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Abstract

For the nonsymmetric saddle point problems with nonsymmetric positive definite
(1,1) parts, the modified generalized shift-splitting (MGSSP) preconditioner as well
as the MGSSP iteration method are derived in this paper, which generalize the MSSP
preconditioner and the MSSP iteration method newly developed by Huang and Su
(J. Comput. Appl. Math. 2017), respectively. The convergent and semi-convergent
analysis of the MGSSP iteration method are presented, and we prove that this method
is unconditionally convergent and semi-convergent. In addition, some spectral prop-
erties of the preconditioned matrix are carefully analyzed. Numerical results demon-
strate the robustness and effectiveness of the MGSSP preconditioner and the MGSSP
iteration method, and also illustrate that the MGSSP iteration method outperforms
the GSS and GMSS iteration methods, and the MGSSP preconditioner is superior
to the shift-splitting (SS), generalized SS (GSS), modified SS (MSS) and generalized
MSS (GMSS) preconditioners for the GMRES method for solving the nonsymmetric
saddle point problems.
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1 Introduction

In a wide variety of scientific and engineering applications, such as mixed finite element ap-
proximation of elliptic partial differential equations, the image reconstruction and registration,
computational fluid dynamics, weighted least-squares problems, networks computer graphics,
constrained optimization and son on [2, 16, 27], we need to solve the following nonsymmetric
saddle point problems of the form

Au =

(
A B
−BT 0

)(
x
y

)
=

(
f
−g

)
≡ b, (1)
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where A ∈ Rm×m is nonsymmetric positive definite, B ∈ Rm×n is a rectangular matrix,
p ∈ Rm and q ∈ Rn are given vectors, with n ≤ m. Here, BT denotes the transpose of B.
The system of linear equations (1) is also termed as a Karush-Kuhn-Tucker (KKT) system,
or an augmented system [28, 25]. For a wider class of saddle point problems, the readers can
refer to [13].

Since the matrices A and B are large and sparse in general, the iteration methods are
often much more suitable for solving it than direct methods. When B is of full column
rank, a large variety of effective iterative methods based on matrix splitting as well as their
numerical properties have been investigated in the literature. For example, Golub et al. [29]
developed the SOR-like method, and in the sequel, Bai et al. [10, 11] extended the SOR-
like method to the generalized SOR (GSOR) method and the parameterized inexact Uzawa
method, respectively. For SOR-like methods established recently, see [30, 39]. Based on
the Uzawa method presented by Bramble et al. and Elman and Golub in [15, 26], Bai et al.
[10, 11], Dai et al. [23] and Ma and Zheng [37] employed the Uzawa-type methods and so forth
in recent years. Besides, Bai et al. put forward the well-known Hermitian and skew-Hermitian
splitting (HSS) methods [7] and its variants [6, 8, 9, 5]. On the basis of the shift-splitting (SS)
of a non-Hermitian matrix [12], Cao et al. [17] derived the SS iteration method as well as
the SS preconditioner for the nonsingular saddle point problems, and Chen and Ma [20] and
Cao et al. [18] generalized the SS iteration method and obtained the generalized SS (GSS)
iteration method. To increase the convergence rate of the GSS iteration method, Huang and
Su [33] newly developed the modified shift-splitting (MSSP) iteration method.

If B in (1) is rank deficient, then the coefficient matrix A in (1) is singular, and we call (1)
the singular saddle point problem. Some iteration methods and preconditioning techniques for
solving singular saddle point problems have been proposed in the recent literature, see, e.g.,
[35, 42, 41, 34]. Zheng et al. [43] proposed some sufficient conditions for the semi-convergence
of the GSOR method and determined the optimal iteration parameters. Bai [3] derived some
necessary and sufficient conditions to assure the semi-convergence of the HSS method. Chen
et al. [21] and Cao et al. [19] investigated the generalized shift-splitting iteration method for
singular saddle point problems. Very recently, Dou et al. [24] introduced the modifying the
parameterized inexact Uzawa (PIU) for singular saddle point problems, and Zheng and Lu
[44] proved the semi-convergence of the upper and lower triangular (ULT) splitting iteration
method for singular saddle point problems.

Recently, based on the preconditioner [12] studied for a class of non-Hermtian positive
definite linear systems, Cao et al. [17] presented a shift-splitting (SS) preconditioner

PSS =
1

2

(
αI +A B
−BT αI

)
for the saddle point problem (1), where α is a positive constant and I is the identity matrix.
The authors also proved the corresponding SS iteration method is unconditional convergent.

On the basis of the shift-splitting (SS) preconditioner [17], Chen and Ma [20] and Cao et
al. [18] replaced the parameter α in (2,2)-block of the SS preconditioner by another parameter
β, and employed the generalized SS (GSS) preconditioner of the form

PGSS =
1

2

(
αI +A B
−BT βI

)
,

where α ≥ 0, β > 0 and I is the identity matrix. It is easy to see that PSS is a special case
of PGSS when α = β. Numerical results in [21, 20] confirmed that the GSS preconditioner is
superior to the SS preconditioner.

2



Very recently, based on the well-known Hermitian and skew-Hermitian splitting (HSS)
of the matrix A: A = H + S, where H = 1

2(A + AT ), S = 1
2(A − AT ), and similar to the

shift-splitting [17, 12], the modified shift-splitting (MSS) preconditioner [45] was proposed for
nonsymmetric saddle point problem (1), the form of PMSS is:

PMSS =
1

2

(
αI + 2H B
−BT αI

)
with α > 0 being a constant and I being the identity matrix with appropriate dimension.

In the sequel, by replacing the parameter α in (2,2)-block in the MSS preconditioner by an-
other parameter β, Huang et al. [32] established the generalized MSS (GMSS) preconditioner.
They discussed the corresponding GMSS iteration method is convergent and semi-convergent
under proper conditions, and showed that the GMSS iteration method and the GMSS precon-
ditioner are better than the MSS iteration method and the MSS preconditioner, respectively
by numerical experiments.

In order to increase the convergence rate of the GSS method for the nonsingular sad-
dle point problems with symmetric positive definite (1,1) parts, Huang and Su [33] newly
developed the modified shift-splitting (MSSP) preconditioner of the form:

PMSSP =

(
αI + 2A 2B
−2BT αI

)
with α > 0 being a constant and I being the identity matrix with appropriate dimension,
which derived from the following modified shift-splitting of the saddle point matrix A:

A = PMSSP −QMSSP =

(
αI + 2A 2B
−2BT αI

)
−
(
αI +A B
−BT αI

)
.

The authors in [33] theoretically verified the corresponding MSSP iteration method is uncon-
ditional convergent and estimated the bounds of the eigenvalues of the iteration matrix of the
MSSP iteration method. Numerical experiments illustrated that the MSSP preconditioner
outperforms the SS and GSS preconditioners for the nonsingular saddle point problems with
symmetric positive definite (1,1) parts.

To further accelerate the convergence rates of the GSS and the GMSS preconditioned
GMRES methods for the saddle point problems with nonsymmetric positive definite (1,1)
parts, a new preconditioner which is referred to as the modified generalized shift-splitting
(MGSSP) preconditioner is developed for nonsymmetric saddle point problems in this paper.
Theoretical analysis also shows that the corresponding splitting iteration method is convergent
and semi-convergent unconditionally. Besides, we investigate the spectral properties of the
corresponding preconditioned matrix and show that it has clustered eigenvalue distribution by
choosing proper parameters. Numerical experiments are presented to confirm the effectiveness
of the MGSSP iteration method and the MGSSP preconditioned GMRES method for solving
the nonsymmetric saddle point problems.

The outline of this paper is organized as follows. In Section 2, we propose the MGSSP
iteration method which induces the MGSSP preconditioner. The unconditional convergent
and semi-convergent properties of the MGSSP iteration method will be proved in Sections
3 and 4, respectively. The spectral properties of the MGSSP preconditioned matrix are
obtained correspondingly in Section 5. We examine the feasibility and effectiveness of the
MGSSP iteration method and the MGSSP preconditioned GMRES method for solving the
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nonsymmetric nonsingular and singular saddle point problems by numerical experiments in
Section 6. Finally, a brief conclusion will be given to end this work in Section 7.

Throughout this paper, λmin(A) and ρ(A) represent the minimum eigenvalue and the
spectral radius of the matrix A, respectively. (.)∗ denotes the conjugate transpose of either a
vector or a matrix.

2 The modified generalized shift-splitting (MGSSP) precon-
ditioner and its implementation

In this section, inspired by the ideas of [20, 18, 33], we develop a new splitting called the
modified generalized shift-splitting (MGSSP) of the nonsymmetric saddle point matrix A by
combining the generalized splitting-splitting and the modified shift-splitting of the saddle
point matrix A as follows.

A = PMGSSP −QMGSSP =

(
αI + 2A 2B
−2BT βI

)
−
(
αI +A B
−BT βI

)
, (2)

where α ≥ 0, β > 0 are two constants and I is the unit matrix with appropriate dimension.
Then, the splitting (2) naturally leads to the following modified generalized shift-splitting
iteration method for solving the nonsymmetric saddle point problem (1):

The modified generalized shift-splitting (MGSSP) iteration method: Let α ≥ 0

and β > 0 be two given constants. Given an initial guess (x(0)
T
, y(0)

T
)T . For k = 0, 1, 2, · · · ,

until (x(k)
T
, y(k)

T
)T converges, compute(

αI + 2A 2B
−2BT βI

)(
x(k+1)

y(k+1)

)
=

(
αI +A B
−BT βI

)(
x(k)

y(k)

)
+

(
f
−g

)
.

Hence the MGSSP iteration method can be written in the following fixed point form(
x(k+1)

y(k+1)

)
= T (α, β)

(
x(k)

y(k)

)
+

(
αI + 2A 2B
−2BT βI

)−1(
f
−g

)
, (3)

where

T (α, β) =

(
αI + 2A 2B
−2BT βI

)−1(
αI +A B
−BT βI

)
is the iteration matrix.

It should be noted that any matrix splitting not only can automatically lead to a splitting
iteration method, but also can naturally induce a splitting preconditioner for the Krylov
subspace methods. The splitting preconditioner corresponds to the MGSSP iteration (2) is
given by

PMGSSP =

(
αI + 2A 2B
−2BT βI

)
, (4)

which is called the MGSSP preconditioner for the nonsymmetric saddle point matrix A.
At each step of the MGSSP iteration (3) or applying the MGSSP preconditioner PMGSSP

within a Krylov subspace method, we need to solve a linear system with PMGSSP as the
coefficient matrix. That is to say, we need to solve a linear system of the form(

αI + 2A 2B
−2BT βI

)
z = r,
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where z = (zT1 , z
T
2 )T and r = (rT1 , r

T
2 )T with z1, r1 ∈ Rm and z2, r2 ∈ Rn. It is not difficult to

check that

PMGSSP =

(
I 2

βB

0 I

)(
αI + 2A+ 4

βBB
T 0

0 βI

)(
I 0

− 2
βB

T I

)
. (5)

It follows from the decomposition of PMGSSP in (5) that(
z1
z2

)
=

(
I 0

2
βB

T I

)(
αI + 2A+ 4

βBB
T 0

0 βI

)−1(
I − 2

βB

0 I

)(
r1
r2

)
. (6)

Therefore, we can derive the following algorithmic version of the MGSSP iteration method.
Algorithm 2.1 For a given vector r = (rT1 , r

T
2 )T , the vector z = (zT1 , z

T
2 )T can be computed

by (6) according to the following steps:
(1) compute t1 = r1 − 2

βBr2;

(2) solve (αI + 2A+ 4
βBB

T )z1 = t1;

(3) compute z2 = 1
β (2BT z1 + r2).

From Algorithm 2.1, it is known that at each iteration, a linear system with the coefficient
matrix αI + 2A + 4

βBB
T only needs to be solved. However, it may be very costly and

impractical in actual implementations because of the sparsity pattern of αI + 2A + 4
βBB

T .

Fortunately, the matrix αI + 2A + 4
βBB

T is positive definite for all α ≥ 0 and β > 0.
Therefore, we can employ the Krylov subspace method, such as the GMRES method to solve
the sub-linear systems with the coefficient matrix αI+ 2A+ 4

βBB
T by a prescribed accuracy.

In addition, it can be solved by some direct methods, such as the sparse LU factorization.
What we want to pose here is that we always use the sparse LU factorization to solve this
problem in our paper.

3 Convergence of the MGSSP iteration method for nonsingu-
lar saddle point problems

The main purpose of this section is to study the convergence properties of the MGSSP itera-
tion method by analyzing the spectral properties of the iteration matrix. Before doing this,
we derive some lemmas which will be useful in the following proofs.

Lemma 3.1. [11] Both roots of the complex quadratic equation x2−φx+ψ = 0 are less than
one in modulus if and only if |φ− φ̄ψ|+ |ψ|2 < 1, where φ̄ denotes the conjugate complex of
φ.

Lemma 3.2. Let A ∈ Rm×m be a positive definite matrix, B ∈ Rm×n be of full column rank,
and α ≥ 0 and β > 0 be two given constants. If λ is an eigenvalue of the iteration matrix
T (α, β), then λ 6= ±1.

Proof. Let λ be an eigenvalue of the iteration matrix T (α, β) of the MGSSP iteration
method, and (u∗, v∗)∗ ∈ Cm+n be the corresponding eigenvector. Then it holds that(

αI +A B
−BT βI

)(
u
v

)
= λ

(
αI + 2A 2B
−2BT βI

)(
u
v

)
.
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After proper manipulations, we obtain{
(αI +A)u+Bv = λ(αI + 2A)u+ 2λBv,

−BTu+ βv = −2λBTu+ λβv.
(7)

Now we will give the proof by contradiction. If λ = 1, then from (7), it has Au+Bv = 0 and
BTu = 0, which lead to u = −A−1Bv and BTA−1Bv = 0. Thus we get Bv = 0 by the positive
definiteness of A−1, and therefore v = 0 and u = −A−1Bv = 0, a contradiction. In addition,
if λ = −1, then it follows from the second equation of (7) that v = 3BTu

2β . Substituting this

relation into the first equation of (7) gives Āu = (2αI + 3A+ 9BBT

2β )u = 0, then u = 0 is due

to the fact that Ā is nonsingular, which yields that v = 3BTu
2β = 0, a contradiction. �

Lemma 3.3. Assume that the conditions in Lemma 3.2 are satisfied. Let λ be an eigenvalue
of the iteration matrix T (α, β) of the MGSSP iteration method and u = (u∗, v∗)∗ ∈ Cm+n,
with u ∈ Cm and v ∈ Cn, be the corresponding eigenvector. Then u 6= 0. Moreover, if v = 0,
then |λ| < 1.

Proof. If u = 0, then from the second equation of (7), we have (λ− 1)βv = 0. Inasmuch as
λ 6= 1 and β > 0, we derive v = 0. This contradicts to the assumption that u = (u∗, v∗)∗ is
an eigenvector. Furthermore, if v = 0, then it follows from the first equation of (7) that

(αI +A)u = λ(αI + 2A)u. (8)

Since u 6= 0, the definition u∗

u∗u does make sense. Premultiplying (8) with u∗

u∗u gives

λ =
(α+ a) + ib

(α+ 2a) + 2ib
, (9)

where a+ ib = u∗Au
u∗u . Since A is positive definite, a > 0. It follows from (9) that

|λ| =

√
(α+ a)2 + b2

(α+ 2a)2 + 4b2
< 1.

Thus, we completes our proof of Lemma 3.3. �

Theorem 3.1. Assume the conditions in Lemma 3.2 are satisfied. Let λ be an eigenvalue of
the iteration matrix T (α, β) of the MGSSP iteration method and u = (u∗, v∗)∗ ∈ Cm+n, with
u ∈ Cm and v ∈ Cn, be the corresponding eigenvector. Then the MGSSP iteration method
converges to the exact solution of the saddle point problem (1) for all α ≥ 0 and β > 0.

Proof. By making use of Lemma 3.2, we have λ 6= 1, then from the second equation of (7),
it has

v =
(2λ− 1)BTu

(λ− 1)β
,

substituting it into the first equation of (7) results in

λ2(αβI + 2βA+ 4BBT )u− λ(2αβI + 3βA+ 4BBT )u+ (αβI + βA+BBT )u = 0.(10)

By making use of Lemma 3.3, it holds that u 6= 0. Denote

a+ ib =
u∗Au

u∗u
, c =

u∗BBTu

u∗u
≥ 0.
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By multiplying u∗

u∗u on (10) from the left, we have

λ2(αβ + 2βa+ 4c+ 2βbi)− λ(2αβ + 3βa+ 4c+ 3βbi) + (αβ + βa+ c+ βbi) = 0. (11)

Having mind that A is positive definite, we get a > 0 and c ≥ 0, which lead to αβ + 2βa +
4c+ 2βbi 6= 0 by α ≥ 0 and β > 0. Hence, (11) can be rewritten as λ2 − φλ+ ψ = 0, where

φ =
2αβ + 3βa+ 4c+ 3βbi

αβ + 2βa+ 4c+ 2βbi
, ψ =

αβ + βa+ c+ βbi

αβ + 2βa+ 4c+ 2βbi
.

If c = 0, then (11) can be expressed as

λ2 − λ2α+ 3a+ 3bi

α+ 2a+ 2bi
+

α+ a+ bi

α+ 2a+ 2bi
= 0. (12)

Solving the two roots of (12), we obtain

λ = 1 or λ =
α+ a+ bi

α+ 2a+ 2bi
.

Lemma 3.2 implies that λ 6= 1, then

|λ| =
∣∣∣∣ α+ a+ bi

α+ 2a+ 2bi

∣∣∣∣ =

√
(α+ a)2 + b2

(α+ 2a)2 + 4b2
< 1.

Now we turn to prove |λ| < 1 under the condition c > 0. According to Lemma 3.1, we know
that |λ| < 1 if and only if |φ− φ̄ψ|+ |ψ|2 < 1. After some manipulations, we derive

φ− φ̄ψ =
2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2 + 3βbci

(αβ + 2βa+ 4c)2 + 4β2b2

and

1− |ψ|2 =
2αβ2a+ 6αβc+ 3β2a2 + 14βac+ 15c2 + 3β2b2

(αβ + 2βa+ 4c)2 + 4β2b2
.

Hence, |φ− φ̄ψ|+ |ψ|2 < 1 is valid if and only if

|2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2 + 3βbci|
=

√
(2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2)2 + 9β2b2c2

< 2αβ2a+ 6αβc+ 3β2a2 + 14βac+ 15c2 + 3β2b2,

which is equivalent to

(2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2)2 + 9β2b2c2

< (2αβ2a+ 6αβc+ 3β2a2 + 14βac+ 15c2 + 3β2b2)2. (13)

Since a > 0, c > 0, b2 ≥ 0, α ≥ 0 and β > 0, it holds that

(2αβ2a+ 6αβc+ 3β2a2 + 14βac+ 15c2 + 3β2b2)2

= [(2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2 + (βac+ 3c2)]2

= (2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2)2 + (βac+ 3c2)2

+2(2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2)(βac+ 3c2)

> (2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2)2

+(2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2)(βac+ 3c2)

> (2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2)2 + 3β2b2(βac+ 3c2)

≥ (2αβ2a+ 6αβc+ 3β2a2 + 13βac+ 12c2 + 3β2b2)2 + 9β2b2c2,

which implies that (13) holds true, i.e., |φ− φ̄ψ|+ |ψ|2 < 1 and therefore |λ| < 1. Hence, the
MGSSP iteration method is convergent for any α ≥ 0 and β > 0. This proof is completed. �
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4 Semi-convergence of the MGSSP iteration method for sin-
gular saddle point problems

When the saddle point matrix A is nonsingular, the MGSSP iteration scheme (3) converges
to the exact solution of (1) for any initial vector if and only if ρ(T (α, β)) < 1, whereas for the
singular matrix A, we have ρ(T (α, β)) ≥ 1. In this section, we assume that the sub-matrix
B in (1) is rank deficient and discuss the semi-convergence of the MGSSP iteration method
for solving the singular saddle point problems.

To analyze the semi-convergent properties of the MGSSP iteration method, we present the
following lemma which describes the semi-convergence property about the iteration scheme
(3) when A is singular.

Lemma 4.1. [14] The iteration scheme (3) is semi-convergent if and only if the following
two conditions are satisfied:
(i) index(I − T ) = 1, or equivalently, rank((I − T )2) = rank(I − T ), where T = I −GM is
the iteration matrix;
(ii) the pseudo-spectral radius of T is less than 1, i.e.,

γ(T ) = max{|λ| : λ ∈ σ(T ), λ 6= 1} < 1,

where σ(T ) is the spectral set of the matrix T . Here, we denote the null space, the index and
the rank of A by null(A), index(A) and rank(A), respectively.

Lemma 4.1 describes the semi-convergence property about the iteration scheme (3) whenA
is singular. Therefore, to get the semi-convergence property of the MGSSP iteration method,
only the two conditions in Lemma 4.1 need to verify. We consider these two conditions in
Lemmas 4.2 and 4.3, respectively.

Lemma 4.2. Let A be nonsymmetric positive definite, B be rank deficient and α ≥ 0, β > 0 be
given constants. Then, the iteration matrix T (α, β) of the MGSSP iteration method satisfies
index(I − T (α, β)) = 1, or equivalent

rank(I − T (α, β)) = rank((I − T (α, β))2), (14)

where T (α, β) is the iteration matrix of the MGSSP iteration method defined as in (3).

Proof. Inasmuch as T (α, β) = P−1MGSSPQMGSSP = I − P−1MGSSPA, Equation (14) holds if

null(P−1MGSSPA) = null((P−1MGSSPA)2).

It is easy to see that null(P−1MGSSPA) ⊆ null((P−1MGSSPA)2). Thus we only need to prove

null(P−1MGSSPA) ⊇ null((P−1MGSSPA)2).

Let x = (x∗1, x
∗
2)
∗ ∈ Cm+n ∈ null((P−1MGSSPA)2), then it has (P−1MGSSPA)2x = 0. Denote by

y = P−1MGSSPAx. After suitable manipulations, we have

y =

(
y1
y2

)
=

(
αI + 2A 2B
−2BT βI

)−1(
A B
−BT 0

)(
x1
x2

)
=

(
I 0

2
βB

T I

)(
αI + 2A+ 4

βBB
T 0

0 βI

)−1(
I − 2

βB

0 I

)(
A B
−BT 0

)(
x1
x2

)

=

 (
αI + 2A+ 4

βBB
T
)−1 (

Ax1 +Bx2 + 2
βBB

Tx1

)
2
βB

T
(
αI + 2A+ 4

βBB
T
)−1 (

Ax1 +Bx2 + 2
βBB

Tx1

)
− 1

βB
Tx1

 ,
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i.e., 
y1 =

(
αI + 2A+

4

β
BBT

)−1(
Ax1 +Bx2 +

2

β
BBTx1

)
,

y2 =
2

β
BT

(
αI + 2A+

4

β
BBT

)−1(
Ax1 +Bx2 +

2

β
BBTx1

)
− 1

β
BTx1.

(15)

Since P−1MGSSPAy = (P−1MGSSPA)2x = 0, it holds that Ay = 0, i.e.,

Ay1 +By2 = 0, −BT y1 = 0. (16)

Since A is positive definite, from the first equation of (16) we can easily get y1 = −A−1By2.
Then substituting this relationship into the second equation of (16), we obtain BTA−1By2 =
0, which leads to By2 = 0. Taking By2 = 0 into y1 = −A−1By2, we obtain y1 = 0. Hence,
the first equation of (15) becomes

y1 =

(
αI + 2A+

4

β
BBT

)−1(
Ax1 +Bx2 +

2

β
BBTx1

)
= 0.

Substituting y1 = 0 into y2 yields y2 = − 1
βB

Tx1. Since By2 = 0, − 1
βBB

Tx1 = 0, it

has x∗1BB
Tx1 = 0. This results in BTx1 = 0, then we get y2 = − 1

βB
Tx1 = 0. Thus,

y = P−1MGSSPAx = 0, i.e.,

null(P−1MGSSPA) ⊇ null((P−1MGSSPA)2). (17)

The conclusion follows by (17). �
In the sequel, we show that the iteration scheme (3) satisfies the condition (ii) in Lemma

4.1. Let B = U(Br, 0)V ∗ be the singular decomposition of matrix B, where

Br =

(
Σr

0

)
∈ Cm×r, Σr = diag(σ1, σ2, · · · , σr) ∈ Cr×r

with U ∈ Cm×m, V ∈ Cn×n being two unitary matrices and σi (i = 1, 2, · · · , r) being a
singular value of B.

We introduce a block diagonal matrix

P =

(
U 0
0 V

)
which is a (m+n)×(m+ n) unitary matrix, and the iteration matrix T (α, β) is unitary similar
to the matrix T̂ (α, β) = P ∗T (α, β)P . Hence, the matrix T (α, β) has the same spectrum with
the matrix T̂ (α, β). Thus we only need to analyze the pseudo-spectral radius of the matrix
T̂ (α, β) now.
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Denoting Â = U∗AU , then it holds that

T̂ (α, β) = P ∗
(
αI + 2A 2B
−2BT βI

)−1(
αI +A B
−BT βI

)
P

=

(
αI + 2U∗AU 2U∗BV
−2V ∗BTU βI

)−1(
αI + U∗AU U∗BV
−V ∗BTU βI

)

=

 αI + 2Â 2Br 0
−2BT

r βI 0
0 0 βI

−1 αI + Â Br 0
−BT

r βI 0
0 0 βI


=

 (
αI + 2Â 2Br
−2BT

r βI

)−1(
αI + Â Br
−Br βI

)
0

0 In−r


=

(
T̃ (α, β) 0

0 In−r

)
. (18)

Then, from Equation (18), γ(T̂ (α, β)) < 1 holds if and only if ρ(T̃ (α, β)) < 1.
Note that T̃ (α, β) can be viewed as the iteration matrix of the MGSSP iteration method

applied to the nonsymmetric nonsingular saddle point problem(
Â Br
−BT

r 0

)(
x̂
ŷ

)
=

(
f̂
−ĝ

)
,

where Â = U∗AU and ŷ, ĝ ∈ Rr.
ρ(T̃ (α, β)) < 1 implies γ(T (α, β)) = γ(T̂ (α, β)) < 1. By making use of the proof of

Theorem 3.1, we derive the following result.

Lemma 4.3. Let A be nonsymmetric positive definite, B be rank deficient and α ≥ 0, β > 0
be two given constants. Then, the pseudo-spectral radius of the matrix γ(α, β) is less than 1,
i.e., V(T (α, β)) < 1 for all α ≥ 0 and β > 0.

It follows from Lemmas 4.2 and 4.3 that two conditions in Lemma 4.1 are satisfied. Thus,
the semi-convergence of the MGSSP iteration method for solving nonsymmetric singular sad-
dle point problems can be obtained in the following theorem.

Theorem 4.1. Let A be nonsymmetric positive definite, B be rank deficient and α ≥ 0, β > 0
be two given constants. Then the MGSSP iteration method is semi-convergent for solving the
nonsymmetric singular saddle point problem (1) for all α ≥ 0 and β > 0.

5 Spectral analysis of the MGSSP preconditioned matrix

The MGSSP iteration method is a stationary iteration method. Although the unconditional
convergence and semi-convergence properties of the MGSSP iteration method are studied in
Theorem 3.1 and Theorem 4.1, respectively, the convergence (semi-convergence) rates of the
MGSSP iteration method may be slow even with the optimal parameters. To accelerate the
convergence (semi-convergence) rates of the MGSSP iteration method, we consider applying
the preconditioning techniques. In general, the eigenvalue and eigenvector distributions of the
preconditioned matrix relate closely to the convergence rates of Krylov subspace methods.
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Therefore, it is of significance to investigate the spectral properties of the preconditioned
matrix P−1MGSSPA. In this section, some spectral properties of the preconditioned matrix
P−1MGSSPA are studied.

Theorem 5.1. Let the MGSSP preconditioner be defined as in (4) and (λ, (u∗, v∗)∗) be an
eigenpair of the preconditioned matrix P−1MGSSPA. Then if B is of full column rank and
BTu = 0, then

λmin(H)(α+ 2λmin(H))

(α+ 2ρ(H))2 + 4ρ(S)2
≤ Re(λ) ≤ ρ(H)(α+ 2ρ(H)) + 2ρ(S)2

(α+ 2λmin(H))2
, |Im(λ)| ≤ αρ(S)

(α+ 2λmin(H))2
,(19)

where Re(λ) and Im(λ) denote the real part and the imaginary part of λ, respectively. If B is
rank deficient and u = 0, then λ = 0. Besides, if B is rank deficient and BTu = 0, then λ = 0
or λ satisfies the Inequalities (19). If BTu 6= 0, then the eigenvalues of the preconditioned
matrix P−1MGSSPA satisfy

λ+ =
1

2
+

(z1 − αβ − βa1) + i(z2 − βb1)
2(αβ + 2βa1 + 4c1 + 2iβb1)

, λ− =
1

2
− (z1 + αβ + βa1) + i(z2 + βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
,(20)

where

u∗Au

u∗u
= a1 + ib1,

u∗BBTu

u∗u
= c1 (21)

and z1, z2 are real numbers and z1 + iz2 is one of the square roots of a2 + b2i, with

a2 = β2(a21 − b21)− 4αβc1, b2 = 2β2a1b1

and

z1 =

√√
[β2(a21 − b21)− 4αβc1]2 + 4β4a21b

2
1 + β2(a21 − b21)− 4αβc1

2
,

z2 = sign(b1)

√√
[β2(a21 − b21)− 4αβc1]2 + 4β4a21b

2
1 − β2(a21 − b21) + 4αβc1

2
, (22)

and the second root of a2 + b2i is −(z1 + iz2). The eigenvalues λ± satisfy the following
inequality:∣∣∣∣λ± − 1

2

∣∣∣∣2 ≤ f(a1, b1, c1) ≤
(αβ + 2βρ(H)2)2 + (βρ(S) +

√
β2ρ(S)2 + 4αβρ(BBT ))2

4(αβ + 2βλmin(H) + 4λmin(BBT ))2
.(23)

When β → 0+, it holds that
λ+ =

1

2
+

(z1 − αβ − βa1) + i(z2 − βb1)
2(αβ + 2βa1 + 4c1 + 2iβb1)

→ 1

2
,

λ− =
1

2
− (z1 + αβ + βa1) + i(z2 + βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
→ 1

2
,

i.e., for α > 0, the eigenvalues of the preconditioned matrix P−1MGSSPA tend to scatter near
the point (12 , 0) as β → 0+; and when α→ 0+, it has
λ+ =

1

2
+

(z1 − αβ − βa1) + i(z2 − βb1)
2(αβ + 2βa1 + 4c1 + 2iβb1)

→ 1

2
+

(z1 − βa1) + i(z2 − βb1)
2(2βa1 + 4c1 + 2iβb1)

=
1

2
,

λ− =
1

2
− (z1 + αβ + βa1) + i(z2 + βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
→ 1

2
− (z1 + βa1) + i(z2 + βb1)

2(2βa1 + 4c1 + 2iβb1)
=

1

2
− βa1 + iβb1

2βa1 + 4c1 + 2iβb1
.

11



That is, for β > 0, the eigenvalues of the preconditioned matrix P−1MGSSPA tend to scatter

near the point (12 , 0) and the point (
βa1c1+2c21

(βa21+2c1)2+β2b21
,− βb1c1

(βa21+2c1)2+β2b21
) as α→ 0+.

In addition, the eigenvalues of P−1MGSSPA tend to scatter near the points

(
α0β2

0a1+2β2
0(a

2
1+b

2
1)+12β0a1c1+(α0β0+4c1)(4c1+z1)+2β0(a1z1+|b1z2|)

2[(α0β0+2β0a1+4c1)2+4β2
0b

2
1]

, (α0β0+2β0a1+4c1)(z2+β0b1)−2β0b1(β0a1+4c1+z1)
2[(α0β0+2β0a1+4c1)2+4β2

0b
2
1]

)

and (
α0β2

0a1+2β2
0(a

2
1+b

2
1)+12β0a1c1+(α0β0+4c1)(4c1−z1)−2β0(a1z1+|b1z2|)

2[(α0β0+2β0a1+4c1)2+4β2
0b

2
1]

, (α0β0+2β0a1+4c1)(β0b1−z2)−2β0b1(β0a1+4c1−z1)
2[(α0β0+2β0a1+4c1)2+4β2

0b
2
1]

)

as α→ α0 and β → β0 (0 ≤ α0 < +∞, 0 < β0 < +∞).

Proof. Let (λ, (u∗, v∗)∗) be an eigenpair of the preconditioned matrix P−1MGSSPA, we consider
the eigenvalue problem P−1MGSSPAη = λη, where η = (u∗, v∗)∗, then it holds that(

A B
−BT 0

)(
u
v

)
= λ

(
αI + 2A 2B
−2BT βI

)(
u
v

)
.

By simple manipulations, we get{
Au+Bv = λ(αI + 2A)u+ 2λBv,

−BTu = −2λBTu+ λβv,

i.e., {
Au = λ(αI + 2A)u+ (2λ− 1)Bv,

(2λ− 1)BTu = λβv.
(24)

If B has full column rank and u = 0, then it follows from the second equation of (24)
that λv = 0 and therefore v = 0, which contradicts to the assumption that (u∗, v∗)∗ is an
eigenvector. Hence u 6= 0. If B is of full column rank and BTu = 0, then from the second
equation of (24), we have v = 0 and

Au = λ(αI + 2A)u. (25)

Owing to u 6= 0, it holds that the definition u∗

u∗u does make sense. Premultiplying Equation

(25) with u∗

u∗u and utilizing the symbols defined as in (21) give

λ =
a1 + ib1

α+ 2a1 + 2ib1
=
a1(α+ 2a1) + 2b21 + iαb1

(α+ 2a1)2 + 4b21
. (26)

It is easy to verify that λ→ 1
2 as α→ 0+. Besides, (26) implies that

Re(λ) =
a1(α+ 2a1) + 2b21
(α+ 2a1)2 + 4b21

, Im(λ) =
αb1

(α+ 2a1)2 + 4b21
.

Since

λmin(H) ≤ a1 =
1

2

(
u∗Au

u∗u
+
u∗ATu

u∗u

)
=
u∗Hu

u∗u
= a1 ≤ ρ(H),

0 ≤ |b1| =
1

2

∣∣∣∣1i
(
u∗Au

u∗u
− u∗ATu

u∗u

)∣∣∣∣ =

∣∣∣∣u∗iSuu∗u

∣∣∣∣ ≤ ρ(S),

it is not difficult to derive (19).
If B is rank deficient and u = 0, then from the second equation of (24), we derive λ = 0.

Additionally, if B is rank deficient and BTu = 0, then it holds that λ = 0 or v = 0, λ 6= 0 by
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virtue of the second equation of (24). Similar to the derivation of (19), we also deduce (19)
as B is rank deficient, v = 0 and λ 6= 0.

In the sequel, we assume that BTu 6= 0. Then λ 6= 0 and u 6= 0. Otherwise, it follows
from the second equation of (24) that BTu = 0, a contradiction. From the second equation

of (24) we can easily get v = (2λ−1)BTu
λβ . Then substituting this relationship into the first

equation of (24) gives

λ2(αβI + 2βA+ 4BBT )u− λ(4BBT + βA)u+BBTu = 0. (27)

Multiplying u∗

u∗u on Equation (27) from the left and utilizing the symbols defined as in (21)
give

λ2(αβ + 2βa1 + 2iβb1 + 4c1)− λ(4c1 + βa1 + iβb1) + c1 = 0,

which can be equivalently transformed into the following equation

λ2 − λ 4c1 + βa1 + iβb1
αβ + 2βa1 + 2iβb1 + 4c1

+
c1

αβ + 2βa1 + 2iβb1 + 4c1
= 0. (28)

By solving Equation (28), we obtain its two roots as follows:

λ+ =
1

2
+

(z1 − αβ − βa1) + i(z2 − βb1)
2(αβ + 2βa1 + 4c1 + 2iβb1)

, λ− =
1

2
− (z1 + αβ + βa1) + i(z2 + βb1)

2(αβ + 2βa1 + 4c1 + 2iβb1)
,(29)

where z1 and z2 are given by (22). Applying (22) leads to

z1 =

√√
[β2(a21 − b21)− 4αβc1]2 + 4β4a21b

2
1 + β2(a21 − b21)− 4αβc1

2
,

=

√√
β4(a21 + b21)

2 − 8αc1β3(a21 − b21) + 16α2β2c21 + β2(a21 − b21)− 4αβc1
2

,

≤

√√
[β2(a21 + b21) + 4αβc1]2 + β2(a21 − b21)− 4αβc1

2
= βa1, (30)

|z2| =

√√
[β2(a21 − b21)− 4αβc1]2 + 4β4a21b

2
1 − β2(a21 − b21) + 4αβc1

2
,

≤

√√
[β2(a21 + b21) + 4αβc1]2 − β2(a21 − b21) + 4αβc1

2
=
√
β2b21 + 4αβc1, (31)

which yields that∣∣∣∣λ± − 1

2

∣∣∣∣2 =
(αβ + βa1 ± z1)2 + (βb1 ± z2)2

4[(αβ + 2βa1 + 4c1)2 + 4β2b21]

≤ (αβ + 2βa1)
2 + (β|b1|+

√
β2b21 + 4αβc1)

2

4[(αβ + 2βa1 + 4c1)2 + 4β2b21]
:= f(a1, b1, c1). (32)

It is evident that an upper bound of
∣∣λ± − 1

2

∣∣2 is f(a1, b1, c1), with a1, b1, c1 being bounded
as follows:

λmin(H) ≤ a1 ≤ ρ(H), 0 ≤ |b1| ≤ ρ(S), 0 ≤ b21 ≤ ρ(S)2, λmin(BBT ) ≤ c1 ≤ ρ(BBT ),
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which leads to∣∣∣∣λ± − 1

2

∣∣∣∣2 ≤ f(a1, b1, c1) ≤
(αβ + 2βρ(H)2)2 + (βρ(S) +

√
β2ρ(S)2 + 4αβρ(BBT ))2

4(αβ + 2βλmin(H) + 4λmin(BBT ))2
.

Furthermore, it is not difficult to verify that z1, z2 → 0 as β → 0+, and therefore for α > 0,
λ+, λ− → 1

2 as β → 0+. Moreover, if α → 0+, then it follows from (22) that z1 → βa1 and
z2 → βb1, thus

λ+ →
1

2
+

(z1 − βa1) + i(z2 − βb1)
2(2βa1 + 4c1 + 2iβb1)

=
1

2
,

λ− →
1

2
− (z1 + βa1) + i(z2 + βb1)

2(2βa1 + 4c1 + 2iβb1)
=

1

2
− βa1 + iβb1

2βa1 + 4c1 + 2iβb1
,

which means that for β > 0, the eigenvalues of the preconditioned matrix P−1MGSSPA tend

to scatter near the point (12 , 0) and the point (
βa1c1+2c21

(βa21+2c1)2+β2b21
,− βb1c1

(βa21+2c1)2+β2b21
) as α → 0+.

Additionally, it is easily seen that the eigenvalues of P−1MGSSPA tend to scatter near the points

(
α0β2

0a1+2β2
0(a

2
1+b

2
1)+12β0a1c1+(α0β0+4c1)(4c1+z1)+2β0(a1z1+|b1z2|)

2[(α0β0+2β0a1+4c1)2+4β2
0b

2
1]

, (α0β0+2β0a1+4c1)(z2+β0b1)−2β0b1(β0a1+4c1+z1)
2[(α0β0+2β0a1+4c1)2+4β2

0b
2
1]

)

and (
α0β2

0a1+2β2
0(a

2
1+b

2
1)+12β0a1c1+(α0β0+4c1)(4c1−z1)−2β0(a1z1+|b1z2|)

2[(α0β0+2β0a1+4c1)2+4β2
0b

2
1]

, (α0β0+2β0a1+4c1)(β0b1−z2)−2β0b1(β0a1+4c1−z1)
2[(α0β0+2β0a1+4c1)2+4β2

0b
2
1]

)

as α→ α0 and β → β0 (0 ≤ α0 < +∞, 0 < β0 < +∞). �

Remark 5.1. It follows from Theorem 5.1 that

Re(λ+) =
αβ2a1 + 2β2(a21 + b21) + 12βa1c1 + (αβ + 4c1)(4c1 + z1) + 2β(a1z1 + |b1z2|)

2[(αβ + 2βa1 + 4c1)2 + 4β2b21]
> 0,

Re(λ−) =
αβ2a1 + 2β2(a21 + b21) + 12βa1c1 + (αβ + 4c1)(4c1 − z1)− 2β(a1z1 + |b1z2|)

2[(αβ + 2βa1 + 4c1)2 + 4β2b21]

≥ 8c1(βa1 + 2c1)

2[(αβ + 2βa1 + 4c1)2 + 4β2b21]
> 0

as α ≥ 0, β > 0 and BTu 6= 0, and if B is of full column rank and BTu = 0, then from (19),
we infer that Re(λ) > 0, where (λ, (u∗, v∗)∗) is an eigenpair of the preconditioned matrix
P−1MGSSPA. Thus all eigenvalues of P−1MGSSPA have positive real parts and lie in a positive
box as B is of full column rank, which may result in fast convergence of Krylov subspace
acceleration. Besides, from the proof of Theorem 5.1, it can be seen that when BTu = 0 and
α → 0+, it holds that λ → 1

2 or λ = 0; when BTu 6= 0, λ → (12 , 0) as β → 0+ for α ≥ 0.
This implies that the MGSSP preconditioned matrix P−1MGSSPA with proper parameters α
and β has much denser spectrum distribution compared with the saddle point matrix A. This
means that when the MGSSP preconditioner is applied for the GMRES method, the rate of
convergence (semi-convergence) can be improved considerably. This fact is further confirmed
by the numerical results presented in Tables 2-4 and Tables 6-8 of Section 6. What is more,
since

(αβ + 2βa1)
2 + (β|b1|+

√
β2b21 + 4αβc1)

2

= (αβ + 2βa1)
2 + 2β2b21 + 4αβc1 + 2β|b1|

√
β2b21 + 4αβc1

≤ (αβ + 2βa1)
2 + 2β2b21 + 4αβc1 + 2β|b1|

√
β2|b1|2 + 4αβc1 +

(
2αc1
|b1|

)2

= (αβ + 2βa1)
2 + 4β2b21 + 8αβc1 ≤ (αβ + 2βa1 + 4c1)

2 + 4β2b21,
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then from (32), we have that∣∣∣∣λ± − 1

2

∣∣∣∣2 ≤ (αβ + 2βa1)
2 + (β|b1|+

√
β2b21 + 4αβc1)

2

4[(αβ + 2βa1 + 4c1)2 + 4β2b21]
≤ 1

4
.

Then all eigenvalues of P−1MGSSPA are located in a circle centered at (12 , 0) with radius 1
2 .

Owing to the fact the convergence of Krylov subspace methods is not only dependent on
the eigenvalue distribution of the preconditioned matrix, but also on the corresponding eigen-
vectors of the preconditioned matrix [1, 4] except for the case that the preconditioned matrix
is symmetric. We next discuss the eigenvector distribution of P−1MGSSPA in the following
theorem.

Theorem 5.2. Let the MGSSP preconditioner PMGSSP be defined as in (4). If B is of full col-
umn rank and α = 0, then the preconditioned matrix P−1MGSSPA has m+i (0 ≤ i ≤ m) linearly
independent eigenvectors, and if B is of full column rank and α > 0, then the preconditioned
matrix P−1MGSSPA has i (0 ≤ i ≤ m) linearly independent eigenvectors. If B is rank deficient
and α = 0, then the preconditioned matrix P−1MGSSPA has m + i + j (0 ≤ i ≤ m, 1 ≤ j ≤ n)
linearly independent eigenvectors, and if B is rank deficient and α > 0, then the precondi-
tioned matrix P−1MGSSPA has i+ j (0 ≤ i ≤ m, 1 ≤ j ≤ n) linearly independent eigenvectors.
There are

1) m eigenvectors of the form

(
ul
0

)
(1 ≤ l ≤ m) that correspond to the eigenvalue 1

2 as

α = 0, where ul 6= 0 (1 ≤ l ≤ m) are arbitrary linearly independent vectors;

2) If B is of full column rank and α > 0, i (0 ≤ i ≤ m) eigenvectors of the form

(
u1l

(2λ−1)BTu1l
λβ

)
(1 ≤ l ≤ i) that correspond to the eigenvalues λ 6= 1

2 , where u1l (1 ≤ l ≤ i) satisfy
λβAu1l = βλ2(αI + 2A)u1l + (2λ− 1)2BBTu1l .

3) If B is rank deficient and α > 0, i (0 ≤ i ≤ m) eigenvectors of the form

(
u1l

(2λ−1)BTu1l
λβ

)
(1 ≤ l ≤ i) that correspond to the eigenvalues λ 6= 1

2 , 0, where u1l (1 ≤ l ≤ i) satisfy

λβAu1l = βλ2(αI + 2A)u1l + (2λ − 1)2BBTu1l ; and j (1 ≤ j ≤ n) eigenvectors

(
0
v2l

)
(1 ≤ l ≤ j) that correspond to the eigenvalue 0, where v2l 6= 0 (1 ≤ l ≤ j) satisfy Bv2l = 0.

Proof. Let λ be an eigenvalue of the preconditioned matrix P−1MGSSPA and

(
u
v

)
be the

corresponding eigenvector. To investigate the eigenvector distribution, we consider Equation
(24) as follows: {

Au = λ(αI + 2A)u+ (2λ− 1)Bv,

(2λ− 1)BTu = λβv.
(33)

Firstly, we consider B has full column rank. If u = 0, then it follows from the second equation
of (33) that λv = 0 and therefore v = 0, which contradicts to the assumption that (u∗, v∗)∗

is an eigenvector. Hence u 6= 0. If λ = 1
2 , then from (33) we can easily get αu = 0 and

v = 0. If α = 0, then Equation (33) is always true for the case of λ = 1
2 . Hence, there are m

linearly independent eigenvectors

(
ul
0

)
(l = 1, 2, · · · ,m) corresponding to the eigenvalue 1

2
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as α = 0, where ul (l = 1, 2, · · · ,m) are arbitrary linearly independent vectors. If α > 0, then
u = 0 and v = 0, a contradiction.

Next, we consider the case λ 6= 1
2 . It follows from the second equation of (33) that

v = (2λ−1)BTu
λβ . Substituting this relation into the first equation of (33) results in

λβAu = βλ2(αI + 2A)u+ (2λ− 1)2BBTu. (34)

If there exists u 6= 0 which satisfies (34), there will be i (1 ≤ i ≤ m) linearly independent

eigenvectors

(
u1l
v1l

)
(1 ≤ l ≤ i) corresponding to the eigenvalues λ 6= 1

2 . Here, u1l 6= 0

(1 ≤ l ≤ i) satisfy λβAu1l = βλ2(αI+2A)u1l +(2λ−1)2BBTu1l and the forms of v1l (1 ≤ l ≤ i)
are

v1l =
(2λ− 1)BTu1l

λβ
.

If B is rank deficient, then λ = 0 is an eigenvalue of P−1MGSSPA. If λ = 0, then from (33),
it holds that BTu = 0 and Au = −Bv, which lead to BTA−1Bv = 0 and therefore Bv = 0
is due to the fact that A−1 is positive definite, then we have Au = 0 and u = 0. Recalling
that B is rank deficient, then there exists v 6= 0 which satisfies Bv = 0, hence there will be

j (1 ≤ j ≤ n) linearly independent eigenvectors

(
0
v2l

)
(1 ≤ l ≤ j) corresponding to the

eigenvalue 0, where v2l 6= 0 (1 ≤ l ≤ j) satisfy Bv2l = 0. With a quite similar strategy utilized
in the case that B has full column rank, we also can obtain the eigenvectors that correspond
to λ = 1

2 and λ 6= 0, 12 are the same as those for the case that B is of full column rank.
Now, we show that the m + i eigenvectors are linearly independent when B is of full

column rank and α = 0. Let c(1) = [c
(1)
1 , c

(1)
2 , · · · , c(1)m ] and c(2) = [c

(2)
1 , c

(2)
2 , · · · , c(2)i ] be two

vectors with 0 ≤ i ≤ m. Then, we need to show that

(
u1 · · · um
0 · · · 0

) c
(1)
1
...

c
(1)
m

+

(
u11 · · · u1i
v11 · · · v1i

) c
(2)
1
...

c
(2)
i

 =

 0
...
0

 (35)

holds if and only if the vectors c(1) and c(2) both are zero vectors. Recall that in (35) the first
matrix arises from the case λl = 1

2 (l = 1, 2, · · · ,m) in 1), and the second matrix from the
case λl 6= 1

2 (l = 1, 2, · · · , i) in 2). Multiplying both sides of (35) from left with 2P−1MGSSPA
leads to

(
u1 · · · um
0 · · · 0

) c
(1)
1
...

c
(1)
m

+

(
u11 · · · u1i
v11 · · · v1i

) 2λ1c
(2)
1

...

2λic
(2)
i

 =

 0
...
0

 . (36)

Then, by subtracting (35) from (36), it holds that

(
u11 · · · u1i
v11 · · · v1i

) (2λ1 − 1)c
(2)
1

...

(2λi − 1)c
(2)
i

 =

 0
...
0

 .
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Since the eigenvalues λl 6= 1
2 and

(
u1l
v1l

)
(1 ≤ l ≤ i) are linearly independent, we infer that

c
(2)
l = 0 (l = 1, 2, · · · , i). Because of the linear independence of ul (l = 1, 2, · · · ,m), it follows

that c
(1)
l = 0 (l = 1, 2, · · · ,m). Therefore, the m+ i eigenvectors are linearly independent.

In the sequel, we verify the m + i + j eigenvectors are linearly independent when B

is rank deficient and α = 0. Let c(1) = [c
(1)
1 , c

(1)
2 , · · · , c(1)m ], c(2) = [c

(2)
1 , c

(2)
2 , · · · , c(2)i ] and

c(3) = [c
(3)
1 , c

(3)
2 , · · · , c(3)j ] be three vectors with 0 ≤ i ≤ m and 1 ≤ j ≤ n, and

(
u1 · · · um
0 · · · 0

) c
(1)
1
...

c
(1)
m

+

(
u11 · · · u1i
v11 · · · v1i

) c
(2)
1
...

c
(2)
i

+

(
0 · · · 0
v21 · · · v2j

)
c
(3)
1
...

c
(3)
j

 =

 0
...
0

 .(37)

It is necessary for us to prove that (37) holds if and only if the vectors c(1), c(2) and c(3)

are all zero vectors, where the first matrix consists of the eigenvectors corresponding to the
eigenvalue 1

2 for the case 1), and the second and the third matrices consist of those for the case
3). Premultiplying (37) with 2P−1MGSSPA and going through the same algebraic operations
as before, we also obtain

(
u11 · · · u1i
v11 · · · v1i

) (2λ1 − 1)c
(2)
1

...

(2λi − 1)c
(2)
i

− ( 0 · · · 0
v21 · · · v2j

)
c
(3)
1
...

c
(3)
j

 =

 0
...
0

 .

Inasmuch as λl 6= 1
2 and u1l (1 ≤ l ≤ i) are linearly independent, it holds that c

(2)
l = 0

(l = 1, 2, · · · , i). Then it has

(
0 · · · 0
v21 · · · v2j

)
c
(3)
1
...

c
(3)
j

 =

 0
...
0

 .

As the vectors v2l (l = 1, 2, · · · , j) are also linearly independent, we have c
(3)
l = 0 (l =

1, 2, · · · , j). Thus, (37) becomes to

(
u1 · · · um
0 · · · 0

) c
(1)
1
...

c
(1)
m

 =

 0
...
0

 .

Since ul (l = 1, 2, · · · ,m) are linearly independent, we have c
(1)
l = 0 (l = 1, 2, · · · ,m). As a

result, it holds that the m+ i+ j eigenvectors are linearly independent.
Finally, we prove the i+ j eigenvectors are linearly independent when B is rank deficient

and α > 0. Let c(1) = [c
(1)
1 , c

(1)
2 , · · · , c(1)i ] and c(2) = [c

(2)
1 , c

(2)
2 , · · · , c(2)j ] be two vectors with

0 ≤ i ≤ m, 1 ≤ j ≤ n. Then, we need to show that

(
u11 · · · u1i
v11 · · · v1i

) c
(1)
1
...

c
(1)
i

+

(
0 · · · 0
v21 · · · v2j

)
c
(2)
1
...

c
(2)
j

 =

 0
...
0


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Figure 1: Convergence curve of algorithms with v = 0.1 for p = 16, p = 32 and p = 64,
respectively.

holds if and only if the vectors c(1) and c(2) both are zero vectors. Since u1l (1 ≤ l ≤ i)

are linearly independent, we infer that c
(1)
l = 0 (l = 1, 2, · · · , i). Because of the linear

independence of v2l (l = 1, 2, · · · , j), it follows that c
(2)
l = 0 (l = 1, 2, · · · , j). Consequently,

the above i+ j eigenvectors are linearly independent. �

6 Numerical experiments

In this section, two numerical examples are used to verify the performance of the MGSSP
iteration method and the MGSSP preconditioned GMRES method. In the meanwhile, we
compare the MGSSP iteration method with the GSS and GMSS methods, and also compare
the MGSSP preconditioner with the SS, GSS, MSS and GMSS preconditioners for the GMRES
method according to the number of iterations (denoted by “IT”) and the elapsed CPU times
(denoted by “CPU”). All codes are run in MATLAB (version R2016a) and all experiments
are performed on an Intel(R) Pentium(R) CPU G3240T 2.70 GHz, 4.0GB memory and XP
operating system. In our implementations, the linear systems (αI + A + 1

αBB
T )x = b,

(αI + A + 1
βBB

T )x = b and (αI + 2A + 4
βBB

T )x = b involved in the SS, GSS and MGSSP
iteration, respectively are solved exactly by the the LU factorization. In addition, the linear
systems (αI + 2H + 1

αBB
T )x = b and (αI + 2H + 1

βBB
T )x = b contained in the MSS and

the GMSS iteration are solved exactly by the Cholesky factorization.
In our numerical experiments, we choose the right-hand side vector b so that the exact

solution of the saddle point problem (1) is (1, 1, · · · , 1)T . All experiments are started from
the initial vector x(0) = (x(0)T , y(0)T )T = (0, 0, · · · , 0)T , terminated once the current iterate
x(k) satisfies

RES =

√
‖f −Ax(k) −By(k)‖22 + ‖g −BTx(k)‖22√

‖f‖22 + ‖g‖22
< 10−6, (38)

and we use “–” to indicate that the corresponding iteration method does not satisfy the
prescribed stopping criterion until 500 iteration steps.

Example 6.1. Consider the nonsymmetric nonsingular saddle point problem structured as

18



Figure 2: Convergence curve of algorithms with varying α = β for p = 32.

Figure 3: The eigenvalue distribution of the six preconditioners for A with α = 0.6 and
β = 0.8 for p = 32 and v = 1.

(1) with the following coefficient sub-matrices [36]:

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2 , B =

(
I ⊗ F
F ⊗ I

)
∈ R2p2×p2 ,

T =
v

h2
.tridiag(−1, 2,−1) +

1

2h
.tridiag(−1, 0, 1) ∈ Rp×p, F =

1

h
.tridiag(−1, 1, 0) ∈ Rp×p,

where ⊗ denotes the Kronecker product symbol and h = 1
p+1 is the discretization mesh size.

In Table 1, we list the parameters involved in the tested methods which are chosen to be the
experimentally found optimal ones that minimize the total number of iteration steps for those
methods, as well as the numerical results of the GSS, GMSS and MGSSP iteration methods
when v = 0.1 with respect to different grids 16×16, 32×32 and 64×64. Moreover, numerical
results of the GMRES method and the preconditioned GMRES methods incorporated with
the SS, GSS, MSS, GMSS and the MGSSP preconditioners are listed in Tables 2-4 for v = 1,
0.1 and 0.01 on different uniform grids, respectively.
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Table 1: Numerical results for the three iteration methods with v = 0.1.

Method p
16 32 64

αexp 20 51 125
βexp 2.7 5 1.5

GSS IT 58 72 102
CPU 0.2556 1.1583 21.2715
RES 8.79e-07 8.68e-07 9.80e-07
αexp 22 36 38
βexp 16 8.3 5.9

GMSS IT 66 73 89
CPU 0.4955 1.5732 26.4811
RES 8.45e-07 9.09e-07 9.50e-07
αexp 0.2 0.5 0.2
βexp 0.1 0.1 0.1

MGSSP IT 21 21 21
CPU 0.1514 0.7012 10.1562
RES 9.88e-07 9.85e-07 9.57e-07

In order to better understand the numerical results in Table 1, convergence history of
the GSS, GMSS and MGSSP iteration methods with experimental optimal parameters are
depicted in Figure 1. To further confirm the effectiveness of the MGSSP preconditioned GM-
RES method, we plot the IT of the three preconditioned GMRES methods with parameters
α = β from 0.1 to 10 with step size 0.1 in Figure 2. For more investigations, the eigenvalue
distributions of the original matrix A and the five preconditioned matrices with α = 0.6 and
β = 0.8 for v = 1 and p = 32 are displayed in Figure 3.

Looking into Tables 1-4 and Figures 1-3 one may make the following observations.

• From Table 1, it can be observed that the experimental optimal parameters of the
MGSSP iteration method are more stable compared with those of other two methods.
Besides, the results in Table 1 imply that the MGSSP iteration method is superior to
the other two methods from the point view of the IT and CPU times, and the IT of the
MGSSP iteration method remains constant under the experimental optimal parameters
with the increasing of the problem size.

• By comparing the results in Tables 2-4, it can be seen that without preconditioning, the
GMRES method converges very slow even invalid within 500 iteration steps for larger
linear systems. All aforementioned preconditioners can largely accelerate the conver-
gence rate of the GMRES method. The proposed MGSSP preconditioned GMRES
method performs better than other five preconditioned GMRES methods as it requires
less IT and CPU times. Another observation which can be pointed out is that, the
convergence behavior of the MGSSP preconditioned GMRES method is not sensitive to
p, in the sense the iterations barely change.

• Figure 1 indicates that the three tested methods converge while the MGSSP itera-
tion method returns better numerical results than the GSS and the GMSS iteration
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Table 2: Numerical results for the six preconditioned GMRES methods with v = 1, α = 0.6
and β = 0.8.

p I PSS PGSS PMSS PGMSS PMGSSP

16 IT 121 9 9 15 13 7
CPU 0.1550 0.0447 0.1505 0.1838 0.1705 0.0837
RES 7.21e-07 5.61e-07 3.29e-07 3.29e-07 6.69e-07 3.78e-07

32 IT 264 10 9 15 14 7
CPU 3.8574 0.5004 0.4703 0.8234 0.7600 0.3831
RES 9.74e-07 2.54e-07 7.25e-07 7.63e-07 9.24e-07 9.67e-07

48 IT 429 10 10 16 15 8
CPU 24.7021 3.7594 3.5617 6.2255 5.7171 2.8951
RES 9.95e-07 6.29e-07 1.77e-07 6.33e-07 5.21e-07 1.78e-07

64 IT – 11 10 16 15 8
CPU – 22.5881 21.3997 33.6562 31.2381 16.2309
RES – 3.75e-07 2.58e-07 8.29e-07 8.93e-07 2.50e-07

Table 3: Numerical results for the six preconditioned GMRES methods with v = 0.1, α = 1
and β = 0.8.

p I PSS PGSS PMSS PGMSS PMGSSP

16 IT 115 8 8 17 17 6
CPU 0.1326 0.0982 0.0850 0.2155 0.2371 0.0783
RES 9.50e-07 4.54e-07 1.56e-07 5.89e-07 4.29e-07 5.96e-07

32 IT 240 9 8 17 17 7
CPU 3.4868 0.4959 0.4568 0.8974 0.8876 0.4244
RES 9.34e-07 2.10e-07 6.49e-07 8.09e-07 4.93e-07 7.16e-07

48 IT 367 9 9 18 17 7
CPU 20.4798 3.3953 3.3951 6.8142 6.4413 2.7642
RES 9.80e-07 4.38e-07 1.36e-07 3.97e-07 6.37e-07 1.40e-07

64 IT 495 9 9 18 17 7
CPU 81.8770 18.4334 18.5499 37.0634 35.4719 15.1190
RES 9.73e-07 6.88e-07 2.15e-07 4.82e-07 7.42e-07 2.18e-07
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methods. From Figure 2, as we expected for Example 6.1, we see that the MGSSP
preconditioned GMRES method outperforms the other two methods with the chang-
ing of α, and show that our proposed preconditioner is more effective and practical
for solving the nonsymmetric nonsingular saddle point problems, in comparison with
the other preconditioners. Additionally, as seen from Figure 3, the preconditioned ma-
trix P−1MGSSPA has more clustered eigenvalues than the other ones. This means that
the MGSSP preconditioner outperforms the other five preconditioners for the GMRES
method, which is congruous with the results of Table 2.

Table 4: Numerical results for the six preconditioned GMRES methods with v = 0.01, α = 1.2
and β = 1.5.

p I PSS PGSS PMSS PGMSS PMGSSP

16 IT 246 9 10 51 54 7
CPU 0.3743 0.1904 0.1345 0.5309 0.8654 0.1071
RES 9.65e-07 8.26e-07 3.04e-07 9.10e-07 7.90e-07 8.61e-07

32 IT 429 9 10 55 56 7
CPU 7.2934 0.4691 0.5084 2.6743 3.2658 0.4067
RES 9.88e-07 8.40e-07 3.19e-07 8.57e-07 8.40e-07 8.72e-07

48 IT – 9 10 57 58 7
CPU – 3.5469 3.8431 21.1369 23.6098 2.7461
RES – 8.61e-07 3.21e-07 9.91e-07 9.05e-07 8.50e-07

64 IT – 9 10 57 57 7
CPU – 18.9807 20.9074 113.9468 117.1580 15.2981
RES – 7.78e-07 2.58e-07 9.56e-07 9.58e-07 7.56e-08

Example 6.2. Consider the nonsymmetric singular saddle point problem structured as (1)
with the following coefficient sub-matrices [40]:

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2 , B =

(
B̂ b1 b2

)
∈ R2p2×(p2+2),

where

T =
v

h2
.tridiag(−1, 2,−1) +

1

2h
.tridiag(−1, 0, 1) ∈ Rp×p, B̂ =

(
I ⊗ F
F ⊗ I

)
∈ R2p2×p2 ,

b1 = B̂

(
e
0

)
, b2 = B̂

(
0
e

)
, e = (1, 1, · · · , 1) ∈ Rp

2/2,

F =
1

h
.tridiag(−1, 1, 0) ∈ Rp×p, h =

1

p+ 1
.

Here ⊗ denotes the Kronecker product and h = 1
p+1 is the discretization meshsize. The

iterations of all tested methods are terminated once the current iterate x(k) satisfies (38) or
the maximum prescribed number of iterations kmax = 500 is exceeded.

Table 5 reports the iteration counts, CPU times and relative residual (RES) of the tested
iteration methods with respect to different values of the problem size p for v = 0.1. We adopt
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Table 5: Numerical results for the three iteration methods with v = 0.1.

Method p
16 32 64

αexp 13 29 66
βexp 39 53 60

GSS IT 85 136 230
CPU 0.3211 2.1355 47.4292
RES 9.48e-07 9.83e-07 9.73e-07
αexp 16 18 24
βexp 75 134.4 240

GMSS IT 143 213 337
CPU 0.8641 4.5574 100.4047
RES 9.86e-07 9.90e-07 9.98e-07
αexp 0.02 0.01 0.05
βexp 0.1 0.05 0.1

MGSSP IT 21 21 21
CPU 0.0990 0.6706 11.0860
RES 9.53e-07 9.54e-07 9.54e-07

the parameters of the tested methods to be the experimentally found optimal ones. From
Table 5, we observe that although all tested methods succeed in producing approximate
solutions in all cases, the MGSSP iteration method outperforms other two methods in terms
of the IT and CPU times, and the advantage of the MGSSP iteration method becomes more
pronounced as the system size increases.

With respect to different sizes of the coefficient matrix, we list the numerical results of the
SS, GSS, MSS, GMSS and MGSSP preconditioned GMRES methods with different values of
v (v = 1, v = 0.1 and v = 0.01) in Tables 6-8, respectively. From Tables 6-8, we can conclude
some observations as follows. Firstly, the GMRES method does not converge when v = 0.01
and p becomes large. Secondly, the five preconditioners can improve the convergence behavior
of the GMRES method, but the MGSSP preconditioned GMRES method returns better
numerical results than the other preconditioned GMRES methods in terms of IT and CPU
time. Lastly, the MSS and GMSS preconditioned GMRES methods have worse convergence
behaviors as v becomes small.

The graphs of RES(log10) against number of iterations of in Table 5 for three different
sizes are displayed in Figure 4. As observed in Figure 4, the MGSSP iteration method leads
to much better performance than the GSS and the GMSS iteration methods. It is worthy
noting that the IT of the GSS and the GMSS iteration methods increase when p becomes
large, but this is not true for the MGSSP iteration method.

In order to compare effects of the GSS, GMSS, and the MGSSP preconditioned GMRES
methods in terms of the parameters α and β, we test these methods with α = β and plot the
IT of the three preconditioned GMRES methods with α from 0.1 to 10 with step size 0.1 in
Figure 5. From Figure 5, we can obtain the same results as those of Figure 2.

In order to better investigate the performance of the tested preconditioned GMRES meth-
ods, Figure 6 depicts the eigenvalue distributions of the saddle point matrix A, the SS, GSS,
MSS, GMSS and MGSSP preconditioned matrices with v = 0.1 and p = 32. These subfigures
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Table 6: Numerical results for the six preconditioned GMRES methods with v = 1, α = 0.6
and β = 0.8.

p I PSS PGSS PMSS PGMSS PMGSSP

16 IT 145 9 8 15 13 6
CPU 0.2146 0.0447 0.0968 0.1838 0.1705 0.0813
RES 7.95e-07 5.61e-07 2.16e-07 3.29e-07 6.69e-07 8.81e-07

32 IT 278 10 9 15 14 7
CPU 4.1297 0.5004 0.4388 0.8234 0.7600 0.4251
RES 9.79e-07 2.54e-07 1.46e-07 7.63e-07 9.24e-07 2.09e-07

48 IT 366 10 9 16 15 7
CPU 20.2558 3.7594 3.4238 6.2255 5.7171 2.6904
RES 9.71e-07 6.29e-07 4.26e-07 6.33e-07 5.21e-07 5.66e-07

64 IT 465 11 9 16 15 8
CPU 76.1434 22.5881 18.1854 33.6562 31.2381 16.5291
RES 9.71e-07 3.75e-07 8.37e-07 8.29e-07 8.93e-07 9.27e-08

clearly show that the preconditioned matrices have more tightly clustered eigenvalues than
the original matrix. Moreover, the eigenvalues of the MGSSP preconditioned matrix are much
tighter than the other ones. These observations imply that the MGSSP preconditioned GM-
RES method has better numerical performance than other preconditioned GMRES methods
and it can act as an efficient preconditioner for solving the nonsymmetric singular saddle
point problem by the preconditioned GMRES method.

Table 7: Numerical results for the six preconditioned GMRES methods with v = 0.1, α = 1.8
and β = 1.5.

p I PSS PGSS PMSS PGMSS PMGSSP

16 IT 122 9 9 19 19 7
CPU 0.1422 0.1298 0.1276 0.3788 0.3205 0.1223
RES 8.71e-07 5.68e-07 2.67e-07 7.02e-07 5.33e-07 1.62e-07

32 IT 237 10 9 19 19 7
CPU 3.3291 0.6218 0.5728 1.1392 1.1254 0.4491
RES 9.87e-07 2.31e-07 5.53e-07 6.67e-07 5.62e-07 2.83e-07

48 IT 350 10 9 19 19 7
CPU 19.3841 4.1896 3.8573 7.9254 8.3686 3.1636
RES 9.99e-07 3.20e-07 7.60e-07 7.45e-07 5.74e-07 3.81e-07

64 IT 461 10 9 19 19 7
CPU 76.1620 23.0578 20.8402 44.0056 42.1010 17.2456
RES 9.82e-07 3.91e-07 9.15e-07 8.17e-07 6.00e-07 4.58e-07

7 Conclusions

For nonsymmetric saddle point problems, by combining the GSS and MSSP of a matrix,
we establish a modified generalized shift-splitting (MGSSP) iteration method and the corre-
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Figure 4: Convergence curve of algorithms with v = 0.1 for p = 16, p = 32 and p = 64,
respectively.

Figure 5: Convergence curve of algorithms with varying α = β for p = 32.

Table 8: Numerical results for the six preconditioned GMRES methods with v = 0.01, α =
1.85 and β = 1.75.

p I PSS PGSS PMSS PGMSS PMGSSP

16 IT 250 10 10 59 59 7
CPU 0.4184 0.1320 0.1333 0.8935 0.9098 0.1191
RES 9.42e-07 5.70e-07 4.30e-07 8.22e-07 8.03e-07 8.47e-07

32 IT 419 10 10 60 60 7
CPU 7.0626 0.6292 0.6296 3.3032 3.3277 0.4901
RES 9.85e-07 5.31e-07 3.93e-07 9.43e-07 9.14e-07 8.11e-07

48 IT – 10 10 60 60 7
CPU – 4.1788 4.3580 23.9170 23.6870 3.0734
RES – 5.75e-07 4.28e-07 9.46e-07 9.15e-07 8.72e-07

64 IT – 10 10 60 60 7
CPU – 23.6671 24.2199 130.4922 130.1184 16.9088
RES – 6.43e-07 4.83e-07 9.40e-07 9.07e-07 9.34e-07
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Figure 6: The eigenvalue distribution of the six preconditioners for A with α = 1.8 and
β = 1.5 for p = 32 and v = 0.1.

sponding preconditioner called the MGSSP preconditioner in this paper. The unconditional
convergence and semi-convergence of the MGSSP iteration method for solving nonsingular
and singular saddle point problems, respectively are discussed. Moreover, eigenproperties of
the preconditioned matrix are described. Numerical results given in Section 6 illustrate that
the efficiency of the MGSSP iteration method and the MGSSP preconditioner for saddle point
problems with nonsymmetric positive definite (1,1) parts, and confirm that they outperform
some existing ones.

We should point out that the MGSSP preconditioner may not have the optimality prop-
erty, i.e., the iteration counts depend on the parameters α and β (see Figures 2 and 5).
Besides, admittedly, the choices of the optimal parameters of the MGSSP iteration method
and the MGSSP preconditioned GMRES method is a challenging problem that deserves fur-
ther study. For most iterative methods, this work is very complicated. Nevertheless, by
adopting certain approximation strategies, there have been practically useful formula for ob-
taining nearly optimal iteration parameters; see [38, 22, 31]. To further investigations, we
would like to study how to further improve the MGSSP preconditioner and choose the optimal
parameters for the MGSSP iteration method.
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