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Abstract

We introduce and study a geometric modification of the Douglas–Rachford method called
the Circumcentered–Douglas–Rachford method. This method iterates by taking the intersec-
tion of bisectors of reflection steps for solving certain classes of feasibility problems. The
convergence analysis is established for best approximation problems involving two (affine)
subspaces and both our theoretical and numerical results compare favorably to the original
Douglas–Rachford method. Under suitable conditions, it is shown that the linear rate of
convergence of the Circumcentered–Douglas–Rachford method is at least the cosine of the
Friedrichs angle between the (affine) subspaces, which is known to be the sharp rate for the
Douglas–Rachford method. We also present a preliminary discussion on the Circumcentered–
Douglas–Rachford method applied to the many set case and to examples featuring non-affine
convex sets.
Keywords Douglas–Rachford method; Best approximation problem; Projection and reflection
operators; Friedrichs angle; Linear convergence; Subspaces.
Mathematics Subject Classification (2000) Primary 49M27, 65K05, 65B99; Secondary 90C25.

1 Introduction

Projection and reflection schemes are celebrated tools for finding a point in the intersection of
finitely many sets [15], a basic problem in the natural sciences and engineering (see, e.g., [6] and
[17]). Probably the Douglas–Rachford method (DRM) is one of the most famous and well-studied
of these schemes (see, e.g., [4, 5, 8, 27, 30]). Also known as averaged alternating reflections method,
it was introduced in [22] and has recently gained much popularity, in part thanks to its good
behavior in non-convex settings (see, e.g., [1–3, 9, 11, 13, 24, 25, 28]).

This paper has a two-fold aim: (i) improving the original DRM by means of a simple geometric
modification, and (ii) meeting the demand of more satisfactory schemes for the many set case.

Regarding (i), the proposed scheme is greedy by means of distance to the solution set, that is, our
iterate is the best possible point relying on successive reflections onto two subspaces. In particular,
we get an improvement towards the solution set with respect to DRM iteration, which arises
from the average of two successive reflections. Also, we get a convergence rate at least as good
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as DRM’s with a comparable computational effort per iteration, however with numerical results
fairly favorable. The aim (ii) will be treated in the last section.

To consider the problem, let 〈·, ·〉 denote the scalar product in Rn, ‖ · ‖ is the induced norm,
that is, the euclidean vector or matrix norm, and PS denotes the orthogonal projection onto a
nonempty closed and convex set S ⊂ Rn. The reflection onto S is given by means of PS, namely,
RS(x) = (2PS − Id)(x), where Id stands for the identity operator. Note that PS(x) is simply the
midpoint of the segment [x, RS(x)].

Our results are established for the following fundamental feasibility problem. Given two sub-
spaces U, V of Rn and any point x ∈ Rn, we are interested in solving the best approximation prob-
lem [18] of finding the closest point to x in U ∩V, i.e.,

Find x̄ ∈ U ∩V such that ‖x̄− x‖ = min
w∈U∩V

‖w− x‖. (1)

For subspaces there exists a nice characterization of the best approximation problem above as
x̄ = PU∩V(x) if, and only if, x− x̄ ∈ (U ∩V)⊥, i.e.,

〈x− x̄, w〉 = 0 ∀w ∈ U ∩V.

The classical DRM iteration at a point x ∈ Rn yields a new iterate T(x) ∈ Rn given by the midpoint
between x and RV RU(x). That is, the Douglas–Rachford (DR) operator T : Rn → Rn designed to
solve (1) reads as follows

T = TU,V :=
Id+RV RU

2
.

It is known that, under suitable assumptions, DRM generates a sequence {Tk(x)}k∈N converging
to the solution of the best approximation problem (1) (see [5]).

Let us now introduce our scheme, called the Circumcentered–Douglas–Rachford method (C–
DRM): from a point x ∈ Rn the next iterate is the circumcenter of the triangle of vertexes x,
y := RU(x) and z := RV RU(x), denoted by

CT(x) := circumcenter{x, y, z}. (2)

By circumcenter we mean that CT(x) is equidistant to x, y and z and lies on the affine space
defined by these vertexes. For all x ∈ Rn, CT(x) exists, is unique and elementary computable.
Existence and uniqueness are obvious if the cardinality of the set {x, y, z} is either 1 or 2. In fact,
if it happens that x = y = z, we have CT(x) = x ∈ U ∩V already — the converse is also true, that
is, if CT(x) = x, then x = y = z. This means that the set of fixed points Fix CT of the (nonlinear)
operator CT is equal to U∩V. If the cardinality {x, y, z} is 2 then CT(x) is the midpoint between the
two distinct points. If x, y and z are distinct both existence and uniqueness follow from elementary
geometry. Thus, one would only have to worry about having a situation in which x, y and z are
simultaneously distinct and collinear. This cannot happen since reflections onto subspaces are
norm preserving. More than that, will further see that the distance of x, y and z to U ∩V is exactly
the same. Thus, the equidistance we are asking for in (2) turns out to be a necessary condition for
a solution of (1).

Note that C–DRM has indeed a 2-dimensional search flavor: we will show that CT(x) is the
closest point to U ∩ V belonging to aff{x, y, z}, the affine space defined by x, y and z, whose
dimension is equal to 2, if x, y and z, are distinct. This property, together with the fact that the
DR point T(x) ∈ aff{x, y, z}, is the key to proving a better performance of C–DRM over DRM. An
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Figure 1: Geometrical interpretation for circumcentering DRM

immediate consequence of this nice interpretation is that C–DRM will solve problems in R2 in at
most two steps. Figure 1 serves as an intuition guide and illustrates our idea.

This paper is organized as follows. In Section 2 we derive the convergence analysis proving
that C–DRM has a rate of convergence for solving problem (1) at least as good as DRM’s. Section
3 presents numerical experiments for subspaces along with some non-affine examples in R2. Final
remarks as how one can adapt C–DRM for the many set case and other comments on future work
are presented in Section 4.

2 Convergence analysis of the Circumcentered–Douglas–Rachford
method

In this section we present the theoretical advantages of using C–DRM over the classical DRM
iteration for solving (1).

In order to simplify the presentation we recall and fix some notation. For a point x ∈ Rn, we
denote for now on y := RU(x) and z := RV RU(x). Recall that, at the point x ∈ Rn, we define the
C–DRM iteration as

CT(x) := circumcenter{x, y, z}

and the DR iteration (at the same point) is given by

T(x) :=
Id+RV RU

2
(x) =

x + z
2

.

In the following we present some elementary facts [18, Theorem 5.8] needed throughout the text.

Proposition 2.1 Let S be a given subspace and x ∈ Rn arbitrary but fixed. Then, for all s ∈ S we have:

(i) 〈x− PS(x), s〉 = 0;

(ii) ‖x− PS(x)‖2 = ‖x− s‖2 − ‖s− PS(x)‖2;

(iii) ‖x− s‖ = ‖RS(x)− s‖;
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(iv) The projection and reflection mappings PS and RS are linear.

Our first lemma states that the projection of y and z onto U ∩V coincide with PU∩V(x) and that
the distances of x, y and z to U ∩ V are the same. In addition to that, we have that the projection
of the DR point T(x) onto U ∩V is as well given by PU∩V(x).

Lemma 2.2 Let x ∈ Rn. Then,

PU∩V(x) = PU∩V(y) = PU∩V(z)

and
dist(x, U ∩V) = dist(y, U ∩V) = dist(z, U ∩V). (3)

Moreover, PU∩V(x) = PU∩V(T(x)) and

PU∩V(Tk(x)) := PU∩V(T(· · · T(T︸ ︷︷ ︸
k

(x)) · · · )).

Proof. We consider a bar to denote the projection onto the subspace U ∩ V, i.e., x̄ := PU∩V(x),
ȳ := PU∩V(y), z̄ := PU∩V(z), etc. By using Proposition 2.1(iii) for the reflection onto U, we get
‖x − w‖ = ‖y− w‖ for all w ∈ U ∩ V. In particular, ‖x − ȳ‖ = ‖y− ȳ‖ and ‖y− x̄‖ = ‖x − x̄‖
since x̄, ȳ ∈ U ∩V. Therefore,

‖x− x̄‖ ≤ ‖x− ȳ‖ = ‖y− ȳ‖ ≤ ‖y− x̄‖ = ‖x− x̄‖,

which implies
‖x− x̄‖ = ‖x− ȳ‖ = ‖y− x̄‖ = ‖y− ȳ‖,

and, of course, dist(x, U ∩V) = dist(y, U ∩V) and PU∩V(x) = PU∩V(y) follow.

Now, the statements dist(y, U ∩V) = dist(z, U ∩V) and PU∩V(y) = PU∩V(z) can be derived by
repeating the same argument with y and z, where Proposition 2.1(iii) is then considered for the
reflection onto V. As the projection onto subspaces is linear (Proposition 2.1(iv)) and T(x) := x+z

2 ,
we have

PU∩V(T(x)) = PU∩V

(
x + z

2

)
=

PU∩V(x)
2

+
PU∩V(z)

2
=

x̄
2
+

x̄
2
= x̄.

The rest of the proof follows inductively.

Indeed, we proved PU∩V(s) = PU∩V(T(s)) for all s ∈ Rn. Then, by setting s := Tk−1(x), we get

PU∩V(Tk−1(x)) = PU∩V(T(Tk−1(x))) = PU∩V(Tk(x)),

proving the lemma. �

We proceed by characterizing CT(x) as the projection of any point w ∈ U ∩ V onto the affine
subspace defined by x, y and z denoted by aff{x, y, z}.

Lemma 2.3 Let x ∈ Rn and Wx := aff{x, y, z}. Then,

PWx(w) = CT(x),

for all w ∈ U ∩V. In particular, PWx(PU∩V(x)) = CT(x).
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Proof. Let w ∈ U ∩ V be given and set p := PWx(w). Recall that CT(x) is defined by being the
only point in Wx equidistant to x, y and z. So, to prove the lemma, we just need to show that p is
equidistant to x, y and z. By Proposition 2.1(ii) we have

‖x− p‖2 = ‖x− w‖2 − ‖w− p‖2,

‖y− p‖2 = ‖y− w‖2 − ‖w− p‖2,

‖z− p‖2 = ‖z− w‖2 − ‖w− p‖2.

Proposition 2.1(iii) and Lemma 2.2 provided ‖x − w‖ = ‖y − w‖ = ‖z − w‖. Hence, the above
equalities imply ‖x− p‖ = ‖y− p‖ = ‖z− p‖, which proves the result. �

We have just seen that CT(x) is the closest point in Wx = aff{x, y, z} to U ∩V. In particular, the
circumcenter CT(x) lies at least as close to U ∩V as the DR point T(x).

The next result shows that compositions of CT(·) do not change the projection onto U ∩V, that
is, for any x ∈ Rn and k ∈N we have

PU∩V(Ck
T(x)) := PU∩V(CT(· · ·CT(CT︸ ︷︷ ︸

k

(x)) · · · )) = PU∩V(x).

This is a usual feature of algorithms designed to solve best approximation problems.

Lemma 2.4 Let x ∈ Rn and k ∈N. Then,

PU∩V(Ck
T(x)) = PU∩V(CT(x)) = PU∩V(x).

Proof. Note that by proving the second equality, the first follows easily by induction on k, likewise
the one in the proof of Lemma 2.2. Therefore, let us prove that PU∩V(CT(x)) = PU∩V(x). Consider
again the abbreviation x̄ := PU∩V(x) and x̄c := PU∩V(CT(x)). From Lemma 2.3 we have that
PWx(x̄) = CT(x) and also PWx(x̄c) = CT(x). Thus, by Pythagoras it follows that

‖x− x̄‖2 = ‖x− CT(x)‖2 + ‖x̄− CT(x)‖2, (4)

‖x− x̄c‖2 = ‖x− CT(x)‖2 + ‖x̄c − CT(x)‖2. (5)

Now, using again Pythagoras, for the triangles with vertexes x, x̄, x̄c and CT(x), x̄c, x̄, we get

‖x− x̄c‖2 = ‖x̄− x̄c‖2 + ‖x− x̄‖2 (6)

and

‖CT(x)− x̄‖2 = ‖x̄− x̄c‖2 + ‖CT(x)− x̄c‖2. (7)

Then, we obtain

‖x̄− x̄c‖2 = ‖x− x̄c‖2 − ‖x− x̄‖2 = ‖x̄c − CT(x)‖2 − ‖x̄− CT(x)‖2 = −‖x̄− x̄c‖2,

where the first equality follows from (6), the second from subtracting (4) and (5) and the third
follows from (7). Thus, ‖x̄− x̄c‖ = 0, or equivalently, x̄ = x̄c. �

Note that Lemma 2.4 is related to Fejér monotonicity (see [7, Proposition 5.9 (i)]).

We will now measure the improvement of CT(x) towards U ∩V by means of x and T(x).
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Lemma 2.5 For each x ∈ Rn we have

dist(CT(x), U ∩V)2 = dist(T(x), U ∩V)2 − ‖T(x)− CT(x)‖2. (8)

In particular,

dist(CT(x), U ∩V) = ‖CT(x)− PU∩V(x)‖ ≤ ‖T(x)− PU∩V(x)‖ = dist(T(x), U ∩V).

Proof. Lemma 2.3 says in particular that PWx(PU∩V(x)) = CT(x), which is equivalent to saying
that 〈s− CT(x), PU∩V(x)− CT(x)〉 = 0 for all s on the affine subspace Wx. Now, taking T(x) for
the role of s and using Pythagoras, we get (8), since PU∩V(CT(x)) = PU∩V(T(x)) = PU∩V(x) due
to Lemmas 2.2 and 2.4. The rest of the result is direct consequence of Lemmas 2.4 and 2.2. �

The linear rate of convergence we are going to derive for C–DRM is given by the cosine of the
Friedrichs angle between U and V, defined below.

Definition 2.6 The cosine of the Friedrichs angle θF between U and V is given by

cF(U, V) := sup
{
〈u, v〉

∣∣ u ∈ U ∩ (U ∩V)⊥, v ∈ V ∩ (U ∩V)⊥, ‖u‖ ≤ 1, ‖v‖ ≤ 1
}

.

If context permits, we use just cF instead of cF(U, V).

Next we state some fundamental properties of the Friedrichs angle.

Proposition 2.7 Let U, V ⊂ Rn be subspaces, then:

(i) 0 ≤ cF(U, V) = cF(V, U) = cF(U⊥, V⊥) < 1.

(ii) cF = ‖PV PU − PU∩V‖ = ‖PV⊥PU⊥ − PU⊥∩V⊥‖.

Proof. (i) See [20, Theorems 13 and 16]; (ii): See [18, Lemma 9.5(7)]. �

The following result is an elementary fact in Linear Algebra and will be used in sequel.

Proposition 2.8 Let a subspace S ⊂ Rn be given. If x, p ∈ Rn are such that their midpoint

s :=
x + p

2
∈ S,

then dist(x, S) = dist(p, S).

Proof. Let s := x+p
2 ∈ S, x̂ := PS(x) and p̂ := PS(p). Set p̃ := x̂ + 2(s− x̂) ∈ S and note that p̃ is

defined in such a way that the triangle with vertexes x, x̂ and s is congruent to the triangle formed
by p, p̃ and s. In particular, ‖ p̃− p‖ = ‖x− x̂‖. Therefore,

‖ p̂− p‖ ≤ ‖ p̃− p‖ = ‖x− x̂‖. (9)

An analogous construction can be considered for the triangle with vertexes p, p̂ and s and the one
with vertexes x, x̃ and s, where x̃ := p̂ + 2(s − p̂) ∈ S, yielding ‖x̂ − x‖ ≤ ‖x̃ − x‖ = ‖p − p̂‖.
This, combined with (9), proves the proposition. �

The next lemma organizes and summarizes known properties of sequences generated by DRM,
some of which will be important in the proof of our main theorem. It is worth noting that items
(i) and (vi) are novel to our knowledge.
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Lemma 2.9 Let x ∈ Rn be given. Then, the following assertions for DRM hold:

(i) dist(Tk(x), U + V) = dist(x, U + V) for all k ∈N, where U + V = span(U ∪V);

(ii) The set Fix T :=
{

x ∈ Rn
∣∣ T(x) = x

}
is given by Fix T = (U ∩V)⊕ (U⊥ ∩V⊥);

(iii) The DRM sequence {Tk(x)}k∈N converges to PFix T(x) and for all k ∈N,

‖Tk(x)− PFix T(x)‖ ≤ ck
F‖x− PFix T(x)‖;

(iv) For all k ∈N we have PU∩V(Tk(x)) = PU∩V(x) and PFix T(Tk(x)) = PFix T(x);

(v) PU∩V(x) = PFix T(x) if, and only if, x ∈ U + V;

(vi) The DRM sequence {Tk(x)}k∈N converges to PU∩V(x) if, and only if,

x ∈ U + V;

(vii) The shadow sequences
{PU(Tk(x))}k∈N and {PV(Tk(x))}k∈N

converge to PU∩V(x).

Proof. For the sake of notation set S := U +V and remind that y := RU(x) and z := RV(y). We have
1
2 (x + y) = PU(x) ∈ S and 1

2 (y + z) = PV(y) ∈ S. Employing Proposition 2.8 yields dist(x, S) =
dist(y, S) = dist(z, S). Also, 1

2 (T(x) + y) = 1
2 (

x+z
2 + y) = 1

2 (PU(x) + PV(y)) ∈ S. Using again
Proposition 2.8 we conclude that dist(T(x), S) = dist(y, S). Hence, dist(T(x), S) = dist(x, S) for
all x ∈ Rn. A simple induction procedure gives us dist(Tk(x), U + V) = dist(x, U + V) for all
k ∈N, proving (i).

The proofs of items (ii), (iii), (iv) and (vii) are in [5].

It is straightforward to check that S⊥ = U⊥ ∩ V⊥. Therefore, Fix T specialized to S reduces to
U ∩V and (v) follows. (vi) is a combination of (ii) and (v). �

We are now in the position to present our main convergence result, which states that the best
approximation problem (1) can be solved for any point x ∈ Rn with usage of C–DRM.

Theorem 2.10 Let x ∈ Rn be given. Then, the three C–DRM sequences

{Ck
T(PU(x))}k∈N, {Ck

T(PV(x))}k∈N and {Ck
T(PU+V(x))}k∈N

converge linearly to PU∩V(x). Moreover, their rate of convergence is at least the cosine of the Friedrichs
angle cF ∈ [0, 1).

Proof. Obviously, u, v, s ∈ U + V, with u := PU(x), v := PV(x) and s := PU+V(x). Let us first prove
that ū = v̄ = x̄ := PU∩V(x), where ū := PU∩V(u), v̄ := PU∩V(v) and s̄ := PU∩V(s). The definition
of ū, x̄ allow us to employ Pythagoras and conclude that

‖u− x‖2 + ‖u− x̄‖2 = ‖x− x̄‖2 ≤ ‖x− ū‖2 = ‖u− x‖2 + ‖u− ū‖2,

which provides ‖u− x̄‖ = ‖u− ū‖. Thus ū = x̄. We get v̄ = s̄ = x̄ analogously, and by item (v) of
Lemma 2.9 we further have ū = PFix T(u) = v̄ = PFix T(v) = s̄ = PFix T(s) = x̄. Hence, it holds that

‖CT(u)− x̄‖ = ‖CT(u)− ū‖ ≤ ‖T(u)− ū‖ = ‖T(u)− PFix T(u)‖
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≤ cF‖u− PFix T(u)‖ = cF‖u− x̄‖,

where the first inequality is by Lemma 2.5 and the second one by item (iii) of Lemma 2.9. Recall
that Lemma 2.4 stated that PU∩V(Ck

T(PU(x))) = PU∩V(PU(x)) for all k ∈ N. So, PU∩V(Ck
T(u)) =

PU∩V(u) = x̄ for all k ∈ N. Consider now the induction hypothesis ‖Ck−1
T (u)− x̄‖ ≤ ck−1

F ‖u− x̄‖
for some k− 1 — the case k− 1 = 1 was seen above — and note that

‖Ck
T(u)− x̄‖ = ‖CT(Ck−1

T (u))− PU∩V(Ck−1
T (u))‖

≤ ‖T(Ck−1
T (u))− PU∩V(Ck−1

T (u))‖
≤ cF‖Ck−1

T (u)− PU∩V(Ck−1
T (u))‖

= cF‖Ck−1
T (u)− x̄‖ ≤ cFck−1

F ‖u− x̄‖ = ck
F‖u− x̄‖,

where the first inequality is due to Lemma 2.5. The second inequality above follows from Lemma
2.9 (iii) and (v), since u ∈ U + V, and the third is by the induction hypothesis. This proves the
theorem for the sequence {Ck

T(PU(x))}. The proof lines for the convergence of the sequences
{Ck

T(PV(x))} and {Ck
T(PU+V(x))} with the linear rate cF are analogous. �

An immediate consequence is stated below.

Corollary 2.11 Let x ∈ U + V be given. Then, the C–DRM sequence {Ck
T(x)}k∈N converges linearly to

PU∩V(x). Moreover, the rate of convergence is at least the cosine of the Friedrichs angle cF ∈ [0, 1).

Although we believe that Theorem 2.10 holds for {Ck
T(x)} itself, it is worth mentioning that

considering the initial feasibility step PU(x) or PV(x) is totally reasonable, since we are assuming
that the projection/reflection operators PU , PV , RU and RV are available. In addition to that, these
feasibility steps keep the whole C–DRM sequence in U + V, which can be very desirable. In this
sense, let us look at two distinct lines U, V ⊂ R3 intersecting at the origin and assume that their
Friedrichs angle is not ninety degrees, i.e., cF ∈ (0, 1). C–DRM finds the origin after one or two
steps when starting in U + V, since U + V is the plane containing the two lines. If the initial
point is not in U + V and no feasibility step is taken, C–DRM may generate an infinite sequence.
Therefore, running C–DRM in U +V, a potentially smaller set than Rn, sounds attractive from the
numerical point of view.

The feasibility procedure employed in Theorem 2.10 provides convergence to best approxima-
tion solutions for the DRM without the need of considering shadow sequences. This is formally
presented in the following.

Corollary 2.12 Let x ∈ Rn be given. Then, the three DRM sequences

{Tk(PU(x))}k∈N, {Tk(PV(x))}k∈N and {Tk(PU+V(x))}k∈N

converge linearly to PU∩V(x). Moreover, their rate of convergence is given by the cosine of the Friedrichs
angle cF ∈ [0, 1).

Proof. This result follows from the fact that PU∩V(PU(x)) = PU∩V(PV(x)) = PU∩V(PU+V(x)) =
PU∩V(x), established within the proof of Theorem 2.10, combined with Lemma 2.9 (vi). �

It is known that cF is the sharp rate for DRM [5]. This is not clear for C–DRM though and
left as an open question in this work. One way of addressing this issue would be looking at the
magnitude of improvement of C–DRM over DRM given by (8) in Lemma 2.5.
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We finish this section by showing that Theorem 2.10 and Corollaries 2.11 and 2.12 are applicable
to affine subspaces with nonempty intersection, where the concept of the cosine of the Friedrichs
angle is suitably extended.

Corollary 2.13 Let A and B be affine subspaces of Rn with nonempty intersection and p ∈ A∩ B arbitrary
but fixed. Then, Theorem 2.10 and Corollaries 2.11 and 2.12 hold for A and B, with the rate cF being the
cosine of the Friedrichs angle between the subspaces UA := A− {p} and VB := B− {p}.

Proof. Since p ∈ A ∩ B, the translations A − {p} and B − {p} provide nonempty subspaces UA
and VB. Now, the elementary translation properties of reflections RUA(x) + p = RA(x + p) and
RVB(x) + p = RB(x + p) give us the translation formulas for the correspondent Douglas-Rachford
and circumcentering operators:

TA,B(x + p) := TUA,VB(x) + p

and
CTA,B(x + p) := CTUA ,VB

(x) + p,

for all x ∈ Rn. This suffices to prove the corollary when setting U := UA and V := VB in The-
orem 2.10 and Corollaries 2.11 and 2.12, because the above formulas imply that Tk

A,B(x + p) =

Tk
UA,VB

(x) + p and Ck
TA,B

(x + p) = Ck
TUA ,VB

(x) + p, for all k ∈N.

�

Simple manipulations let us conclude that cF = cF(UA, VB), with UA and VB as above, does not
depend on the particular choice of the point p in A ∩ B. Therefore, cF can be referred to as the
cosine of the Friedrichs angle between the affine subspaces A and B with no ambiguity.

We finish this section remarking that the computation of circumcenters is possible in arbitrary
inner product spaces — see (10). However, projecting/reflecting onto subspaces depends on their
closedness. Now, in Hilbert spaces, it is well known that having cF strictly smaller than 1 is
equivalent to asking U + V to be closed [20, Theorem 13]. This is an assumption that maintains
the linear convergence in Hilbert spaces for several projection/reflection methods and that would
also enable us to extend our main results concerning C–DRM to an infinite dimensional setting.

The following section is on numerical experiments and begins by showing how one can com-
pute CT(x) by means of elementary and cheap Linear Algebra operations.

3 Numerical experiments

In this section, we make use of numerical experiments to show, as a proof of concept, that the good
theoretical proprieties of CT(x) are also working in practical problems.

First, for a given point x ∈ Rn, we establish a procedure to find CT(x). We then discuss the
stopping criteria used in our experiments and show the performance of C–DRM compared to
DRM applied to problem (1). We also apply C–DRM and DRM to non-affine samples, which are
not treated theoretically in the previous section. The experiments with these problems indicate
as well a good behavior of C–DRM over DRM. All experiments were performed using julia [12]
programming language and the pictures were generated using PGFPlots [23].
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3.1 How to compute the circumcenter in Rn

In order to compute CT(x), recall that y := RU(x) and z := RV(y) = RV RU(x). We have already
mentioned that CT(x) = x if, and only if, the cardinality of aff{x, y, z} is 1. If this cardinality is 2,
CT(x) is the midpoint between the two distinct points.

Therefore, we will focus on the computation of CT(x) for the case where x, y and z are distinct.
According to Lemma 2.3, CT(x) is still well defined, and it can be seen as the circumcenter of
the triangle ∆xyz formed by the points x, y and z, as illustrated in Figure 2. Also, T(x) lies in
aff{x, y, z}.

U

V

x

RU(x)

RV RU(x)

TU,V(x)

CT(x)

Figure 2: Circumcenter on the affine subspace aff{x, y, z}.

Let x be the anchor point of our framework and define sU := y− x and sV := z− x, the vectors
pointing from x to y and from x to z, respectively. Note that aff{x, y, z} = x + span{sU , sV},
and since CT(x) ∈ aff{x, y, z}, the dimension of the ambient space, namely n, is irrelevant to the
geometry. The problem is intrinsically a 2-dimensional one, regardless of what n is.

We want to find the vector s ∈ aff{x, y, z}, whose projection onto each vector sU and sV has its
endpoint at the midpoint of the line segment from x to y and x to z, that is,

Pspan{sU}(s) =
1
2

sU and Pspan{sV}(s) =
1
2

sV .

This requirement yields {
〈sU , s〉 = 1

2‖sU‖2,
〈sV , s〉 = 1

2‖sV‖2.

By writing s = αsU + βsV we get the 2× 2 linear system with unique solution (α, β){
α‖sU‖2 + β 〈sU , sV〉 = 1

2‖sU‖2,
α 〈sU , sV〉+ β‖sV‖2 = 1

2‖sV‖2.
(10)

Hence,
CT(x) = x + αsU + βsV .

Note that (10) enables us to calculate CT(x) in arbitrary inner product spaces.
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3.2 The case of two subspaces

In our experiments we randomly generate 100 instances with subspaces U and V in R200 such that
U ∩V 6= {0}. Each instance is run for 20 initial random points. Based on Theorem 2.10 and Corol-
lary 2.12, we monitor the C–DRM sequence {Ck

T(PV(x))} and the DRM sequence {Tk(PV(x))}.
Note that the DRM sequence will always converge to U ∩ V, since PV(x) ∈ U + V. For the C–
DRM sequence, such hypothesis does not seem to be necessary, however for the sake of fairness,
we choose to monitor this sequence in the same way. We incorporate the method of alternat-
ing projections (MAP) (see, e.g., [19]) in our experiments as well. MAP generates a sequence
{(PV PU)

k(x)} that lies automatically in U + V for all k ≥ 1.

Let {sk} be any of the three sequences that we monitor. We considered two tolerances

ε1 := 10−3 and ε2 := 10−6,

and employed two stopping criteria:

• the true error, given by ‖sk − x̄‖ < ε i; and

• the gap distance, given by ‖PU(sk)− PV(sk)‖ < ε i, for i = 1, 2.

We performed tests with two tolerances in order to challenge C–DRM by asking for more preci-
sion. Also, one can view the true error as the best way to assure one is sufficiently close to U ∩V,
and in our case x̄ := PU∩V(x) is easily available. However, this is not the case in applications, thus,
we also utilized the gap distance, which we consider a reasonable measure of infeasibility.

In order to represent the results of our numerical experiments, we used the Performance Pro-
files [21], a analytic tool that allows one to compare several different algorithms on a set of prob-
lems with respect to a performance measure or cost, which in our case is the number of iterations,
providing the visualization and interpretation of the results of benchmark experiments. The ratio-
nale of choosing number of iterations as performance measure here is that in each of the sequences
that are monitored, the majority of the computational cost involved is equivalent — two orthog-
onal projections onto the subspaces U and V per iteration have to be computed for each method.
The graphics were generated using perprof-py [29].

The numerical experiments shown in Figure 3 confirm the theoretical results obtained in this
paper, since C–DRM has a much better performance than DRM. For ε2 = 10−6, C–DRM solves all
instances and choices of initial points in less iterations than DRM, regardless the stopping criteria
(See Figures 3b and 3d). For ε1 = 10−3, using the true error criteria, according to Figure 3a a tiny
part of the instances were solved faster by DRM, however this behavior was not reproduced with
the gap distance criteria (see Figure 3d). MAP has c2

F as asymptotic linear rate (see [26]) and it was
beaten by C–DRM in all our instances. This gives rise to the interesting question of whether the
rate c2

F can be theoretically achieved by C–DRM.

Figure 4 represents experiments in which the Friederichs angle between the two subspaces is
smaller than 10−2 and the true error criterion is used. In this case, MAP and DRM are known to
converge slowly. C–DRM, however, handled the small values of the Friederichs angle substan-
tially better.

3.3 Some non-affine examples

Next we present two simple classes of examples revealing the potential of the proposed modifica-
tion when it is applied to the convex and the non-convex case. Here we are using the gap distance

11
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Figure 3: Experiments with two subspaces.

with ε2 = 10−6.

Example 3.1 (Two balls in R2) We present three figures that depict numerical experiments show-
ing the behavior of C–DRM over DRM concerning the problem of finding a point in the intersec-
tion of two convex balls in R2.

Note that Lemma 2.5 shows that CT(x) is closer to U ∩ V than T(x) for problem (1). Unfortu-
nately, this is not true in general for convex sets. Figure 5a, illustrates this for two balls. Here,
x0 is the starting point, x̄ = PU∩V(x0) is the only point in the intersection, x1

C := CT(x0) and
x1

DR := T(x0). Note however, that this does not mean that C–DRM will not work for the general
case. Even though x1

DR is closer to x̄ than x1
C is, C–DRM performed way less iterations (37) than

DRM (971) to find the solution.
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Figure 4: Experiments with two subspaces having a small Friederichs angle.

Below we present two examples, in Figures 5b and 5c, where the two balls intersection is still
compact but has infinitely many points. Depending on the starting point, we achieve different re-
sults, regarding the number of iterations that both C–DRM and DRM take to converge. Moreover,
Figure 5b shows that the accumulation point of the sequences generated by C–DRM and DRM
are not necessarily the same, with comparable iteration complexity though. In Figure 5c, DRM
converged after 6 iterations while C–DRM took 7 iterations.

x0

x̄

x1
C

x1
DR

C-DRM (k = 37)

DRM (k = 971)

(a)

x0

C-DRM (k = 6)

DRM (k = 11)

(b)

x0
C-DRM (k = 7)

DRM (k = 6)

(c)

Figure 5: Experiments with two balls in R2.

We performed extensive experiments featuring two convex balls in Rn with starting points be-
ing chosen randomly, and the results were very similar to the ones presented in the pictures above.
These positive experiments show that it might be possible to use C–DRM to find a point in the in-
tersection of non-affine convex sets. This should be sought in the future. Note however, that
C–DRM need not be defined in the general convex setting. This may be the case when an iterate
happens to reach the line passing through the centers of the balls in our examples. Therefore, a
hybrid strategy is necessary in order to have C–DRM generating an infinite sequence.

Example 3.2 (A ball and a line and a circle and a line in R2)

Our examples show that C–DRM is likely to converge in less iterations than DRM. Also, as impor-
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tant as algorithmic complexity, is convergence to a solution itself. In this regard, we underline that

x0

x̄

C-DRM (k = 20)

DRM (k = 36)

(a)

x0

C-DRM (k = 4)

DRM (k = 6)

(b)

x0C-DRM (k = 5)

DRM (k = 38)

(c)

Figure 6: Experiments with a ball and a line in R2.

our pictures clearly display that C–DRM converges faster than DRM to a solution of problem (1).
Moreover, DRM fails to find the unique common point of the ball and the line (only converging
in the matter of shadow sequences) and to find the best approximation point in Figure 6a and
Figure 6b, respectively.

Figure 6c represents a slightly non-convex example with a circle and a line, which was con-
sidered for DRM in [11]. In this experiment both C–DRM and DRM converge and the latter was
slower. This reveals an interesting and promising property of C–DRM, as well as DRM, when it
is applied to non-convex problems. To end this discussion, it is worth mentioning that we per-
formed extensive numerical tests for particular instances of non-convex problem in Rn and the
results are very positive. This is a humble attempt in targeting the problem of finding a point in
the intersection of an affine subspace with the s–space vectors defined by the generalized `0–ball
(see problem (6) of [25]).

4 Conclusions and future work

We have introduced and derived a convergence analysis for the Circumcentered–Douglas–
Rachford method (C–DRM) for best approximation problems featuring two (affine) subspaces
U, V ⊂ Rn. For any initial point, linear convergence to the best solution was shown and the
rate of convergence of C–DRM was proven to be at least as good as DRM’s. DRM is known to
converge with the sharp rate cF ∈ [0, 1), the cosine of the Friedrichs angle between U and V (see,
e.g., [5]). A question, left as open in this paper, is whether cF is a sharp rate for C–DRM. In this
regard, our numerical experiments show that circumcentering “speeds up” convergence of DRM
for two subspaces as well as for most of our simple non-affine examples.

In view of future work, we end the paper with a brief discussion on the many set case and on
how one can “circumcenter” other classical projection/reflection type methods.

The many set case. Another relevant advantage of the circumcentering scheme C–DRM is that it
can be extended to the following many set case.

Assume that {Ui}m
i=1 ⊂ Rn is a family of finitely many affine subspaces with nonempty inter-

section ∩m
i=1Ui and that we are interested in projecting onto ∩m

i=1Ui using knowledge provided by
reflections onto each Ui.
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For an arbitrary initial point x ∈ Rn we could consider a generalized C–DRM iteration by taking
the circumcenter CT(x) of

{x, RU1(x), RU2 RU1(x), . . . , RUm · · · RU2 RU1(x)},

i.e., CT(x) is in aff{x, RU1(x), RU2 RU1(x), . . . , RUm · · · RU2 RU1(x)} and

dist(CT(x), x) = dist(CT(x), RU1(x)) = · · · = dist(CT(x), RUm · · · RU2 RU1(x)).

The fact that CT(x) is well defined and that it is precisely given by the projection of any point in
∩m

i=1Ui onto
Wx := aff{x, RU1(x), RU2 RU1(x), . . . , RUm · · · RU2 RU1(x)}

can be derived similarly as in Lemma 2.3. We understand though, that the convergence analysis
of C–DRM for the many set case might be substantially more challenging, since we no longer can
rely on the theory of DRM. Also, one should note that now, for large m, the computation of CT(x)
may not be negligible. This computation consists of finding the intersection of m bisectors in Wx.
Therefore, linear system (10) is now m×m, and the calculation of CT(x) requires its resolution.

If, for a given problem, the computation of CT(x) mentioned above is simply too demanding,
one could, e.g., consider pairwise circumcenters or even other ways of circumcentering. The im-
portant thing here is that we can enforce several strategies to help overcome the unsatisfactory
extension of the classical Douglas–Rachford method for the many set case. It is known that for
an example in R2 with three distinct lines intersecting at the original (see [2, Example 2.1]), the
natural extension of the Douglas–Rachford method may fail to find a solution. On the other hand,
any reasonable circumcentering scheme will solve this particular problem in at most two steps for
any initial point. Circumcentering schemes may also be embedded in methods for the many set
case, e.g., CADRA [10] and the Cyclic–Douglas–Rachford method [14].

Circumcentering other reflection/projection type methods. For the case of U and V being affine
subspaces, the reflected Cimmino method [16] considers a current point x ∈ Rn and takes the
next iterate as the mean 1

2 (RU(x) + RV(x)). Circumcentering the Cimmino method is possible
by setting the next iterate as circumcenter{x, RU(x), RV(x)}. Something similar can be done for
the Method of Alternating Projections (MAP) (see e.g. [19]). From a point x ∈ Rn, MAP moves
to PV PU(x). In order to circumcenter MAP, one could take the circumcenter of x, RU(x) and
RV PU(x). The coherence of this approach lies on the fact that the mid points of the segments
[x, RU(x)] and [PU(x), RV PU(x)] are PU(x) ∈ U and PV PU(x) ∈ V, respectively. Note that both
the Circumcentered–Cimmino–Method and the Circumcentered–MAP solve problems with affine
subspaces U, V ⊂ R2 in at most two steps. This happens because circumcentering can be seen as
a 2-dimensional hyperplane search for the two set case.

Finally, we consider that investigating C–DRM for general convex feasibility problems [6] may
be fruitful.
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