QT
1Bes ⊗ Id) ∆z = R,

−h (eTs BQ1 ⊗ J)W ′ + ∆z = 0.

8

where R = (QT
1B ⊗ Id) r + h (DQT

2B ⊗ J) r ∈ Rmd.
The linear system above can be rewritten in terms of

R =

R1
...
Rm

 , W ′ =

W1
...

Wm


with Ri,Wi ∈ Rd, i = 1, . . . ,m, as follows:

(Id + h2σ2
i J

2)Wi −
αi
2

∆z = Ri, i = 1, . . . ,m, (26)

−h J
m∑
i=1

αiWi + ∆z = 0. (27)

where α1
...
αm

 = QT
1Bes,

and σ1 > · · · > σ[s/2] are the singular values of K, and if s is odd (in which case m =
[(s+ 1)/2] = [s/2] + 1), then σm = 0.

Thus, the unknown ∆z ∈ Rd can be obtained by solving the linear system

M ∆z = h J
m∑
i=1

αi(Id + h2σ2
i J

2)−1Ri, (28)

where

M = Id + J
h

2

m∑
i=1

α2
i (Id + h2σ2

i J
2)−1 ∈ Rd×d. (29)

The unknowns in W ′ ∈ Rmd are then solved from (26), while W ′′ ∈ R(s−m)d may be
obtained from (25).

The required solution ∆Y of the original linear system (12), may finally be obtained
from (24).

3.5 Alternative reformulation of symplectic IRK schemes

If the coefficients bi, aij determining a symplectic IRK are replaced by floating point num-
bers b̃i, ãij that approximate them, then the resulting IRK scheme typically fails to satisfy
the symplecticity conditions (14). This results [7] in a method that exhibits a linear drift
in the value of quadratic invariants of the system and in the Hamiltonian function when
applied to autonomous Hamiltonian systems.

9

Motivated by that, the map Φ : Rd+2 → Rd of the one-step integrator (3) corresponding
to the IRK scheme, defined by (4)–(5), is rewritten in [1] in the following equivalent form:

Φ(y, t, h) := y +
s∑
i=1

Li,

where Li ∈ Rd, i = 1, . . . , s are implicitly defined as functions of (t, y, h) ∈ Rd+2 by

Li = h bi f(t+ cih, y +
s∑
j=1

µij Lj), i = 1, . . . , s, (30)

where
µij = aij/bj, 1 6 i, j 6 s.

The symplecticity condition (14) is equivalent to

µij + µji − 1 = 0, 1 6 i, j 6 s. (31)

The main advantage of the proposed formulation over the standard one is that the ab-
sence of multiplications in the symplecticity condition (31) makes possible to find machine
number approximations µij of aij/bj satisfying exactly the symplecticity condition (31).

With that alternative formulation, the Newton iteration reads as follows: Initialize
L
[0]
i = 0 for i = 1, . . . , s, and compute for k = 1, 2, . . .

1) Y
[k]
i := y +

s∑
j=1

µij L
[k−1]
j , i = 1, . . . , s.

g
[k]
i := −L[k−1]

i + h bi f(t+ cih, Y
[k]
i), i = 1, . . . , s,

2) Solve ∆L
[k]
i from

∆L
[k]
i − hbiJ

[k]
i

s∑
j=1

µij ∆L
[k]
j = g

[k]
i , i = 1, . . . , s,

where J
[k]
i =

∂f

∂y
(t+ cih, Y

[k]
i) for i = 1, . . . , s,

3) L[k] := L[k−1] + ∆L[k],

(32)

In the simplified version of the Newton iteration where the Jacobian matrices J
[k]
i are

replaced by a common approximation J (say, J = ∂f
∂y

(t+h/2, y)), the linear system in (32)
is replaced by

∆L[k] =
(
Is ⊗ Id − hBAB−1 ⊗ J

)−1g
[k]
1
...

g
[k]
s

 , (33)

10

In that case, we need to repeatedly solve systems of the form(
Is ⊗ Id − hBAB−1 ⊗ J

)
∆L = g, (34)

for prescribed g ∈ Rsd. Repeated solution of linear systems of this form is also required if
the linear system in (32) is iteratively solved as described in Subsection 4.2 below.

Of course, (34) can be solved by adapting the technique described in Subsections 3.3
and 3.4 for the solutions of systems of the form (12). We next describe, for the symmetric
case (i.e., when the symmetry condition (15) holds), the corresponding procedure (with
the notation adopted in Subsection 3.4) to compute the solution ∆L of (34):

1. LU decompositions:

• Compute the LU decompositions of the Rd×d matrices

Id + h2 σ2
i J

2, i = 1, . . . , [s/2], (35)

• Compute the matrix M ∈ Rd×d given in (29) (recall that σm = 0 when s is odd),
and obtain its LU decomposition.

2. Solution of system (34):

• Compute R ∈ Rmd from

R = (QT
1 ⊗ Id) g + h (DQT

2 ⊗ J) g,

• Compute

d = h J
m∑
i=1

αi(Id + h2σ2
i J

2)−1Ri,

• Compute ∆z ∈ Rd as the solution of the linear system M ∆z = d,

• Next, compute W1, . . . ,Wm ∈ Rd from

(Id + h2σ2
i J

2)Wi −
αi
2
J ∆z = Ri, i = 1, . . . ,m.

• Follow by computing Wm+1, . . . ,Ws ∈ Rd fromWm+1
...
Ws

 = −

 hσ1 J W1
...

hσs−m J Ws−m

+ (QT
2 ⊗ Id) g.

• And finally, ∆L ∈ Rsd is obtained from

∆L = (BQ⊗ Id)

W1
...
Ws

 .

11

4 Implementation of symplectic IRK schemes with

Newton-like iterations

In this section, we present an algorithm that implements symplectic IRK schemes by
making use of the techniques in previous section. Special care is taken to try to reduce the
effect of round-off errors by adapting some techniques used in [1] for the implementation
of symplectic IRK schemes with fixed point iterations. Our algorithm is intended to be
applied with the 64-bit IEEE double precision floating point arithmetic.

4.1 Auxiliary techniques

In this subsection we summarize some techniques associated to the use of finite precision
arithmetic that we applied in the fixed point iteration implementation of symplectic IRK
schemes proposed in [1], and will be used in the algorithm proposed in Subsections 4.3.

Let F ⊂ R be the set of machine numbers of the 64-bit IEEE double precision floating
point arithmetic. We consider the map fl : R −→ F that sends each real number x to a
nearest machine number fl(x) ∈ F .

4.1.1 Kahan’s compensated summation

The application of any one-step integrator of the form (3) requires computing sums of the
form

yn+1 = yn + xn, n = 0, 1, 2, . . . , (36)

For an actual implementation that only uses a floating point arithmetic with machine
numbers in F, special care must be taken with the additions (36). The naive recursive
algorithm ŷn+1 := fl(ŷn+fl(xn)), (n = 0, 1, 2, 3 . . .), typically suffers, for large n, a significant
loss of precision due to round-off errors. It is well known that such a round-off error
accumulation can be greatly reduced with the use of Kahan’s compensated summation
algorithm [11] (see also [9][13]).

Given y0 ∈ Rd and a sequence {x0, x1, . . . , xn, . . .} ⊂ Fd of machine numbers, Kahan’s
algorithm is aimed to compute the sums yn = y0 +

∑n−1
`=0 x`, (n > 1,) using a prescribed

floating point arithmetic, more precisely than with the naive recursive algorithm. The
actual algorithm reads as follows:

ỹ0 = fl(y0); e0 = fl(y0 − ỹ0);

for l← 0 to n do

Xl = fl(xl + el);
ỹl+1 = fl(ỹl +Xl);

X̂l = fl(ỹl+1 − ỹl);
el+1 = fl(Xl − X̂l);

end
Algorithm 1: Kahan’s compensated summation

12

The sums ỹl+el ∈ Rd are more precise approximations of the exact sums yl than ỹl ∈ F.
Algorithm 1 can be interpreted as a family of maps parametrized by n and d,

Sn,d : F(n+3)d → F2d,

that given the arguments ỹ0, e0, x0, x1, . . . , xn ∈ Fd, returns ỹn+1, en+1 ∈ Fd such that
ỹn+1 + en+1 ≈ (ỹ0 + e0) + x0 + x1 + · · ·+ xn with some small error.

4.1.2 Stopping criterion for iterative processes

Given a smooth map F : RD → RD and Z [0] = (Z
[0]
1 , . . . , Z

[0]
D) ∈ RD assume that the

iteration
Z [k] = F (Z [k−1]), for k = 1, 2, . . . (37)

produces a sequence {Z [0], Z [1], Z [2], . . .} ⊂ RD that converges to a fixed point Z [∞] of F .
Assume now that instead of the original map F , we have a computational substitute

F̃ : FD → FD. (38)

Ideally, for each Z ∈ FD, F̃ (Z) := fl(F (Z)). In practice, the intermediate computations to

evaluate F̃ are typically made using the floating point arithmetic corresponding to F, which
will result in some additional error caused by the accumulated effect of several round-off
errors.

The resulting sequence Z̃ [k] = F̃ (Z̃ [k−1]), k = 1, 2, . . . (started with Z̃ [0] = fl(Z [0])) will

either converge to a fixed point of F̃ in a finite number K of iterations or will fail to
converge. In the former case, the fixed point Z̃ [K] ∈ FD of F̃ may be expected to be a good
approximation of the fixed point Z [∞] ∈ RD of F . In the later case, one would expect that
there exists an index K such that the approximations Z̃ [k] ≈ Z [∞] improves for increasing
k up to k = K, but the quality of the approximations Z̃ [k] does not improve for k > K. It
then make sense to apply an algorithm of the form

k = 0;

Z̃ [0] = fl(Z [0]);

while (ContFcn(Z̃ [0], · · · , Z̃ [k])) do

k = k + 1;

Z̃ [k] = F̃ (Z̃ [k−1]);

end
Algorithm 2: Stopping criterion

where ContFcn(Z̃ [0], · · · , Z̃ [k]) gives either true if it is judged appropriate to continue it-

erating, and false otherwise. In [1], we propose defining this function so that ContFcn(Z̃ [0], · · · , Z̃ [k])

13

returns

false → if (Z̃ [k] = Z̃ [k−1]) or
k > 1 and k = K − 1 and k = K and ∀j ∈ {1, . . . , D},
min

(
{|Z̃ [1]

j − Z̃
[0]
j |, · · · , |Z̃

[k−1]
j − Z̃ [k−2]

j |} /{0}
)
6 |Z̃ [k]

j − Z̃
[k−1]
j |

true → otherwise.

The output Z̃ [K] of the algorithm will be a fixed point of F̃ when it stops because Z̃ [K] =
Z̃ [K−1], and in any case it is not expected that Z̃ [k] for k > K be a better approximation
of the fixed point Z [∞] ∈ RD of F than Z̃ [K].

4.2 An inexact Newton iteration

In our implementation of symplectic IRK schemes to be described in Subsection 4.3, we
consider a modified version of the Newton iteration (32). In each iteration, instead of

exactly solving for ∆L
[k]
i from a linear system of the form

∆L
[k]
i − hbi Ji

s∑
j=1

µij ∆L
[k]
j = g

[k]
i , i = 1, . . . , s, (39)

where

g
[k]
i = −L[k−1]

i + h bi f
(
t+ cih, y +

s∑
j=1

µij L
[k−1]
j

)
, i = 1, . . . , s, (40)

and

∆L[k] =

∆L
[k]
1

...

∆L
[k]
s

 ∈ Rsd, g[k] =

g
[k]
1
...

g
[k]
s

 ∈ Rsd,

we iteratively compute a sequence ∆L
[k,0]
i ,∆L

[k,1]
i ,∆L

[k,2]
i , . . . of approximation of its solu-

tion ∆L[k] ∈ Rsd as shown below (Algorithm 3).

∆L[k,0] = (Is ⊗ Id − h BAB−1 ⊗ J)−1 g[k];

while (ContFcn(fl32(∆L[k,0]), · · · ,fl32(∆L[k,`]))) do

l = l + 1;

G
[k,`]
i = g

[k]
i −∆L

[k,`−1]
i + hbi Ji

∑s
j=1 µij ∆L

[k,`−1]
j , i = 1, . . . , s;

∆L[k,l] = ∆L[k,l−1] + (Is ⊗ Id − h BAB−1 ⊗ J)−1 G[k,l];

end
Algorithm 3: Inner iteration

Hereafter, fl32(x) denotes the 32-bit IEEE single precision machine number that is
closest to x ∈ R, and we let fl32 act componentwise on vectors.

14

In the algorithm we propose in Subsection 4.3, the Jacobian matrices Ji in (39) will be
evaluated in approximations of the stage values Yi that are accurate at the single precision
level. This implies that it does not make sense to apply the iteration (Algorithm 3) until an
accurate double precision approximation ∆L[k,`] of the solution ∆L[k] of (39) is obtained.
Motivated by that, we will stop the iteration when ContFcn(fl32(∆L

[k,0]), · · · , fl32(∆L
[k,`]))

returns false (i.e., typically, when fl32(∆L
[k,`]) = fl32(∆L

[k,`−1]).

4.3 Algorithm for one step of the IRK scheme

In our implementation, the numerical solution yn ≈ y(t + hn) ∈ Rd, n = 1, 2, . . ., is
obtained as the sum ỹn + en of two vectors in Fd. In particular, the initial value y0 ∈ Rd

is (approximately) represented as ỹ0 + e0, where ỹ0 = fl(y0) and e0 = fl(yn − ỹn). Instead
of (3), we actually have

(ỹn+1, en+1) = Φ̃(ỹn, en, tn, tn+1 − tn),

where Φ̃ : F2d+2 → F2d.
Our proposed implementation of one step

(ỹ∗, e∗) = Φ̃(ỹ, e, t, h)

of the IRK scheme is performed in five substeps:

1. Starting from L[0] = 0 ∈ Rsd, we apply several simplified Newton iterations (i.e., the
simplified version of Newton iterations (32) where the linear system is replaced by
(33)) to compute

L[1] = L[0] + ∆L[1], L[2] = L[1] + ∆L[2], . . .

until fl32(L
[k]) = fl32(L

[k−1]) (or rather, by using the notation introduced in para-
graph 4.1.2, until ContFcn(fl32(L

[0]), · · · , fl32(L
[k])) returns false).

2. Use L[k] to compute the Jacobian matrices

Ji =
∂f

∂y

(
t+ ci h, ỹ +

s∑
j=1

µij L
[k]
j

)
, i = 1, . . . , s,

3. Then consider the increment ∆L[k] ∈ Fsd obtained in first substep as an approxima-
tion ∆L[k,0] of the exact solution ∆L[k] of the linear system in (32), and apply the
inner iterations (Algorithm 3) to obtain as output an approximation ∆L[k,`] (accurate
at least at single precision level).

4. Follow by updating L[k] = L[k−1] + ∆L[k,`], and k = k + 1, and applying a final
inexact Newton iteration with the Jacobian matrices Ji computed in the second
substep. More preciselly, compute an approximation ∆L[k,`] (again accurate at least
at single precision level) of the solution ∆L[k] of (39)–(40) by applying Algorithm 3.

15

5. Finally, the increment Φ̃(ỹ, e, t, h), defined as the sum (ỹ+e)+
∑s

i=1(L
[k−1]
i +∆L[k,`]) is

accurately obtained as the (unevaluated) sum of the double precision vectors ỹ∗, e∗ ∈
Fd with the help of Kahan’s compensated summation algorithm (summarized in
paragraph 4.1.1) as follows: First, perform the sum δ := e +

∑s
i=1 ∆L[k,`]) of the

vectors with relatively smaller size in the double precision floating point arithmetic,
and then compute (ỹ∗, e∗) = Ss,d(ỹ, δ, L

[k−1]
1 , . . . , L

[k−1]
s).

Some remarks about our actual implementation are in order:

• All the linear system with coefficient matrix (Is ⊗ Id − hBAB−1 ⊗ J) are solved by
means of the algorithm at the end of Section 3.

• The coefficients µij are machine numbers in F (i.e., in the target precision floating
point system) satisfying exactly the symplecticity condition (31) and the symmetry
conditions µj,i = µs+1−i,s+1−j.

• The remainders (40) (i = 1, . . . , s, k > 1) should in principle be computed with
y ∈ Rd replaced by ỹ + e (ỹ, e ∈ Fd). However, the effect of ignoring the extra digits
of y that may be contained in e is expected to be so small that it should be enough
to take it into account only in the final inexact Newton iteration (substep 4 above).
That is, it should be enough considering (40) with y ∈ Rd replaced by ỹ ∈ Fd in
all the Newton-like iterations with the exception of the final one. And in the final
inexact Newton iteration, rather than computing (40) with y ∈ Rd replaced by ỹ+ e,
we make use of the Jacobian matrices Ji to obtain the following approximation

h bi f
(
t+ cih, ỹ + e+

s∑
j=1

µij L
[k−1]
j

)
− L[k−1]

i ≈
(
h bi f

[k]
i − L

[k−1]
i

)
+ h bi Ji e,

where f
[k]
i = f

(
t+ cih, ỹ +

∑s
j=1 µij L

[k−1]
j

)
.

• If the FMA (fused-multiply-add) instruction is available, it should be used to compute

h bi f
[k]
i − L

[k−1]
i (with precomputed coefficients hbi ∈ F satisfying the symmetry

conditions hbs+1−i = hbi).

Our final implementation is summarized in Algorithm 4.

16

L[0] = 0; J = ∂f
∂y (t+ h/2, ỹ);

M = Id + J h
2

∑m
i=1 α

2
i (Id + h2σ2

i J
2)−1;

Compute the LU decomposition of M;

/************************** 1st substep **************************/;

k = 0;

while ContFcn(fl32(L[0]), . . . ,fl32(L[k])) do

k = k + 1;

Y
[k]
i = ỹ +

∑s
j=1 µij L

[k−1]
j , i = 1, . . . , s;

f
[k]
i = f

(
t+ cih, Y

[k]
i

)
, i = 1, . . . , s;

g
[k]
i = h bi f

[k]
i − L

[k−1]
i , i = 1, . . . , s;

∆L[k] =
(
Is ⊗ Id − hBAB−1 ⊗ J

)−1
g[k];

L[k] = L[k−1] + ∆L[k];

end

/************************** 2nd substep **************************/;

Ji = ∂f
∂y

(
t+ cih, ỹ +

∑s
j=1 µij L

[k]
j

)
, i = 1, . . . , s;

/************************** 3rd substep **************************/;

` = 0;

∆L[k,0] = ∆L[k];

while ContFcn(fl32(∆L[k,0]), . . . ,fl32(∆L[k,`])) do

` = `+ 1;

G
[k,`]
i = g

[k]
i −∆L

[k,`−1]
i + hbiJi

∑s
j=1 µij ∆L

[k,`−1]
j , i = 1, . . . , s;

∆L[k,`] = ∆L[k,`−1] +
(
Is ⊗ Id − hBAB−1 ⊗ J

)−1
G[k,`];

end

L[k] = L[k−1] + ∆L[k,`];

/************************** 4th substep **************************/;
k = k + 1;

Y
[k]
i = ỹ +

∑s
j=1 µij L

[k−1]
j , i = 1, . . . , s;

f
[k]
i = f

(
t+ cih, Y

[k]
i

)
, i = 1, . . . , s;

g
[k]
i =

(
h bi f

[k]
i − L

[k−1]
i

)
+ h bi Ji e, i = 1, . . . , s;

` = 0;

∆L[k,0] =
(
Is ⊗ Id − hBAB−1 ⊗ J

)−1
g[k];

while ContFcn(fl32(∆L[k,0]), . . . ,fl32(∆L[k,`])) do

` = `+ 1;

G
[k,`]
i = g

[k]
i −∆L

[k,`−1]
i + hbiJi

∑s
j=1 µij ∆L

[k,`−1]
j , i = 1, . . . , s;

∆L[k,`] = ∆L[k,`−1] +
(
Is ⊗ Id − hBAB−1 ⊗ J

)−1
G[k,`];

end

/************************** 5th substep **************************/;

δ = e+
∑s

i=1 ∆L
[k,`]
i ;

(ỹ∗, e∗) = Ss,d(ỹ, δ, L
[k−1]
1 , . . . , L

[k−1]
s);

Algorithm 4: Implementation of one step of the IRK scheme

17

5 Numerical experiments

We next report some numerical experiments to asses our implementation of the 6-stage
Gauss collocation method of order 12 based on Newton-like iterations (Algorithm 4) with
64-bit IEEE double precision floating point arithmetic.

5.1 The double pendulum stiff problem

We consider the planar double pendulum stiff problem: a double bob pendulum with
masses m1 and m2 attached by rigid massless rods of lengths l1 and l2 and spring of elastic
constant k between both rods (the rods are aligned at equilibrium). For k = 0, the problem
is non-stiff, and the system’s stiffness arises through increasing the value of k.

The configuration of the pendulum is described by two angles q = (φ, θ) : while φ is
the angle (with respect to the vertical direction) of the first bob with, the second bob’s
angle is defined by ψ = φ+ θ. We denote the corresponding momenta as p = (pφ, pθ).

Its Hamiltonian function H(q, p) is

− l1
2 (m1 +m2) pθ

2 + l2
2 m2 (pθ − pφ)2 + 2 l1 l2 m2 pθ (pθ − pφ) cos(θ)

l1
2 l2

2 m2 (−2 m1 −m2 +m2 cos(2θ))

− g cos(φ) (l1 (m1 +m2) + l2 m2 cos(θ)) + g l2 m2 sin(θ) sin(φ) +
k

2
θ2, (41)

We consider the following fixed parameters values

g = 9.8
m

sec2
, l1 = 1.0 m , l2 = 1.0 m , m1 = 1.0 kg , m2 = 1.0 kg,

and we choose different values for the elastic constant k to study different levels of stiffness
in the double pendulum. The initial values are chosen as follows: For k = 0, we choose the
initial values considered in [1] that gives rise to a non-chaotic trajectory, q(0) = (1.1,−1.1)
and p(0) = (2.7746, 2.7746). The initial values for k 6= 0 are chosen as

q(0) =

(
1.1,

−1.1√
1 + 100k

)
, p(0) = (2.7746, 2.7746)

so that the total energy of the system is bounded as k →∞.
All the integrations are performed with step-size h = 2−7, that is small enough for

round-off errors to dominate over truncation errors in the non-stiff case k = 0. The
truncation errors dominate over the round-off errors for large enough stiffness constant
k > 0. We have integrated over Tend = 212 seconds and sample the numerical results every
m = 210 steps.

5.2 Round-off error propagation

First, we check the good performance of round-off error propagation of our new implemen-
tation based on Newton-like iterations. In [1] we proposed an implementation based on

18

fixed-point iterations for non-stiff problems that takes special care of reducing the propa-
gation of round-off errors. We will compare the round-off error of both implementations of
the 6-stage Gauss collocation method.

We have studied in detail the errors in energy of the double pendulum problem for
three values of k: k = 0, where the round-off errors dominate over truncation errors,
k = 210, where both kinds of errors are similar in size, and k = 212, where truncation
errors dominate over round-off errors. In order to make a more robust comparison of the
numerical errors due to round-off errors, we adopt (as in [7]) an statistical approach. We
have considered for each of the three initial value problems, P = 1000 perturbed initial
values by randomly perturbing each component of the initial values with a relative error
of size O(10−6).

The numerical tests in Figure 1 seem to confirm the good performance of round-off
error propagation of our new implementation. From one hand, one can observe that, as
in [1], the fixed-point implementation exhibits a small linear drift of the mean energy error
for k = 0 and k = 210, while in the Newton implementation this energy drift does not
appear at all. On the other hand, the standard deviation of the energy errors are of similar
size and grow proportionally to t

1
2 in both implementations.

5.3 Fixed-point versus Newton iteration

We summarize in Table 1 the main results of numerical integrations for both implementa-
tions: the fixed-point iteration and Newton-like iteration for four different values of k.

We have compared their efficiency by sequential execution of each iteration method,
and reported the cpu-time of each numerical integration. In addition, we have reported
the number of iterations per step (It. per step) in both implementations and the number
of linear systems solved in the Newton implementation. To check the precision of the
numerical solution, we have reported the maximum relative energy error,

max

∣∣∣∣E(ti)− E(t0)

E(t0)

∣∣∣∣ , ti = t0 + ih, i = 0, . . . , steps.

We can see that for low values of k, the fixed-point implementation is more efficient
than Newton implementation. But as we increase the stiffness of the double pendulum, the
number of iteration needed at each step in the fixed-point implementation grows up notably,
while in the Newton implementation the number of iterations even becomes slightly lower
for higher values of k. Hence, the Newton implementation eventually becomes more efficient
as the stiffness increases. For k values higher than k = 218, the fixed-point iteration fails
to converge, while the Newton implementations succeeds while keeping approximately the
same number of iterations per step (cpu-time: 17s; iterations per step: 4.95; Linear solves
per step: 10.94).

19

0 1000 2000 3000 4000

-1.×10-16

0

1.×10-16

2.×10-16

3.×10-16

4.×10-16

t

E
n

e
r
g

y
e
r
r
o

r

(a) k = 0: mean energy error

0 1000 2000 3000 4000

0

2.×10-16

4.×10-16

6.×10-16

8.×10-16

1.×10-15

1.2 ×10-15

1.4 ×10-15

t

E
n

e
r
g

y
e
r
r
o

r

(b) k = 0: standard deviation energy error

0 1000 2000 3000 4000

-3.×10-14

-2.×10-14

-1.×10-14

0

1.×10-14

2.×10-14

3.×10-14

t

E
n

e
r
g

y
e
r
r
o

r

(c) k = 210: mean energy error

0 1000 2000 3000 4000

0

1.×10-14

2.×10-14

3.×10-14

4.×10-14

5.×10-14

t

E
n

e
r
g

y
e
r
r
o

r

(d) k = 210: standard deviation energy er-
ror

0 1000 2000 3000 4000

-3.×10-11

-2.×10-11

-1.×10-11

0

1.×10-11

2.×10-11

3.×10-11

t

E
n

e
r
g

y
e
r
r
o

r

(e) k = 212: mean energy error

0 1000 2000 3000 4000

0

2.×10-14

4.×10-14

6.×10-14

8.×10-14

1.×10-13

1.2 ×10-13

1.4 ×10-13

t

E
n

e
r
g

y
e
r
r
o

r

(f) k = 212: standard deviation energy er-
ror

Figure 1: Evolution of mean (left) and standard deviation (right) of relative errors in energy for
fixed-point implementation (blue), and Newton implementation (orange). Non-stiff case k = 0
(a,b), one stiff case k = 210 (c,d) and second stiff case k = 212 (e,f)

6 Conclusions

Our main contribution is a technique to solve efficiently the simplified linear systems of sym-
plectic IRK schemes. This technique can be adapted for some symmetric non-symplectic
schemes as well. Such technique could also be exploited for the numerical solution of
boundary value problems with collocation methods with Gaussian quadrature nodes.

In addition, an efficient algorithm for implementing symplectic IRK methods with re-
duced round-off error propagation is provided. A C-code with our implementation for

20

Table 1: Summary of numerical integrations with fixed-point iteration and Newton iteration
based implementation for the following spring’s elastic values: k = 0, k = 26, k = 212 and
k = 216. E0 indicates the initial energy of the system. We show the cpu-time, the number of
iteration per step (It. per step), the number of linear system solving operations (L. solves per
step) and maximum energy error for each numerical computation

k 0 26 212 216

E0 −14.39 −5.75 −5.64 −5.64

Fixed-points it.

Cpu-time (sec.) 10 12 19 51
It. per step 8.58 11.1 22. 64.2
Max energy error 2.96× 10−15 1.81× 10−14 2.94× 10−11 6.33× 10−5

Newton it.

Cpu-time (sec.) 18 20 19 18
It. per step 5.09 5.53 5.58 5.01
L. solves per step 11.37 12.92 12.72 11.04
Max energy error 1.6× 10−15 1.74× 10−14 2.94× 10−11 6.33× 10−5

s-stage Gauss collocation method of order 2s in the 64-bit IEEE double precision floating
point arithmetic can be downloaded from IRK-Newton Github software repository or go
to the next url: https://github.com/mikelehu/IRK-Newton.

Acknowledgements M. Antoñana, J. Makazaga, and A. Murua have received funding
from the Project of the Spanish Ministry of Economy and Competitiveness with reference
MTM2016-76329-R (AEI/FEDER, EU), from the project MTM2013-46553-C3-2-P from
Spanish Ministry of Economy and Trade, and as part of the Consolidated Research Group
IT649-13 by the Basque Government.

References

[1] Antoñana, M., Makazaga, J., Murua, A.: Reducing and monitoring round-off error
propagation for symplectic implicit runge-kutta schemes. Numerical Algorithms pp.
1–20 (2017). DOI 10.1007/s11075-017-0287-z

21

https://github.com/mikelehu/IRK-Newton

[2] Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., Luszczek,
P., Tomov, S.: Accelerating scientific computations with mixed precision algorithms.
Computer Physics Communications 180(12), 2526–2533 (2009). DOI dx.doi.org/10.
1016/j.cpc.2008.11.005

[3] Bickart, T.A.: An efficient solution process for implicit runge–kutta methods. SIAM
Journal on Numerical Analysis 14(6), 1022–1027 (1977). DOI 10.1137/0714069

[4] Brugnano, L., Caccia, G.F., Iavernaro, F.: Efficient implementation of gauss colloca-
tion and hamiltonian boundary value methods. Numerical Algorithms 65(3), 633–650
(2014). DOI 10.1007/s11075-014-9825-0

[5] Butcher, J.C.: On the implementation of implicit runge-kutta methods. BIT Numer-
ical Mathematics 16(3), 237–240 (1976). DOI 10.1007/BF01932265

[6] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-
preserving algorithms for ordinary differential equations, vol. 31. Springer Science
& Business Media (2006). DOI 10.1007/3-540-30666-8

[7] Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving brouwer’s law with implicit
runge–kutta methods. BIT Numerical Mathematics 48(2), 231–243 (2008). DOI
10.1007/s10543-008-0170-3

[8] Hairer, E., Murua, A., Sanz-Serna, J.M.: The non-existence of symplectic multi-
derivative runge-kutta methods. BIT Numerical Mathematics 34(1), 80–87 (1994).
DOI 10.1007/BF01935017

[9] Higham, N.J.: Accuracy and stability of numerical algorithms. Siam (2002). DOI
10.1137/1.9780898718027

[10] Jay, L.O.: Preconditioning of implicit runge-kutta methods. Scalable Computing:
Practice and Experience 10 (2009)

[11] Kahan, W.: Further remarks on reducing truncation errors. Communications of the
ACM 8(1), 40 (1965)

[12] Liniger, W., Willoughby, R.A.: Efficient integration methods for stiff systems of ordi-
nary differential equations. SIAM Journal on Numerical Analysis 7(1), 47–66 (1970).
DOI 10.1137/0707002

[13] Muller, J., Brisebarre, N., De Dinechin, F., Jeannerod, C., Lefevre, V., Melquiond,
G., Revol, N., Stehlé, D., Torres, S.: Handbook of floating-point arithmetic. Springer
Science & Business Media (2009). DOI 10.1007/978-0-8176-4705-6

[14] Saad, Y.: Iterative methods for sparse linear systems. SIAM (2003). DOI dx.doi.org/
10.1137/1.9780898718003.bm

22

[15] Sanz Serna, J., Calvo, M.: Numerical Hamiltonian problems. Chapman and Hall
(1994)

[16] Xie, D.: A new numerical algorithm for efficiently implementing implicit runge-kutta
methods. Department of Mathematical Sciences. University of Wisconsin, Milwaukee,
Wisconsin, USA (2009)

23

	1 Introduction
	2 Implementation of Implicit Runge-Kutta schemes with Newton-like iterations
	2.1 Implicit Runge-Kutta schemes
	2.2 Newton-like iterations

	3 Efficient solution of simplified linear systems for symplectic IRK schemes
	3.1 Symplectic IRK schemes
	3.2 Alternative symplecticity and symmetry characterizations
	3.3 Efficient solution of the linear systems of the form (12)
	3.4 The case of symmetric symplectic IRK schemes
	3.5 Alternative reformulation of symplectic IRK schemes

	4 Implementation of symplectic IRK schemes with Newton-like iterations
	4.1 Auxiliary techniques
	4.1.1 Kahan's compensated summation
	4.1.2 Stopping criterion for iterative processes

	4.2 An inexact Newton iteration
	4.3 Algorithm for one step of the IRK scheme

	5 Numerical experiments
	5.1 The double pendulum stiff problem
	5.2 Round-off error propagation
	5.3 Fixed-point versus Newton iteration

	6 Conclusions

