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L1 spline fits via sliding window process : continuous and discrete

cases

Laurent Gajny1, Olivier Gibaru1,2, Eric Nyiri1

Abstract

Best L1 approximation of the Heaviside function and best ℓ1 approximation of multiscale uni-
variate datasets by cubic splines have a Gibbs phenomenon. Numerical experiments show that it
can be reduced by using L1 spline fits which are best L1 approximations in an appropriate spline
space obtained by the union of L1 interpolation splines. We prove here the existence of L1 spline
fits which has never been done to the best of our knowledge. Their major disadvantage is that
obtaining them can be time consuming. Thus we propose a sliding window method on seven
nodes which is as efficient as the global method both for functions and datasets with abrupt
changes of magnitude but within a linear complexity on the number of spline nodes.

Keywords : Best approximation, L1 norm, shape preservation, polynomial spline, Heaviside
function, sliding window

1 Introduction

Over the past fifteen years, L1 minimization-based methods have shown very interesting features
for the interpolation and approximation of continuous or discontinuous function and irregular geo-
metric data. In [MPS95], Moskona et al. have shown the Gibbs phenomenon existing for best L1

trigonometric approximation of the Heaviside function is lower than the one observed using the L2

norm. Saff and Tashev have done a similar work leading to the same conclusion using polygonal
lines [ST99].
Similarly to classical cubic interpolation splines which minimize the L2 norm of the second deriva-
tive, Lavery has defined cubic Hermite interpolation splines which minimizes the L1 norm of the
second derivative [Lav00b]. He has noted that this strategy enabled to delete completely the Gibbs
phenomenon observed for classical L2 cubic interpolation spline when applied on the Heaviside
function. It has later been shown formally by Auquiert et al. [AGN07b].
Further work has then focused on an appropriate combination of the best L1 approximation func-
tional and the variational L1 functional used for the interpolation problem. Lavery has firstly
proposed a linear combination of the two functionals and called the resulting splines L1 smoothing
splines [Lav00a]. They do not introduce oscillation on multiscale univariate datasets contrary to
L2 smoothing splines. However, the regularization parameter used in the linear combination of L1

functionals cannot be easily fixed.
Lavery has then proposed another kind of L1 splines named L1 spline fits [Lav04]. They are best
L1 approximations in an appropriate spline space obtained by the union of L1 interpolation splines.
Like L1 smoothing splines, they do not introduce oscillations but they have the asset that they do
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not need any additional parameter. Existence of such splines was not shown in [Lav04]. We prove
in this paper that L1 splines fits at a given set of nodes exist for every function in L1[a, b].
One must admit that the intrinsic non-linearity of L1 norm problems imply that a closed form solu-
tion is not available in general. A global numerical solvation is then currently used [Lav00b, Lav00a,
Lav04, AGN07a, DGP10]. Another strategy has been introduced in 2011 by Nyiri, Auquiert and
Gibaru for the interpolation problem [NGA11]. The algorithm they design is based on a sliding-
window process. It consists in finding a set of local solutions on a limited number of successive
points - five for the interpolation problem. By keeping appropriate information - the derivative at
the middle point of the window - one can easily construct a global interpolating function which
has similar shape preserving properties than the global solution. Moreover, this process enables
to have a linear complexity algorithm and it can be parallelized. This process has also been ap-
plied in recent articles for a problem of approximation of data with prescribed error using L1 norm
[GNG13, GGN14].
Recently, Wang et al. proposed a method to compute L1 spline fits with a global algorithm but
based on a five-point interpolation rule to fix derivatives at the spline nodes [WLF14]. Indeed, the
first derivative at a given node is determined using only its four neighbours while the value of the
spline is determined by a minimization process on the whole dataset. We propose in this article
another approach following the work in [NGA11, GNG13, GGN14]. We investigate to define an
appropriate sliding window process to compute locally-computed L1 spline fits close to the global
one.
In the first section, we recall some generalities about L1 cubic Hermite interpolation splines. We
show that the union of such splines over all possible Lagrange interpolation is a closed set. This
helps in the second section to show the existence of L1 spline fits previously introduced in the liter-
ature. We introduce in section 3 and 4 sliding-window algorithms to determine a locally-computed
L1 spline fits and we compare them to each other. Conclusions are drawn in a last section.

2 The set of L1 cubic Hermite interpolation splines

Let (xi, yi), i = 1, . . . , n, where x1 < x2 < · · · < xn, be n data points belonging to the graph of a
function f . Let Her(x) the space of cubic Hermite splines with nodes x = {x1, x2, . . . , xn}. A L1

cubic Hermite interpolation spline of this data is a cubic Hermite spline γ∗ ∈ Her(x) a solution of :

min
γ∈Her(x)

∫ xn

x1

|γ′′(x)|dx, (1)

under the Lagrange interpolation constraints :

γ(xi) = fi, i = 1, 2, . . . , n. (2)

Lavery has shown that a solution of this problem always exists. By mean of numerical experiments,
he has noted that the resulting splines were very efficient to preserve the shape of the Heaviside
function (see Figure 1). Auquiert later has shown that a L1 cubic Hermite interpolation spline with
six knots or more with at least three knots on each part of the Heaviside function preserve both
linearities of the Heaviside function and then do not lead to a Gibbs phenomenon [AGN07b]. This
is the major asset of L1 cubic Hermite interpolation splines.

We consider now the union of all L1 cubic Hermite interpolation splines as follow :

Fx =
⋃

y∈Rn

argmin

{∫ xn

x1

|γ′′(x)| dx, γ ∈ Her(x), γ(xi) = yi, i = 1, . . . , n

}
. (3)

2



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: L1 (left) and L2 (right) interpolation splines (solid lines) of the Heaviside function (dotted
line) with 10 and 30 equally spaced knots.

This set will be fundamental in the definition of L1 spline fits. We give in the following an important
property of this set which has never been proved before to the best of our knowledge and will be
very important in the next section.

Proposition 1. Given x = {x1 < x2 < · · · < xn} ∈ Rn, the set Fx is closed.

Proof. Let us define a norm on Her(x). Let s ∈ Fx then by definition there exists a sequence :

(
sp ∈ argmin

{∫ b

a

|γ′′(x)|dx, s ∈ Her(x), γ(xk) = q
(p)
k , k = 1, . . . ,m

})

p∈N

which converges to s ∈ Her(x). For all p ∈ N, sp is a cubic Hermite spline and is then defined by

2n coefficients q
(p)
k , b

(p)
k , k = 1, . . . , n, respectively the values and the first derivative values of sp

at abscissae xk. By convergence hypothesis in Her(x), there existe real values q∗k, b
∗
k, k = 1, . . . , n

such that :

q
(p)
k −→

p→+∞
q∗k,

b
(p)
k −→

p→+∞
b∗k.

(4)

By the unicity of the limit, s is defined by these 2n coefficients. We then show that the minimization
property of the splines sp is stable by passing to the limit.
We deduce from (4) that (s′′p)p∈N converges simply almost everywhere to s′′. Moreover, for all
p ∈ N, s′′p is piecewise linear. Then we can easily bound it on the interval [a, b] by an integrable
function. By the dominated convergence theorem, it follows that :

∫ b

a

|s′′p(x)| dx −→
p→+∞

∫ b

a

|s′′(x)| dx. (5)

Let γ ∈ Her(x) such that γ(xk) = q∗k, k = 1, . . . , n. By the first assertion in (4), there exists a

sequence (γp ∈ Her(x))p∈N such that for all p ∈ N et k = 1, . . . , n, γp(xk) = q
(p)
k that converges to

γ. We easily show that : ∫ b

a

|γ′′p (x)| dx −→
p→+∞

∫ b

a

|γ′′(x)| dx. (6)
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For all p ∈ N, since sp ∈ S̃1,x,q(n) , it follows that :

∫ b

a

|s′′n(x)| dx ≤

∫ b

a

|γ′′p (x)| dx. (7)

By passing to the limite, we have that for all γ ∈ Her(x) such that γ(xk) = q∗k :

∫ b

a

|s′′(x)| dx ≤

∫ b

a

|γ′′(x)| dx. (8)

We conclude that F1,x is closed in Her(x).

3 Best approximation using L1 spline fits

Let us first define these splines introduced in [Lav04].

Definition 1. Given a function f ∈ L1[a, b], a, b ∈ R and a set of knots x = {a = x1 < x2 < · · · <
xn = b}, a L1 spline fit of the function f at knots x is a best L1 approximation of f in Fx. In other
words, it is a solution of :

min
s∈Fx

∫ b

a

|s(x)− f(x)| dx. (9)

We prove with the next theorem that L1 spline fits are well defined.

Theorem 3.1. L1 splines fit exist for every function f ∈ L1[a, b] and every set of knots x = {a =
x1 < x2 < . . . , xn = b}.

Proof. Let us give f ∈ L1[a, b] and a set of knots x = {a = x1 < x2 < · · · < xn = b}. Since F1,x is
closed in the finite dimensional subspace Her(x) of L1[a, b], there exists a best L1 approximation
of f in F1,x. �

One can easily define an equivalent tool using exclusively L2 norm and called L2 splines fit. We
compare both methods in Figure 2.
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Figure 2: Global L1 spline fits (left) and global L2 spline fits (right) of the Heaviside function with
ten equally spaced knots.
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L1 spline fits has been previously defined for discrete data [Lav04]. Let (x̂i, ŷi), i = 1, . . . ,m be
m data points where m ≥ n. A L1 spline fits of this dataset is a best ℓ1 approximation of them in
Fx. In other words, it is a solution of :

min
s∈Fx

m∑

i=1

|s(x̂i)− ŷi|. (10)

As in the continuous case, these splines exist since they are solutions of a best approximation
problem in a closed set of a finite dimensional subpace of a normed linear space. The results
presented in Figure 3 indicate that L1 spline fits preserve well the shape of multiscale data contrary
to L2 spline fits. Moreover, L1 spline fits do not require human intervention to choose a parameter
that balances weights of the approximation functional and the variational functional. However, the
computational cost of L1 spline fits is generally higher than the one of L1 smoothing spline and
more obviously of least squares methods.
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Figure 3: Global L1 spline fits (top) and global L2 spline fits (bottom).
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4 Sliding window algorithms for L1 spline fits

4.1 Best approximation of functions

We define sliding window methods with window size m = 3, 5, 7 that we call respectively L1SFL3,
L1SFL5 and L1SFL7. For all set of m consecutive knots xi,m = {xi−⌊m

2
⌋, . . . , xi, . . . , xi+⌊m

2
⌋}, we

will determine numerically a cubic Hermite spline s∗i,m solution of :

min
γ∈Fxi,m

∫ xi+⌊m
2 ⌋

xi−⌊m
2 ⌋

|γ(x)− f(x)| dx. (11)

Then we keep only middle information zi = s∗i,m(xi) and bi = s∗
′

i,m(xi).
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Continuous L1SFL3
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Continuous L1SFL5
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Continuous L1SFL7

Figure 4: L1 spline fits computed by the three proposed sliding windows methods on the Heaviside
function with ten equally spaced knots.

These methods have been tested on the Heaviside function with ten equally spaced knots and
the results are summarized in Figure 4. The three-point and five-point methods fail to approximate
linear shape on both side of the discontinuity. We are facing here typical cases of non-invariance of
the numerical solution by rotation of the data. On both side of the discontinuities, the two windows
considered are similar geometrically and should lead the same solution. Since on one side, we are
able to preserve linearity by the three-point and the five-point methods, we should be able to do
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it on the other side. Further work will be done to make these methods invariant by rotation. The
seven-point methods seems to more robust to rotation of data and so should be preferred. In this
case, the seven-point solution and the global solution are identical.

We have also made some test about computing time and a comparison between the methods.
The results are summarized in the graph in Figure 5. We can notice a great improvement of
computing time when using local methods. The faster is of course the three-point method. We
also notice a dual phenomenon in these results. The numerical solvation is different whether we
have even or odd number of knots. It is linked to the fact of having a knot or not at the discontinuity.
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Figure 5: Comparison of computational times between global and local methods

Regarding the graphical and computational time results, the seven-point method is a good
compromise. We will confirm this tendency by the study of the discrete case.

4.2 Best approximation of discrete data

In this section, we apply the three-point, five-point and seven-point methods to discrete multiscale
data. In other words, for all set of m consecutive knots xi,m = {xi−⌊m

2
⌋, . . . , xi, . . . , xi+⌊m

2
⌋}, we will

determine numerically a cubic Hermite spline s∗i,m solution of :

min
γ∈Fxi,m

i+⌊m
2
⌋∑

j=i−⌊m
2
⌋

|s(x̂j)− ŷj|. (12)

Then we only keep information at the middle point of the window zi = s∗i,m(xi) and bi = s∗
′

i,m(xi).
The results are illustrated in Fig. 6, 7 and 8. While the three point and the seven-point methods
give smooth curves, the five-point method highly fails. In Fig. 6, we can notice an undershoot
phenomenon and in Fig. 7, oscillations are created.

Like in the continuous case, the seven-point method is the closest graphically to the global
method. In some cases like Fig. 6, linear shape are preserved in a better way.
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Discrete L1SFL7

Figure 6: Local (solid lines) and global (dashed line) L1 spline fits on a multi-scale data set.
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Discrete L1SFL7

Figure 7: Local (solid lines) and global (dashed line) L1 spline fits on a multi-scale data set.
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Discrete L1SFL7

Figure 8: Local (solid lines) and global (dashed line) L1 spline fits on a multi-scale data set.
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5 Modification of L1SFL5 and L1SFL7

The methods presented before may exhibit on multiscale configurations some undesirable features.
We have observed them with the discrete L1SFL5 in Fig.6 and 7 and with the discrete L1SFL3
in Fig.8. This is typically due to a lack of consistency between the different windows. To reduce
this phenomenon, we propose two others sliding window methods, L1SFL5-3 and L1SFL7-3, which
are respectively a five-point and a seven-point method. The difference with the previous L1SFL5
and L1SFL7 is that we keep now the three middle pieces of information (approximation points
and derivative value) instead of one single information. In other words, for sets of m consecutive
knots xi,m = {xi−⌊m

2
⌋, . . . , xi, . . . , xi+⌊m

2
⌋} with i going from ⌊m2 ⌋+ 1 to n− ⌊m2 ⌋ by step 3, we will

determine numerically a cubic Hermite spline s∗i,m solution of :

min
γ∈Fxi,m

i+⌊m
2
⌋∑

j=i−⌊m

2
⌋

|s(x̂j)− ŷj|. (13)

Then we keep information at the three central knots:

• zi−1 = s∗i−1,m(xi−1), zi = s∗i,m(xi) and zi+1 = s∗i+1,m(xi+1).

• bi−1 = s∗
′

i−1,m(xi−1), bi = s∗
′

i,m(xi) and bi+1 = s∗
′

i+1,m(xi+1).

These methods have also the advantage of requiring less computation than the previous L1SFL5
and L1SFL7. Indeed, with L1SFL5-3 and L1SFL7-3, the window slides more rapidly since we do
not treat as before every sequence of five, resp. seven, consecutive knots.

By this way, we were able to enhance consistency in the five point solution. However, the seven-
point method is still the closest one to the initial global method. Since the global method is for
now our reference, we select this method for further tests on noisy datasets.

We have applied firstly in Fig.10 our L1SFL7-3 method to a 100-point configuration initially
evenly distributed on the Heaviside function and then corrupted by a Gaussian noise with zero
mean and 0.03 standard deviation.

Results are compared with the global method and the L1SFL7 method. Solutions are not
identical but are similar as the error plot in Fig.10 suggests it. We have then applied the method
on a 300-point configuration lying initially in the sine function and then corrupted by a Gaussian
noise with zero mean and 0.05 standard mean. The observations are the same and graphical results
are given in Fig.11.
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Figure 9: Application of discrete L1SFL5-3 and L1SFL7-3 (solid line) on a multiscale dataset.
Comparison with previous discrete L1SFL5 and L1SFL7 (dotted line) and global L1SF (dashed
line).

6 Conclusion

In this article, we have shown the existence of L1 splines fits which are very efficient to approximate
data with abrupt changes but time-consuming. In order to obtain lower algorithmic complexity
methods, we have tested different methods of computation of L1 spline fits by sliding window pro-
cess for both continuous and discrete case. At the end of this study, a seven-point method named
L1SFL7-3 should be chosen. It is currently a good compromise between keeping the geometrical
properties of global L1 spline fits and decreasing computations. The method has linear computa-
tional complexity and can be parallelized. This method has shown good results on both multiscale
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Discrete L1SFL7-3
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Figure 10: Application of discrete L1SFL7-3 (solid line) on a noisy Heaviside-like dataset. Compar-
ison with previous discrete L1SFL7 (dotted line) and global L1SF (dashed line).

datasets and noisy datasets.
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Figure 11: Application of discrete L1SFL7-3 (solid line) on a noisy sinus-like dataset. Comparison
with previous discrete L1SFL7 (dotted line) and global L1SF (dashed line).
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