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Trivariate near best blending spline quasi-interpolation

operators

D. Barrera, C. Dagnino, M. J. Ibáñez, S. Remogna∗

Abstract

A method to define trivariate spline quasi-interpolation operators (QIO) is de-
veloped by blending univariate and bivariate operators whose linear functionals
allow oversampling. In this paper, we construct new operators based on univariate
B-splines and bivariate box splines, exact on appropriate spaces of polynomials and
having small infinity norms. An upper bound of the infinity norm for a general
blending trivariate spline QIO is derived from the Bernstein-Bézier coefficients of
the fundamental functions associated with the operators involved in the construc-
tion. The minimization of the resulting upper bound is then proposed and the
existence of a solution is proved. The quadratic and quartic cases are completely
worked out and their exact solutions are explicitly calculated.
Keywords: Blending quasi-interpolation, Minimal norm, Bernstein-Bézier coeffi-
cients
Mathematics Subject Classification (2010): 41A05, 41A15, 65D07

1 Introduction

The approximation of functions in one and several real variables is a ubiquitous problem
that can be approached through a great variety of procedures. Interpolation is one of
them and usually requires the resolution of linear systems to determine the expression
of the interpolant. In many situations, only noisy data of the function to be approached
are known, so it is more appropriate to use other constructive techniques. One of them
is quasi-interpolation.

As quoted in [10, p. 63] “A quasi-interpolant Q for [a linear space] S is a linear map
into S which is local, bounded (in some relevant norm), and reproduces some (nontrivial)
polynomial space”, we will refer to Q as quasi-interpolation operator (QIO) and to Qf as
quasi-interpolant (QI) for the given function f provided by Q. From the first systematic
study by I. J. Schoenberg in [28, 29] (see also [30]), intensive research has been carried
out on quasi-interpolation. Books [10, 11] (and references therein) present results on the
construction of QIOs from compact support functions, in particular box splines (see also
[35]). They are operators of the type

Q : C (Rs) −→ S (φ)

where S (φ) is the space spanned by the integer translates of the compactly supported
function φ. These operators are constructed to be exact on the space P (φ) of polynomials
of maximal total degree included in S (φ). The QI associated with a given function f

will have the form
Qf =

∑

i∈Zs

λ (f (·+ i))φ (· − i) ,

λ being a general linear functional (see e.g. [10, p. 63]). Usually, λ is a point, derivative
or integral linear functional. In the first case, λf is a finite linear combination of values of
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f at some points in some open set containing the support of φ. In the second case, λf is a
finite linear combination of values of f and some of its partial derivatives at some points
in a neighbourhood of φ. Finally, in the third case, λf is a finite linear combination of
weighted mean values of f .

In the literature, there exist different methods to construct spline QIOs of the type
indicated above giving the maximal approximation order. For instance, in [10, 11] Appel
sequences, Neumann series or Fourier transform are used. In [24, 26], bivariate QIOs
based on point and integral linear functionals are defined from the values of an H-spline
on a three direction mesh by exploiting the relation between hexagonal sequences and
central difference operators. In [25, 19], these kinds of operators have been defined from
the values of an Ω-spline on a four direction mesh by exploiting the relation between
lozenge sequences and central difference operators.

A completely different approach has been used in [31, 32, 33] to define QIOs for bivari-
ate and trivariate splines of low polynomial degree. The quasi-interpolating splines are
directly determined by setting the Bernstein-Bézier coefficients of the splines to appropri-
ate combinations of the given data values. Also a method to increase the approximation
order in the univariate case was proposed in [34] and extended to the multivariate setting
in [18] (see also [7, 8]).

QIOs have been used to solve problems in many different areas, like science and engi-
neering. Some applications of QIOs concern for example the computation of multivariate
integrals, the solution of differential and integral equations (see e.g. [12, 13, 15, 16, 17]).

Approximating noisy data requires the use of adapted methods. Specific types of
QIOs have been proposed in the literature to diminish as much as possible the increase
of noise present in the data. They are based on the minimization of the infinity norm
‖Q‖∞ of the operator Q. If λ is the point linear functional given by

λf =
∑

j∈J

cjf (· − j) ,

J being a finite subset of Zs, then

‖Q‖∞ ≤
∑

j∈J

|cj | =: ‖c‖1 ,

where c := (cj)j∈J
. Then, the upper bound ‖c‖1 is minimized instead of ‖Q‖∞, subject

to the linear constraints yielding the exactness of Q on P (φ). The existence of solution
of this minimization problem is guaranteed, but in general it is not unique. Every QIO
associated with a solution of this minimization problem will be said to be a near best
(NB) QIO with respect to the upper bound given by the 1-norm of the sequence of
coefficients (type-1 NB QIO for short).

As far as the authors know, the first systematic study on the construction of type-1
NB QIO appears in [4], where univariate QIOs are based on a point or derivative linear
functional (see [5] for the nonuniform case). The bivariate case was considered in [3, 6]
by using a H-spline and a Ω-spline, respectively. In [1], the construction of a type-1 NB
QIO into the linear space S2

4 (τ) spanned by the integer translates of three C2-quartic
B-splines on the four-direction mesh τ of the plane is presented. The extension to the
three-dimensional case is done in [14, 21, 22, 23]. In [9], the construction of trivariate
near-best quasi-interpolants based on C2 quartic splines on type-6 tetrahedral partitions
is addressed. We recall that a type-6 tetrahedral partition is a uniform partition of
R

3, obtained from a given cube partition of the space by subdividing each cube into 24
tetrahedra.

In order to obtain a better upper bound to be minimized it is possible to bound
the Lebesgue function associated with Q from the BB-coefficients of φ. This approach
has been considered in [2] to construct QIO based on box splines. Also in this case the
existence is guaranteed, but not the uniqueness. The operator associated with a solution
of the involved minimization problem will be said to be a type-2 NB QIO.
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In this paper, we deal with the construction of trivariate NB QIOs by blending 1D
and 2D QIOs and minimizing an objective function constructed from the BB-coefficients
of the Lebesgue function of the resulting operator. In this way, we can study the problem
by subdividing it into one and two dimensions, instead of addressing the problem directly
in the three dimensional set, for example by using trivariate box splines.

The paper is organized as follows. In Section 2, the spline spaces are introduced as well
as the quasi-interpolation operators and their trivariate extensions to define the blending
trivariate QIO. In Section 2.1, an upper bound for the blending operator is established
from the Bernstein-Bézier representations of the fundamental functions of the operators
involved in the construction, and the minimization problem is proposed. In Sections 3
and 4, the quadratic and quartic cases are worked out, providing the explicit solutions
of the corresponding minimization problems. Finally, in Section 5, some conclusions are
presented.

2 Spline spaces and quasi-interpolation operators

We consider the uniform integer partition of the real line τ1 and the uniform triangulation
τ2 of the plane generated by the four directions d1 = (1, 0), d2 = (0, 1), d3 = d1 + d2,
d4 = d2 − d1 and called four-directional mesh.

Let Pk (R) be the space of univariate polynomials of degree at most k and Pk

(
R

2
)

be the space of bivariate polynomials of total degree at most k. We denote by Sl
k (τℓ),

ℓ = 1, 2 the spaces of functions in Cl
(
R

ℓ
)
whose restrictions to each element of τℓ is in

Pk

(
R

ℓ
)
.

Let Bd+1 be the univariate B-spline of degree d centered in the origin, with support
[
−d+1

2 , d+1
2

]
and belonging to the space Sd−1

d (τ1) (see [11, Chap. 1]). Let Xi,j be the
set of directions given by

Xi,j := { d1, . . . , d1
︸ ︷︷ ︸

i

, d2, . . . , d2
︸ ︷︷ ︸

i

, d3, . . . , d3
︸ ︷︷ ︸

j

, d4, . . . , d4
︸ ︷︷ ︸

}

j

, i, j > 0,

and Mi,j be the corresponding centered box splines (see e.g. [10, p. 10], [11, p. 17]) of
degree g = #Xi,j − 2, where #A denotes the cardinality of the set A, and belonging to
the space Sl

g (τ2). In particular, the box spline M1,1 ∈ S1
2 (τ2), and Mk,k+1, Mk+1,k are

box splines in S3k−1
4k (τ2).

In the sequel, B is one of the univariate B-splines and M is one of the bivariate box
splines. Moreover, we define B1 := span {B (· − k) : k ∈ Z}, B2 := span

{
M (· − i1, · − i2) : (i1, i2) ∈ Z

2
}

and n := max
{
k : Pk

(
R

2
)
⊂ B2

}
. It is well known (cf. [10, p. 53], [11, p. 19]) that n = 2

if M = M1,1, and n = 3k for the other two box splines considered.
Now we focus on univariate and bivariate QIOs in order to construct the trivariate

ones. Consider the univariate Schoenberg QIO S defined by

Sf(z) :=
∑

k∈Z

f (k)B (z − k) .

and let Q be the one defined by

Qf (z) :=
∑

k∈Z

(
∑

ℓ∈Λ

aℓf (k − ℓ)

)

B (z − k) , (2.1)

where Λ is a finite subset of Z and the coefficients aℓ are chosen to produce an operator
exact on Pd(R). S is exact on P1(R). The QI Qf can also be written by means of the
integer translates of its fundamental function, i.e.

Qf (z) =
∑

k∈Z

f (k)LB (z − k) ,
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where the function LB is obtained as a linear combination of integer translates of the
B-spline B, according to the coefficient functional expressions. Explicitly,

LB (z) =
∑

ℓ∈Λ

aℓB (· − ℓ) .

Now, let S be the bivariate Schoenberg QIO defined by

Sf (x, y) :=
∑

(i1,i2)∈Z2

f (i1, i2)M (x− i1, y − i2) ,

and Q be one of the form

Qf (x, y) :=
∑

(i1,i2)∈Z2




∑

(j1,j2)∈J

cj1,j2f (i1 − j1, i2 − j2)



M (x− i1, y − i2) , (2.2)

with J a finite subset of Z2 and {(cj1,j2) , (j1, j2) ∈ J} a lozenge sequence [2] such that
Q is exact on the space Pn

(
R

2
)
. S is exact on the space of bilinear polynomials. The

spline Qf can also be written by means of the associated fundamental function, i.e.

Qf (x, y) =
∑

(i1,i2)∈Z2

f (i1, i2)LM (x− i1, y − i2) ,

where LM is expressed as a linear combination of the integer translates of the box spline
M , according to the coefficient functional expressions, namely

LM =
∑

(i1,i2)∈J

cj1,j2M (· − j1, · − j2) .

Now we consider the trivariate extensions of these operators, given by

Sf (x, y, z) =
∑

k∈Z

f (x, y, k)B (z − k) ,

Qf (x, y, z) =
∑

k∈Z

(
∑

ℓ∈Λ

aℓf (x, y, k − ℓ)

)

B (· − k) =
∑

k∈Z

f (x, y, k)LB (z − k) ,

Sf (x, y, z) =
∑

(i1,i2)∈Z2

f (i1, i2, z)M (x− i1, y − i2) ,

Qf (x, y, z) =
∑

(i1,i2)∈Z2




∑

(j1,j2)∈J

cj1,j2f (i1 − j1, i2 − j2, z)



M (x− i1, y − i2)

=
∑

(i1,i2)∈Z2

f (i1, i2, z)LM (x− i1, y − i2) .

Following a logical scheme similar to that one proposed in [23], we define the blending
operator R as

R := SQ+QS − SS.

Since

SSf (x, y, z) = S

(
∑

k∈Z

f (·, ·, k)B (z − k)

)

(x, y)

=
∑

(i1,i2)∈Z2

∑

k∈Z

f (i1, i2, k)M (x− i1, y − i2)B (z − k) ,

SQf (x, y, z) = S

(
∑

k∈Z

(
∑

ℓ∈Λ

aℓf (·, ·, k − ℓ)

)

B (z − k)

)

(x, y)
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=
∑

(i1,i2)∈Z2

∑

k∈Z

∑

ℓ∈Λ

aℓf (i1, i2, k − ℓ)M (x− i1, y − i2)B (z − k) ,

QSf (x, y, z) = Q

(
∑

k∈Z

f (·, ·, k)B (z − k)

)

(x, y)

=
∑

(i1,i2)∈Z2




∑

(j1,j2)∈J

cj1,j2

∑

k∈Z

f (i1 − j1, i2 − j2, k)B (z − k)





×M (x− i1, y − i2) ,

we get

Rf (x, y, z) =
∑

(i1,i2)∈Z2

∑

k∈Z

ρi1,i2,k,ℓ (f)M (x− i1, y − i2)B (z − k) (2.3)

with

ρi1,i2,k,ℓ (f) :=
∑

ℓ∈Λ

aℓf (i1, i2, k − ℓ) +
∑

(j1,j2)∈J

cj1,j2f (i1 − j1, i2 − j2, k)

− f (i1, i2, k) .

By using the fundamental functions in Q and Q, we can also write Rf in the following
form

Rf (x, y, z) =
∑

(i1,i2)∈Z2

∑

k∈Z

f (i1, i2, k)L (x− i1, y − i2, z − k) , (2.4)

with
L (x, y, z) := M (x, y)LB (z) + LM (x, y)B (z)−M (x, y)B (z) . (2.5)

Such an operator R is defined onto the tensor product spline space Sl
g (τ2)×Sd−1

d (τ1),
spanned by the trivariate piecewise polynomial functions

{
M (· − i1, · − i2)B (· − k) , (i1, i2, k) ∈ Z

3
}

of coordinate degree g+ d, on the partition τ := τ2× τ1, obtained from the bivariate and
the univariate ones.

2.1 Trivariate type-2 near best quasi-interpolation operators

From (2.3), for a function f such that ‖f‖∞ ≤ 1, it holds

|Rf (x, y, z)| ≤
∑

(i1,i2)∈Z2

∑

k∈Z




∑

ℓ∈Λ

|aℓ|+
∑

(j1,j2)∈J

|cj1,j2 |+ 1





×M (x− i1, y − i2)B (z − k)

=
∑

ℓ∈Λ

|aℓ|+
∑

(j1,j2)∈J

|cj1,j2 |+ 1.

Therefore,

‖R‖∞ ≤
∑

ℓ∈Λ

|aℓ|+
∑

(j1,j2)∈J

|cj1,j2 |+ 1

and the construction of type-1 NB trivariate blending operators by minimizing the above
upper bound is equivalent to the construction of type-1 NB QIOs Q and Q by minimizing
the upper bounds

∑

ℓ∈Λ |aℓ| and
∑

(j1,j2)∈J |cj1,j2 | to
∥
∥Q
∥
∥
∞

and ‖Q‖∞, respectively.
It is possible to improve the upper bound to R taking into account the Bernstein-

Bézier (BB-) coefficients of B and M . In order to do it, the following lemma is necessary.
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Lemma 1 Let R be the operator given in (2.4). Then

‖R‖∞ = max
(x,y,z)∈P

L (x, y, z) ,

where
L(x, y, z) :=

∑

(i1,i2)∈Z2

∑

k∈Z

|L (x− i1, y − i2, z − k)|

is the Lebesgue function associated with R, P is the prism with triangular horizontal
sections defined by P = T × I and

1. T is the triangle with vertices
{
(0, 0) ,

(
1
2 ,−

1
2

)
,
(
1
2 ,

1
2

)}
if M = M1,1 or Mk,k+1 and

{
(1, 0) ,

(
1
2 ,

1
2

)
, (1, 1)

}
if M = Mk+1,k,

2. I is the interval
[
− 1

2 ,
1
2

]
if d is even and [0, 1] if d is odd.

We omit the proof of this lemma, because, taking into account the symmetries of the
univariate B-splines and bivariate box splines, it is the natural extension of [2, Lemma
3].

The study of the real norm of R is rather complicated, therefore, we look for a good
upper bound of ‖R‖∞ and, from this lemma, it is natural to define, as upper bound of
‖R‖∞, an upper bound of the piecewise polynomial function L.

Consider the fundamental function L. It is a compactly supported piecewise polyno-
mial function of coordinate degree g + d defined on τ . Let Ω be a polyhedral domain
including the support of L. Let PΩ := {Pr : 1 ≤ r ≤ mΩ} be the collection of P -like
prisms of τ included in Ω. Then we have that

Pr = Ts × Ie, 1 ≤ s ≤ m2, 1 ≤ e ≤ m1,

where Ts is a T -like triangle, Ie is a I-like interval and mΩ := m1m2. Now consider the
following notations and results.

For every triangle Ts, 1 ≤ s ≤ m2, with vertices As,v, v = 1, 2, 3, let λs :=
(λs,1, λs,2, λs,3) be the barycentric coordinates of a point (x, y) with respect to Ts. There-
fore, we have

(x, y) =

3∑

v=1

λs,vAs,v, |λs| :=

3∑

v=1

λs,v = 1.

Then, the BB-representations of M and LM on Ts are

M |Ts
(x, y) =

∑

|α|=g

bMs,αBEg
α (λs) and LM |Ts

(x, y) =
∑

|α|=g

bLM
s,α BEg

α (λs) (2.6)

for some coefficients bMs,α, b
LM
s,α ∈ R, where α := (α1, α2, α3), α ∈ N

3
0 and BEg

α (λ) :=
g!
α!λ

α, |α| = g are the bivariate Bernstein polynomials of degree g.
For every interval Ie, 1 ≤ e ≤ m1, with endpoints Be,w, w = 1, 2, let σe := (σe,1, σe,2)

be the barycentric coordinates of a point z with respect to Ie. Therefore, we have

z =

2∑

w=1

σe,wBe,w, |σe| =

2∑

w=1

σe,w = 1.

Then, the BB-representations of B and LB on Ie are

B|Ie (z) =
∑

|β|=d

bBe,βBEd
β (σe) and LB|Ie (z) =

∑

|β|=d

bLB
e,βBEd

β (σe) , (2.7)

for some coefficients bBe,β , b
LB
e,β ∈ R, where β := (β1, β2), β ∈ N

2
0 and BEd

β (σ) :=
d!
β!σ

β ,

|β| = d are the univariate Bernstein polynomials of degree d.
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Lemma 2 On the prism Pr = Ts × Ie the fundamental function L given in (2.5) can be
expressed as

L|Pr
(x, y, z) =

∑

|α|=g
0≤β2≤d

b(s,e),(α,β2)BEg
α (λs)BEd

β (σe) ,

with β = (β1, β2) = (d− β2, β2),

b(s,e),(α,β2) := b
M,LB

(s,e),(α,β2)
+ b

LM,B

(s,e),(α,β2)
− b

M,B

(s,e),(α,β2)

and

b
M,LB

(s,e),(α,β2)
= bMs,αb

LB
e,β = bMs,αb

LB
e,(d−β2,β2)

,

b
LM,B

(s,e),(α,β2)
= bLM

s,α bBe,β = bLM
s,α bBe,(d−β2,β2)

,

b
M,B

(s,e),(α,β2)
= bMs,αb

B
e,β = bMs,αb

B
e,(d−β2,β2)

.

Proof. Since

L|Pr
(x, y, z) = M |Ts

(x, y)LB|Ie (z) + LM |Ts
(x, y)B|Ie (z)−M |Ts

(x, y)B|Ie (z)

=
∑

|α|=g

bMs,αBEg
α (λs)

∑

|β|=d

bLB
e,βBEd

β (σe)

+
∑

|α|=g

bLM
s,α BEg

α (λs)
∑

|β|=d

bBe,βBEd
β (σe)

−
∑

|α|=g

bMs,αBEg
α (λs)

∑

|β|=d

bBe,βBEd
β (σe) ,

the claim follows.
We associate with L the matrix FΩ ∈ R

mΩ× 1

2
(g+1)(g+2)d, whose rth row contains the

BB-coefficients b(s,e),(α,β2), |α| = g, 0 ≤ β2 ≤ d. We call it the matrix of BB-coefficients
of L with respect to Ω and P .

Thus, on the prism P , we get

L(·) =

mΩ∑

r=1

|L (· − r)|

=
∑

1≤s≤m2

1≤e≤m1

∣
∣
∣
∣
∣
∣
∣
∣

∑

|α|=g
0≤β2≤d

b(s,e),(α,β2)BEg
α (·)BEd

β (·)

∣
∣
∣
∣
∣
∣
∣
∣

≤
∑

1≤s≤m2

1≤e≤m1







∑

|α|=g
0≤β2≤d

∣
∣b(s,e),(α,β2)

∣
∣







BEg
α (·)BEd

β (·) (2.8)

=
∑

|α|=g
0≤β2≤d







∑

1≤s≤m2

1≤e≤m1

∣
∣b(s,e),(α,β2)

∣
∣







BEg
α (·)BEd

β (·)

≤ max
|α|=g

0≤β2≤d







∑

1≤s≤m2

1≤e≤m1

∣
∣b(s,e),(α,β2)

∣
∣







.

Therefore, we get an upper bound for ‖R‖∞ and it can be expressed in matrix form as

‖R‖∞ ≤ max
|α|=g

0≤β2≤d







∑

1≤s≤m2

1≤e≤m1

∣
∣b(s,e),(α,β2)

∣
∣







=: ‖FΩ‖1 .
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Figure 1: BB-coefficients of the quadratic B-spline B3.

Definition 3 The value ‖FΩ‖1 := max |α|=g
0≤β2≤d

(
∑

1≤s≤m2

1≤e≤m1

∣
∣b(s,e),(α,β2)

∣
∣

)

is said to be a

type-2 upper bound to the infinity norm of the trivariate blending spline QIO R.

We remark that ‖FΩ‖1 is independent of Ω since the BB-coefficients of L relative to
a P -like prism contained in Ω \ suppL are zero. Moreover, ‖FΩ‖1 is independent of the
ordering of the rows.

The entries of FΩ depend linearly on the coefficients c :=
{

(cj1,j2)(j1,j2)∈J

}

, and

a :=
{
(aℓ)ℓ∈Λ

}
. So, we can consider the objective function

µ (c, a) := ‖FΩ‖1 (2.9)

defined on

AJ,Λ :=
{
c | Q is exact on Pn

(
R

2
)}

×
{
a | Q is exact on Pd (R)

}
, (2.10)

and we can state the following minimization problem.

Problem 4 Given J and Λ, find (c, a) in AJ,Λ to minimize the function µ (c, a) given
by (2.9).

Since the function µ given by (2.9) is a convex function on AJ,Λ, the existence of a
solution for Problem 4 is guaranteed (see e.g. [36]). In general the solution is not unique.

Each solution of this constrained minimization problem produces a QIO. If (c, a) is a
solution of Problem 4, the corresponding operator will said to be a NB QIO with respect
to µ or type-2 NB QIO.

3 Trivariate type-2 near best quasi-interpolation op-

erators based on quadratic B-splines and box splines

In this section, we want to construct particular QIOs of kind (2.4), with degrees g = 2
and d = 2. Therefore, B = B3 is the univariate C1 quadratic B-spline with support
[
− 3

2 ,
3
2

]
, belonging to the space S1

2 (τ1) and M = M1,1 is the bivariate C1 quadratic box
spline in S1

2 (τ2).
Figure 1 shows the BB-coefficients of the B-spline B3 in each subinterval of its support.
Figure 2 provides the BB-coefficients of 8 ·M1,1 in the triangles of τ2 that determine

the region with vertices (0, 0), (1,−1) and
(
3
2 ,−

1
2

)
,
(
3
2 ,

1
2

)
and (1, 1). The BB-coeficients

in the other triangles contained in the support of M1,1 are determined taking into account
the symmetries of the octagon.

In order to construct a trivariate type-2 NB QIO R of kind (2.4), we have to fix Λ
and J in (2.1) and (2.2), respectively, allowing oversampling. Let Λ = {−2,−1, 0, 1, 2},
J be the subset of Z2 formed by the gridpoints lying in the rhombus with vertices (±2, 0)
and (0,±2), and impose the conditions

a−2 = a2, a−1 = a1,

c0,1 = c−1,0 = c0,−1 = c1,0, c0,2 = c−2,0 = c0,−2 = c2,0,

c−1,1 = c−1,−1 = c1,−1 = c1,1.
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0

2 0 0

0

4

0 0

00

4

2 0

2 0

Figure 2: BB-coefficients of the box spline 8 ·M1,1.

Therefore, taking into account the symmetries, we require that Q, defined in (2.1), has
the form (see Fig. 3(a))

Qf(z) =
∑

k∈Z

(a0f(k) + a1f(k ± 1) + a2f(k ± 2))B (z − k) ,

where f(k ± ℓ) := f(k + ℓ) + f(k − ℓ), and therefore the fundamental function LB is

LB(z) = a0B(z) + a1(B(z − 1) +B(z + 1)) + a2(B(z − 2) +B(z + 2)).

For the operator Q, we impose the exactness on the polynomial space P2(R). This leads
to the system of equations

a0 + 2a1 + 2a2 = 1 and 2a1 + 8a2 = −
1

4
. (3.1)

We remark that the exactness on linear polynomials is automatically satisfied by the
choice of symmetric coefficients a−2 = a2, a−1 = a1.

For the bivariate operator Q (see e.g. [2]), defined in (2.2), we choose the following
expression for its linear functional (see Fig. 3(b)):

λ (f) = c0,0f (0, 0) + c1,0 (f (±1, 0) + f (0,±1))

+ c2,0 (f (±2, 0) + f (0,±2) + c1,1f (±1, 1) + f (±1,−1)) .

Consequently, the fundamental function LM is given by

LM (x, y) = c0,0M (x, y) + c1,0 (M (x± 1, y) +M (x, y ± 1))

+ c2,0 (M (x± 2, y) +M (x, y ± 2))

+ c1,1 (M (x± 1, y − 1) +M (x− 1, y ± 1)) .

In this case, the requirement Qp = p for all p ∈ P2(R
2) leads to the system of equations

c0,0 + 4c1,0 + 4c2,0 + 4c1,1 = 1 and 2c1,0 + 8c2,0 + 4c1,1 = −
1

4
. (3.2)

From the expressions of the fundamental functions associated with Q and Q, we are
able to define the trivariate fundamental function L given in (2.5), defining the operator
R in (2.4). The support of L is shown in Fig. 4, where we can identify the supports of
M (x, y)LB (z), LM (x, y)B (z) and the support of M (x, y)B (z).

Now, before solving Problem 4, we have to define the prism P = T × I of Lemma 1.
In the quadratic case, T is the triangle of vertices (0, 0),

(
1
2 ,−

1
2

)
and

(
1
2 ,

1
2

)
, and I the

interval
[
− 1

2 ,
1
2

]
(in Fig. 4 we can see the prism P in yellow). Moreover, we can define the

polyhedral domain Ω, including the support of L, as the cube
[
− 7

2 ,
7
2

]
×
[
− 7

2 ,
7
2

]
×
[
− 7

2 ,
7
2

]

(see Fig. 4). Therefore, the number of P -like prisms of τ included in Ω is 343.
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❅
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c0,0
•

c1,0
•

c1,0
•

c1,0
•

c1,0
•

c2,0
•

c2,0
•

c2,0
•

c2,0
•

c1,1
•

c1,1
•

c1,1
•

c1,1
•

(a) (b)

Figure 3: (a) Coefficient sequence defining the linear functional λ of Q and (b) lozenge
sequence defining the linear functional λ corresponding to Q.

Figure 4: The support of the fundamental function L.

For a generic P -like prism Pr = Ts × Ie, the structure of the BB-coefficients of L on
Pr can be represented as shown in Fig. 5.

Therefore, we can define c = (c0,0, c1,0, c2,0, c1,1), a = (a0, a1, a2), and the objective
function

µ(c, a) = max
|α|=2

0≤β2≤2







∑

1≤s≤49
1≤e≤7

∣
∣b(s,e),(α,β2)

∣
∣







(3.3)

in (2.9) and, taking into account (3.1) and (3.2), it is possible to define AJ,Λ in (2.10).
Then, Problem 4 is specified.

The general solution of (3.1) and (3.2) can be written as

a0 = − 3
2x1+

17
16 , a2 = − 1

4x1−
1
32 , c0,0 = −3x2−2x3+

9
8 , c2,0 = − 1

4x2−
1
2x3−

1
32 , (3.4)

where x1 := a1, x2 := c1,0, x3 := c1,1. The substitution of the values (3.4) into (3.3)
results in the minimization of the objective function given by

F (x) := max
1≤i≤8

‖Aix− bi‖1 , x = (x1, x2, x3)
T
,
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•
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•
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Figure 5: Representation of the BB-coefficients of L on a prism Pr = Ts × Ie.

with

A1 :=
1

8





















6 0 0
2 0 0
2 8 8
0 2 −4
2 −3 2
0 8 16
0 1 2





















, A2 :=
1

8





































6 0 0
2 0 0
2 8 8
2 4 4
0 1 −2
0 0 8
0 4 4
0 4 8
0 2 −4
0 4 8
0 7 2





































, A3 :=
1

4

















3 0 0
1 0 0
2 4 4
0 0 4
0 2 4
0 6 4

















, A4 :=
1

4





















3 0 0
1 0 0
2 8 8
0 0 8
0 8 8
0 3 −2
0 3 −6





















,

A5 :=
1

8

























16 0 0
4 0 0
6 8 8
0 2 −4
6 −3 2
0 8 16
0 0 8
0 1 2

























, A6 :=
1

8





































16 0 0
4 0 0
6 8 8
6 4 4
0 1 −2
0 0 8
0 4 4
0 4 8
0 2 −4
0 4 8
0 7 2





































, A7 :=
1

2

















4 0 0
1 0 0
3 2 2
0 0 2
0 1 2
0 3 2

















, A8 :=
1

4





















8 0 0
2 0 0
6 8 8
0 0 8
0 8 8
0 3 −2
0 3 6





















,

and

bT1 =
1

64
(2,−2, 38,−2,−37, 0,−4,−1) , bT2 =

1

64
(2,−2, 38, 38,−1, 0, 0, 0, 2,−4, 1) ,

bT3 =
1

32
(1,−1, 19, 0,−2, 2) , bT4 =

1

32
(1,−1, 38, 0, 0, 1,−3) ,

bT5 =
1

64
(0,−4, 38,−2, 37, 0,−4,−1) , bT6 =

1

64
(0,−4, 38, 38,−1, 0, 0, 0, 2,−4, 1) ,

bT7 =
1

16
(0,−1, 19, 0,−1, 1) , bT8 =

1

32
(0,−2, 38, 0, 0, 1,−3) .
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−
1
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1
32
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w w
9−24w

8

c0,0
−

1+8w
32

−
1+8w
32

−
1+8w
32

−
1+8w
32

Figure 6: Coefficients of the linear functionals of the QIOs Q and Qw.

The minimum value of F is equal to 11
8 = 1.375. It is attained at the points of the

form (0, w, 0), 0 ≤ w ≤ 1
24 . Hence, the type-2 NB trivariate blending QIOs are obtained

by combining the operators Q and Qw with linear functionals whose coefficients appear
in Figure 6.

Notice that the operator Q we have obtained is of type-1 NB type, i. e. the coefficients
{

17
16 , 0,−

1
32

}
minimize the upper bound

∑

ℓ∈Λ |aℓ| to the infinity norm of Q. However,

Qw is not NB except for w = 0, i.e. the coefficients
{

1
8 (9− 24w) , w,− 1

32 (1 + 8w) , 0
}

do not minimize the upper bound
∑

(j1,j2)∈J |cj1,j2 | to ‖Q‖∞ (see [6]).

Since the infinity norm of the blending operator Rw constructed from Q and Qw is a
continuous function of w on

[
0, 1

24

]
, there exists a value w∗ at which ‖Rw‖∞ attains its

minimum value. It is not possible to compute exactly w∗, but it can be approximated.
For instance, since

‖Rw‖∞ = max
(x,y,z)∈P

L (x, y, z) ,

we can approximate ‖Rw‖∞ from the maximum F (w) of the absolute values obtained in
evaluating L (x, y, z) at the points of a grid of P . A convex piecewise linear function is

obtained. In dividing the prism
[
− 1

2 ,
1
2

]3
into 40×40×40 equal parts, then the associated

convex function F40,40,40(w) attains its minimum value at w = 1
88 , and this will be an

approximation to w∗. Therefore,

‖Rw∗‖∞ ≃
∥
∥
∥R 1

88

∥
∥
∥
∞

≥
119

88
≃ 1.35227.

A value very close to the upper bound value has been obtained. The coefficients ci,j
associated with this particular choice are

c00 =
12

11
, c1,0 =

1

88
, c1,1 = 0, c2,0 = −

3

88
.

The results we have obtained must be compared with those provided by the blending
of classical QIOs Qc and Qc or type-1 NB QIOs Qnb and Qnb quadratic QIOs. Figure 7
shows the coefficients of the linear forms of such classical and type-1 NB quadratic QIOs
based on B3 and M11.

Let Rc,c be the blending operator defined from Qc and Qc. Then, ‖Rc,c‖∞ ≤
F
(
− 1

8 , 0, 0
)
= 7

4 and it is straighforward to prove that ‖Rc,c‖∞ = L
(
1
2 ,

1
2 ,

1
2

)
= 7

4 . Simi-

larly, let Rnb,nb be the operator provided by blending Qnb and Qnb. Then, ‖Rnb,nb‖∞ ≤
F (0, 0, 0) = 11

8 and ‖Rnb,nb‖∞ = L
(
1
2 ,

1
2 ,

1
2

)
= 11

8 .
In Figure 8 the plot of F40,40,40(w) is compared with the value of the infinity norm

of the blending QIO associated with Qnb and Qnb. We can deduce that the construction
based on the minimization of the objective function gives better results in the quadratic
case than the use of classical QIOs and it is comparable with type-1 NB QIOs, although
a slightly better value for the infinity norm of the blending operator is expected.
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−
1
8

−
1
8

−
1
8

−
1
8

3
2
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• • •

a1 a0 a1

−
1
8

5
4

−
1
8
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0 0 0

0 0 0

0 0
9
8
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−

1
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−
1
32

−
1
32

−
1
32

Qnb

• • • • •

a2 a1 a0 a1 a2

−
1
32 0 17

16 0 −
1
32

Qnb

Figure 7: Coefficients of the linear functionals of the 1D and 2D classical (on the left)
and NB type-1 QIOs on B3 and M11

Figure 8: Plot of F40,40,40. The minimum value is attained at w = 1
88 .

4 Trivariate type-2 near best quasi-interpolation op-

erators based on quartic B-splines and box splines

In this section we construct particular QIOs for the degrees g = 4, d = 4. We use the
quartic B-spline B5 centered at the origin, whose BB-coefficients are shown in Fig. 9,
and the box splines M1,2 and M2,1.

−
5
2

−
3
2

−
1
2

1
2

3
2

5
2

0 0 0 0 1
24

1
12

1
6

1
3

11
12

7
12

2
3

7
12

11
24

1
3

1
6

1
12

1
24 0 0 0 0

Figure 9: BB-coefficients of the quartic B-spline B5.

Fig. 10 shows the BB-coefficients structure for the reference prism.

4.1 Trivariate case based on the box spline M1,2

Firstly, we consider the box spline M1,2, whose support and BB-coefficients are shown
in Fig. 11.

The coefficients a = (a0, a1, a2, a3) and c = (c0,0, c1,0, c1,1, c2,0) defining Q and Q

must satisfy the following constraints to be exact on the space P3 of the univariate and
bivariate cubic polynomials, respectively:

a0 + 2a1 + 2a2 + 2a3 = 1, a1 + 4a2 + 9a3 = −
5

24
, a1 + 16a2 + 81a3 =

9

32
,

c0,0 + 4c1,0 + 4c1,1 + 4c2,0 = 1, c1,0 + 2c1,1 + 4c2,0 = −
5

24
.
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T0

T1

T2

T3

T4

(4, 0, 0, i)

(3, 1, 0, i)

(3, 0, 1, i)

(2, 2, 0, i)

(2, 1, 1, i)

(2, 0, 2, i)

(1, 3, 0, i)

(1, 2, 1, i)

(1, 1, 2, i)

(1, 0, 3, i)

(0, 4, 0, i)

(0, 3, 1, i)

(0, 2, 2, i)

(0, 1, 3, i)

(0, 0, 4, i)

Ti

Figure 10: On the left, the five levels of the prism Pr = Ts × Ie in the quartic cases. On
the right, indexes of the BB-coefficients b(s,e),(α,β2

associated with the triangle Ti of Pr.

The objective function of the minimization problem depends on the variables a1, c1,0
and c1,1. It has a unique solution, which has been exactly computed after converting it
into a linear programming problem. The unique solution is given by

a1 = − 11209995503
50649374592 , c1,0 = 40005773

1489687488 , c1,1 = 2103011
16883124864 .

Therefore, the coefficients providing the operators to be blended are

a0 = 37004143357
25324687296 , a1 = − 11209995503

50649374592 , a2 = − 976637497
50649374592 , a3 = 507176939

50649374592 ,

and

c0,0 = 1189752515
1055195304 , c1,0 = 40005773

1489687488 , c2,0 = − 2981191847
50649374592 , c1,1 = 2103011

16883124864 .

The upper bound is equal to

F

(

−
11209995503

50649374592
,

40005773

1489687488
,

2103011

16883124864

)

=
2788509053303

1823377485312
≃ 1.52931.

The infinity norm of the obtained type-2 NB QIO can be estimated by using a method
similar to the one used in the quadratic case. We get the following result:

‖R‖∞ ≃
103212192661

67532499456
≃ 1.52833.

The infinity norm is very close to the upper bound, so the method consisting in combining
blending to define the QIO and BB-coefficients to bound the infinity norm provides a
good upper bound to the infinity norm.

Now, we compare such results with those obtained when 1D and 2D classical or type-
1 NB QIOs are blended. The first possibility (see Fig. 12) consists in blending the 1D
QIO given by [27]

Q5f =
∑

i∈Z

(
319

192
f (i)−

107

288
f (i± 1) +

47

1152
f (i± 2)

)

B5 (· − i)

and the operator P(1,2),a defined as [25]

P(1,2),af =
∑

i∈Z2

λ(1,2),a (f (·+ i))M1,2 (· − i) ,

14
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Figure 11: BB-coefficients of the box spline 384 M1,2.

with

λ(1,2),ag :=
97

48
g (0)−

13

48
(g (±d1) + g (±d2)) +

1

64
(g (±d1) + g (±d2)) .

The upper bound of the blending QIO in this case is equal to 128477
73728 ≃ 1.74258, and

the estimated infinity norm is approximately equal to 1.68172.
If

λ(1,2),bg :=
41

24
g (0)−

7

48
(g (±d1) + g (±d2))−

1

32
(g (±d3) + g (i± d4))

and the operator

P(1,2),bf =
∑

i∈Z2

λ(1,2),b (f (·+ i))M1,2 (· − i)

is used, then the upper bound is 5887
3456 ≃ 1.70341 and the estimated norm is approximately

equal to 1.64000.
Notice that in both cases the type-2 QIO yields better results not only with respect

to the upper bound (as expected by construction) but also regarding (the estimation of)
the value of the infinity norm.

Finally, we can blend classical type-1 NB QIOs (see Fig. 13). They are given by the
following expressions [4, 6]:

Qnbf =
∑

i∈Z

(
2015

1728
f (i)−

69

640
f (i± 2) +

107

4320
f (i± 3)

)

B5 (· − i) ,

Qnbf =
∑

i∈Z2

(
29

24
f (i)−

5

96
(f (i± 2d1) + f (i± 2d2))

)

M2,1 (· − i) .

The infinity norm of the resulting blending QIO is bounded by 8239
5184 ≃ 1.58931, and its

estimated value is 1.55635. Also in this case both values are worse that the corresponding
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Figure 12: (Top) Coefficients of the linear functional of the classical 1D quartic QIO
exact on P4. (Bottom) Coefficients of the linear functionals of the classical QIOs P(1,2),a

and P(1,2),b defined by exploiting the relation between lozenge sequences and central
difference operators.
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Figure 13: Coefficients of the linear functionals of the type-1 NB QIOs Qnb and Qnb

associated with the box spline M1,2

ones obtained by minimizing the objective function, although they are better than the
associated with P(1,2),a and P(1,2),b.

As a conclusion, blending type-1 NB QIOs are better than blending classical oper-
ators. Moreover, blending type-2 NB QIOs are better than blending type-1 NB QIOs;
therefore to blend general operators and minimize the upper bound to the infinity norm
after imposing the exactness on P3 is a good method to construct QIOs.

4.2 Trivariate case based on the box spline M2,1

In this section we present the results for the quartic box spline M2,1. Fig. 14 shows the
support of M2,1 as well as its BB-coefficients.

The exactness of the operator Q and Q based on B5 and M2,1 on the spaces of cubic
polynomials in one and two variables, respectively, is equivalent to the linear constraints

a0 + 2a1 + 2a2 + 2a3 = 1, a1 + 4a2 + 9a3 = −
5

24
, a1 + 16a2 + 81a3 =

9

32
,

c0,0 + 4c1,0 + 4c1,1 + 4c2,0 = 1, c1,0 + 2c1,1 + 4c2,0 = −
1

6
.

Also in this case the unconstrained minimization problem has been exactly solved.
The variables of the objective function are a3, c1,0 and c1,1. The minimum value is
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Figure 14: BB-coefficients of the box spline 384 M2,1.

reached at

a3 =
21519

1971520
, c1,0 =

9

202
, c1,1 = −

4

303
,

providing for the coefficients involved in Q and Q the values

a0 =
1707131

1182912
, a1 = −

737441

3548736
, a2 = −

876217

35487360
, a3 =

21519

1971520

and

c0,0 =
107

101
, c1,0 =

9

202
, c2,0 = −

14

303
, c1,1 = −

4

303
.

The upper bound for the infinity norm of the blending operator is

F

(
21519

1971520
,

9

202
,−

4

303

)

=
80221363

53231040
≃ 1.50704,

and for its infinity norm we have estimated the value

‖R‖∞ ≃
10228846717

6813573120
≃ 1.50125.

Again, the infinity norm is very close to the upper bound.
Also in this case we compare these results with those obtained when 1D and 2D

classical or type-1 NB QIOs are blended. Fig. 15 shows the values of the linear functionals
defining the QIOs P(2,1),a and P(2,1),b proposed in [25]. The values for Q5, defined in
[27], appear in Fig. 12.

The upper bound of the blending operator associated with P(2,1),a and Q5 is equal to
1043
576 ≃ 1.81076, and its estimated norm is 1.74555. When P(2,1),b and Q5 are blended, the

upper bound and estimated infinity norm are 751
432 ≃ 1.73843 and 1.63157, respectively. In

both cases, the values we have obtained are worse than the corresponding ones associated
with the type-2 NB QIO.

It only remains to blend 1D and 2D type-1 NB QIOs to compare their results with
the values computed for the type-2 NB QIO. Fig. 16 shows the coefficients of the linear
functionals of the type-1 NB QIOs Qnb and Qnb associated with M2,1 (see [4] and [6],
respectively).
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Figure 15: Coefficients of the linear functionals of the classical QIOs P(2,1),a and P(2,1),b
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Figure 16: Coefficients of the linear functionals of the type-1 NB QIOs Qnb and Qnb

associated with M2,1.

The upper bound of the blending QIO is equal to 8203
5184 ≃ 1.58237 and the estimated

infinity norm is equal to 1.51479. We conclude that, also in this case, it is better to blend
the operators and minimize the upper bound to the infinity norm than blending classical
operators, i.e. blending type-2 NB QIOs are better than blending type-1 NB QIOs or
classical QIOs.

In order to summarize, Table 1 shows the results we have obtained when the quartic
box splines M1,2 and M2,1 are used to define blending QIOs. UB and eIN stand for
Upper Bound and estimated Infinity Norm, respectively. Columns 2, 3 and contains the
results obtained by trivariate type-2 and type-1 NB QIOs, respectively, and Columns 5,
6 show the results obtained when Q5 and classical bivariate QIOs are blended. For M1,2

(resp. M2,1) they correspond to P(1,2),b and P(1,2),a (resp. P(2,1),b and P(2,1),a).
The box spline M2,1 produces better operators than M1,2 with respect to the UB and

eIN. It also gives better results when type-1 NB QIOs or classical QIOs are blended.

box spline type-2 NB type-1 NB classical b classical a
M1,2 UB 1.52931 1.58931 1.70341 1.74258

eIN 1.52833 1.55635 1.64000 1.68172
M2,1 UB 1.50704 1.58237 1.73843 1.81076

eIN 1.50125 1.51479 1.63157 1.74555

Table 1: Comparison of upper bounds and estimated infinity norms for the different
QIOs constructed from M1,2 and M2,1.
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5 Conclusions

We have proposed a method for constructing trivariate quasi-interpolation operators
based on the blending of bivariate and univariate operators. Such operators could be
used for the construction of non-discrete models from given discrete data on volumetric
grid, that is an important problem in many applications, such as scientific visualization,
medical imaging and computer graphics. The coefficients of the corresponding linear
functionals are computed to produce operators exact on appropriate spaces of polynomi-
als and having small infinity norms. Instead of minimizing the true value of the infinity
norm, an upper bound is minimized. The upper bound is established from the BB-
coefficients of the fundamental functions associated with the operators involved in the
construction. The proposed problem has always a solution, but it is not unique in general.
We have completely worked out the quadratic and quartic cases. In the quadratic case,
we have obtained infinitely many solutions depending of one parameter. Some numerical
tests show the existence of a specific value yielding an excellent result. In the quartic
cases, a unique solution exists for each one of the box splines considered. The quartic
box spline M2,1 produces better results than M1,2 with respect to both the upper bound
of the infinity norm and the infinity norm itself. Moreover, in all cases the upper bound
of the infinity norm is very close to the value of the corresponding upper bound, so it
seems that the proposed method provides a good upper bound of the infinity norm of
the trivariate blending operator.
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[5] D. Barrera, M.J. Ibáñez, P. Sablonnière, and D. Sbibih. Near-best univariate spline
discrete quasi-interpolants on non-uniform partitions. Constr. Approx. 28:237–251,
2008.

19
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