
ar
X

iv
:1

60
9.

08
97

3v
2 

 [
m

at
h.

O
C

] 
 6

 S
ep

 2
01

7

Two algorithms for solving systems of inclusion problems

R. Dı́az Millán∗

August 20, 2021

Abstract

The goal of this paper is to present two algorithms for solving systems of inclusion problems,
with all components of the systems being a sum of two maximal monotone operators. The
algorithms are variants of the forward-backward splitting method and one being a hybrid with
the alternating projection method. They consist of approximating the solution sets involved in
the problem by separating halfspaces which is a well-studied strategy. The schemes contain two
parts, the first one is an explicit Armijo-type search in the spirit of the extragradient-like methods
for variational inequalities. The second part is the projection step, this being the main difference
between the algorithms. While the first algorithm computes the projection onto the intersection
of the separating halfspaces, the second chooses one component of the system and projects onto
the separating halfspace of this case. In the iterative process, the forward-backward operator is
computed once per inclusion problem, representing a relevant computational saving if compared
with similar algorithms in the literature. The convergence analysis of the proposed methods is
given assuming monotonicity of all operators, without Lipschitz continuity assumption. We also
present some numerical experiments.
Keywords: Armijo-type search, Maximal monotone operators, Forward-Backward, Alternating
projection, Systems of inclusion problems
Mathematical Subject Classification (2010): 93B40, 65K15, 68W25, 47H05, 49J40 .

1 Introduction

Given a finite family of pairs of operators {Ai, Bi}i∈I, with I =: {1, 2, · · · ,m} and m ∈ N, the
system of inclusion problems consists in:

find x∗ ∈ R
n such that 0 ∈ Ai(x

∗) +Bi(x
∗) for all i ∈ I, (1)

where the operators Ai : dom(Ai) ⊂ R
n → R

n are point-to-point and maximal monotone and the
operator Bi : dom(Bi) ⊂ R

n → 2R
n
is point-to-set maximal monotone, for all i ∈ I. The solution

set of the problem, denoted by S∗, is given by the intersection of the solution sets of all components
of the system , i.e., S∗ = ∩i∈IS

i
∗, where Si

∗ is defined as Si
∗ := {x ∈ R

n : 0 ∈ Ai(x) +Bi(x)}.

Many problems in mathematics can be modeled as problem (1), for example, taking the operators
Bi = NCi

(the normal cone of Ci) with Ci ⊆ R
n nonempty, closed and convex set for all i ∈ I,

∗Federal Institute of Goiás, Goiânia, Brazil, e-mail: rdiazmillan@gmail.com

1

http://arxiv.org/abs/1609.08973v2


we obtain a system of variational inequalities, introduced by I.V. Konnov in [18], which have been
deeply studied, see [1, 6–8,13,18,19,26].

For solving inclusion problems for the sum of two operators, the hypothesis of Lipschitz continuity
and the forward-backward method has been used regularly, see [11,22,24,25]. Due to its extensive
field of applications, it is crucial to consider general versions of problem (1) which relax the Lipschitz
continuity hypothesis. That is the reason we are interested in assuming only maximal monotonicity
for all operators involved, without the Lipschitz continuity assumption.

The proposed algorithms contain two main steps, a line-search for finding a separating hy-
perplane, and a projection onto separating hyperplanes. The line-search compute the operator
forward-backward once per each component of the system at each iteration, which represents a
relevant computational saving in comparison with the line-search proposed by Tseng in [25]. The
second part consists in projecting the current point onto a suitable set. This part is the main
difference between our algorithms. In the first algorithm, we project onto the intersection of the
separating hyperplanes. While the second algorithm chooses one component of the system, find the
separating hyperplane and project onto it. This second method is a hybrid with the alternating
projection method.

In the first algorithm, we calculate in parallel, the hyperplane separating the current point and
the solution set of each component of the system, and project onto the intersection of all of them.
In the second one, we only use one component of the system in each step of the algorithm, in
the spirits of the alternating projection method. The present work follows the ideas presented
in [2, 4, 10].

The number of hyperplanes that must be intersected for the first algorithm is at most equal to
the number of components of the system, contrary to the algorithms proposed in [26], in which
the number of hyperplanes increases at each iteration. This makes our scheme be computationally
lightest. The numerical experiments (see Section 5) shows that the search of the separating hy-
perplanes is more efficient (computationally) than compute the projection onto the intersection of
many hyperplanes.

The problem (1) has many applications in operations research, optimal control, mathematical
physics, optimization and differential equations. This kind of problem has been receiving an in-
creasing academic attention in the recent years. It’s is due to a fact that many nonlinear problems
arise within applied areas, are mathematically modeled as nonlinear operator system of equations
and/or inclusions, we can refer to [1, 6–8,13,23,26].

The present work is organized as follow. The next section contains some notations and pre-
liminary results useful for the remainder of this paper. The variants of the forward-backward
splitting method we present in section 3. In section 4 the convergence analysis of both algorithms
is proved. Section 5 is dedicated to showing some numerical experiments and comparison with a
similar method in the literature and between our algorithms. Finally, we provide some conclusions.

2 Preliminaries

In this section, we review some basic definitions and results. First, we introduce the notation and
recall some definitions. The inner product in R

n is denoted by 〈·, ·〉 and its induced norm by ‖ · ‖.
We denote by 2C the power set of the set C, and by B[0, R] the closed ball centered in 0 and radius

2



R. Given a nonempty, convex and closed subset X of Rn, we denote by PX(x), the orthogonal
projection of x onto X. It’s defined as the unique point in X, such that ‖PX(x)−x‖ ≤ ‖y−x‖ for
all y ∈ X. By NX(x) we denote the normal cone of X in x ∈ X, defined as NX(x) := {d ∈ R

n :
〈d, x − y〉 ≥ 0 ∀y ∈ X}. The domain of T is defined by, dom(T ) := {x ∈ R

n : T (x) 6= ∅}. The
operator T : dom(T ) ⊂ R

n → 2R
n
is said to be monotone if, for all (x, u), (y, v) in the graph of T ,

(Gr(T ) := {(x, u) ∈ R
n × R

n : u ∈ T (x)}), we have 〈x− y, u − v〉 ≥ 0, and it is maximal if T has
no proper monotone extension in the graph inclusion sense.

We start with the well-known definition of the so-called Fejér convergence also know as Fejér
monotonicity.

Definition 2.1 Let S be a nonempty subset of Rn. The sequence (xk)k∈N ⊂ R
n is said to be Fejér

convergent to S, if and only if, for all x ∈ S there exists k0 ≥ 0, such that ‖xk+1 − x‖ ≤ ‖xk − x‖
for all k ≥ k0.

This definition was introduced in [5] and have been further elaborated in [9, 15] and [2] and
references therein. A useful result on Fejér sequences is the following.

Proposition 2.2 If the sequence (xk)k∈N is Fejér convergent to S 6= ∅, then:

(i) (xk)k∈N is bounded;

(ii) (‖xk − x‖)k∈N is convergent for all x ∈ S;

(iii) if one cluster point x∗ of (xk)k∈N belongs to S, then the sequence (xk)k∈N converges to x∗.

Proof. (i) and (ii) See Proposition 5.4 in [3]. (iii) See Theorem 5.5 in [3]. �

We following with some known results on the orthogonal projection that will be useful for the
well-definition of the stopping criteria. Moreover, for proving the Fejér convergence of the sequence
generated by the algorithms.

Proposition 2.3 Let X be any nonempty, closed and convex set in R
n. For all x, y ∈ R

n and all

z ∈ X the following hold:

(i) ‖PX(x)− PX(y)‖2 ≤ ‖x− y‖2 − ‖(PX (x)− x)−
(

PX(y)− y
)

‖2.

(ii) 〈x− PX(x), z − PX(x)〉 ≤ 0.

Proof. (i) and (ii) see Lemma 1.1 and 1.2 in [27]. �

Now we state some useful results on maximal monotone operators. The next proposition will be
useful for proving the convergence of the sequences generated by both algorithms.

Proposition 2.4 Let T : dom(T ) ⊆ R
n → 2R

n
be a point-to-set and maximal monotone operator.

If β > 0 then the operator (I + β T )−1 : Rn → dom(T ) is single valued and maximal monotone.

Proof. See Theorem 4 in [21]. �

The next proposition will be used for the well-definition of the stopping criteria and the conver-
gence of the sequences generated by both algorithms.

3



Proposition 2.5 Given β > 0 and the maximal monotone operators A : dom(A) ⊆ R
n → R

n and

B : dom(B) ⊆ R
n → 2R

n
, if x ∈ dom(A) ∩ dom(B) then

x = (I + βB)−1(I − βA)(x),

if and only if, 0 ∈ (A+B)(x).

Proof. See Proposition 3.13 in [12]. �

Now we prove a lemma which ensures that the hyperplane used in the algorithms contains the
solution set of problem (1).

Lemma 2.6 Given a families of operators {Ai, Bi}i∈I, such that for all i ∈ I domBi ⊆ domAi,

take x, u ∈ R
n with x ∈ domBi for all i ∈ I. Define:

Hi(x, u) :=
{

y ∈ R
n : 〈Ai(x) + u, y − x〉 ≤ 0

}

. (2)

Then for all (x, u) ∈ Gr(Bi), S
i
∗ ⊆ Hi(x, u), for all i ∈ I. Therefore S∗ ⊂ Hi(x, u) for all i ∈ I.

Proof. Take x∗ ∈ Si
∗. Using the definition of the solution, there exists v∗ ∈ Bi(x

∗), such that
0 = Ai(x

∗) + v∗. By the monotonicity of Ai +Bi, we have

〈Ai(x) + u− (Ai(x
∗) + v∗), x− x∗〉 ≥ 0,

for all (x, u) ∈ Gr(Bi). Hence,
〈Ai(x) + u, x∗ − x〉 ≤ 0

and by (2), x∗ ∈ Hi(x, u). �

3 The Algorithms

In this section, we present two algorithms for solving the problem (1). For all i ∈ I, let Ai :
dom(Ai) ⊂ R

n → R
n be point-to-point maximal monotone operators andBi : dom(Bi) ⊂ R

n → 2R
n

be point-to-set and maximal monotone operators. We assume that:

(A1) dom(Bi) ⊆ dom(Ai), for all i ∈ I := {1, 2, 3, · · · ,m} with m ∈ N.

(A2) S∗ 6= ∅.

(A3) For each bounded and closed subset V ⊂ ∩mi=1dom(Bi) there exists R > 0, such that
Bi(x) ∩B[0, R] 6= ∅, for all x ∈ V and i ∈ I.

(A4) For all i ∈ I, the operator Ai is continuous on dom(Ai).

Assumptions (A1) and (A2) are standard in the literature. We emphasize that assumption (A3)
holds trivially if dom(Bi) = R

n or V ⊂ int(dom(Bi)) or Bi is the normal cone of any subset of
dom(Bi) for all i ∈ I, i.e., in the application to systems of variational inequality problems, this
assumption is trivially satisfied. The operators Ai for i ∈ I are all continuous on the interior of its
domain by maximality, then the Assumption (A4) is for ensure the continuity on the boundary of

4



the domain. Note that, when dom(Ai) is open for all i ∈ I this assumption is not required. Even
more, when the set X (defined bellow) is a subset of the interior of ∩i∈I, also the assumption is not
necessary.

Choose any nonempty, closed, bounded and convex set, X ⊆ ∩i∈Idom(Bi), satisfying X∩S∗ 6= ∅.
There exist some choices for X, for example, when the sets dom(Bi) are closed for all i ∈ I, so they
are convex (see [20]), we can think in X = B[0, L] ∩i∈I dom(Bi) for L be large enough, see more
details in [4,10,25]. The necessity of X be bounded is only for the applicability of the Assumption
(A3), then in a case of systems of variational inequalities problem, the set X can be unbounded,
like was used in [25]. For example, consider Bi = NCi

for all i ∈ I, then X = ∩i∈ICi is a good
choice. See Section 5 for specific choices of X in some examples.

For both algorithms we consider the sequence (βk)
∞
k=0 satisfying that (βk)k∈N ⊆ [β̌, β̂] for 0 <

β̌ ≤ β̂ <∞, and θ, δ ∈ (0, 1), let R > 0 as in Assumption (A3) taking V = X. The algorithms are
defined as follows:

Algorithm 1 Let (βk)k∈N, θ, δ,R and I like above.

Step 0 (Initialization): Take x0 ∈ X.

Step 1 (Iterative Step 1): Given xk, compute for all i ∈ I,

Ji(x
k, βk) := (I + βkBi)

−1(I − βkAi)(x
k). (3)

Step 2 (Stopping Criteria 1): Define I
∗
k := {i ∈ I : xk = Ji(x

k, βk)}. If I
∗
k = I stop.

Step 2.5 (Definition): ∀i ∈ I
∗
k define x̄ki := xk and ūki := −Ai(x

k) ∈ Bi(x
k).

Step 3 (Inner Loop): Otherwise, for all i ∈ I \ I∗k begin the inner loop over j. Put j = 0 and
choose any uk(j,i) ∈ Bi

(

θjJi(x
k, βk) + (1− θj)xk

)

∩B[0, R]. If

〈

Ai

(

θjJi(x
k, βk) + (1− θj)xk

)

+ uk(j,i), x
k − Ji(x

k, βk)
〉

≥
δ

βk
‖xk − Ji(x

k, βk)‖
2, (4)

then ji(k) := j and stop. Else, j = j + 1.

Step 4 (Iterative Step 2): Set for all i ∈ I \ I∗k

αk,i := θji(k), (5)

ūki := ukji(k),i (6)

x̄ki := αk,iJi(x
k, βk) + (1− αk,i)x

k (7)

and
xk+1 := PX

(

PHk
(xk)

)

. (8)

Step 5 (Stopping Criteria 2): If xk+1 = xk then stop. Otherwise, set k ← k + 1 and go to
Step 1.

where Hi(x, u) as in (2),
Hk := ∩i∈I\I∗

k
Hi(x̄

k
i , ū

k
i ). (9)

Observe that for all i ∈ I
∗
k using Proposition 2.5 we have that 0 ∈ Ai(x̄

k
i )+Bi(x̄

k
i ), hence, −Ai(x̄

k
i ) ∈

5



Bi(x̄
k
i ), proving that in this case Hi(x̄

k
i , ū

k
i ) = R

n. By definition of Hk and Step 2.5 of Algorithm
1 we have that Hk ⊆ Hi(x̄

k
i , ū

k
i ) for all i ∈ I.

Note that in Algorithm 1, we project onto the intersection of the separating hyperplanes, which
are at most m. When the number of component of the system is large, this method requires, at each
iteration, solving a non-trivial subproblem. But nevertheless, in [26], this intersection is computed
onto a largest number of hyperplanes. In view of this possible drawback, we propose the second
algorithm, in which we do not need to compute any intersection.

For the second algorithm we will make use of the function ρ : N → I, that is any surjective
and periodic function. We can choose for example, the function remainder after division by m,
ρ(n) = rem(n,m) and defined by ρ(mk) = m for all k ∈ N.

Algorithm 2, combines the Alternating Projection Method, the Forward-Backward Method
and the ideas of the separating hyperplane. Note that in Algorithm 2, the iterative process does
not depend on the number of equations involved in the system. At each iteration we use only one
component of the system. Hence, this algorithm is recommended for systems with a large number
of components. We refer the reader to the papers [16, 17] which have similar ideas on Alternating
Projection Algorithm.

Algorithm 2 Let (βk)k∈N, θ, δ,R and I like above.

Step 0 (Initialization): Take x0 ∈ X.

Step 1 (Iterative Step 1): Given xk, compute:

Jk
ρ(k) := (I + βkBρ(k))

−1(I − βkAρ(k))(x
k). (10)

Stopping Criteria 1 If xk = Jk
ρ(k) put ρ(k) ∈ I

∗
k set k = k + 1 and go to Step 1. If I∗k = I ,

then xk ∈ S∗.

Step 1.1 (Inner Loop): Begin the inner loop over j. Put j = 0 and choose any
uk(j,ρ(k)) ∈ Bρ(k)

(

θjJk
ρ(k) + (1− θj)xk

)

∩B[0, R]. If

〈

Aρ(k)

(

θjJk
ρ(k) + (1− θj)xk

)

+ uk(j,ρ(k)), x
k − Jk

ρ(k)

〉

≥
δ

βk
‖xk − Jk

ρ(k)‖
2, (11)

then j(k) := j and stop. Else, j = j + 1.

Step 2 (Iterative Step 2): Define:
αk := θj(k), (12)

ūk := ukj(k),ρ(k) (13)

x̄k := αkJ
k
ρ(k) + (1− αk)x

k (14)

xk+1 = PX

(

PHρ(k)(x̄k,ūk)(x
k)
)

. (15)

set k = k + 1, empty I
∗
k and go to Step 1.

where Hi(x, u) as in (2).

6



4 Convergence Analysis

In this section, we analyze the convergence of the algorithms presented in the previous section.
First, we present some general properties as well as prove the well-definition of both algorithms.

From now on, (xk)k∈N is the sequence generated by the algorithm.

Proposition 4.1 In both algorithms the Inner Loop is well-defined.

Proof. Here we use i as in the Algorithm 1, but nothing change if we use ρ(k) as in Algorithm
2, both algorithms have the same Inner Loop. The proof of the well-definition of ji(k) is by
contradiction. If Algorithm 1 or 2 reaches the Inner Loop, then i /∈ I

∗
k . Now, assume that for

all j ≥ 0 having chosen uk(j,i) ∈ Bi

(

θjJk
i + (1− θj)xk

)

∩B[0, R],

〈

Ai

(

θjJk
i + (1− θj)xk

)

+ ukj,i, x
k − Jk

i

〉

<
δ

βk
‖xk − Jk

i ‖
2.

Since the sequence (uk(j,i))
∞
j=0 is bounded, there exists a subsequence (uk(ℓj ,i))

∞
j=0 of (u

k
(j,i))

∞
j=0, which

converges to an element uki belonging to Bi(x
k) by closed graph property, see Proposition 4.2.1(ii)

in [3]. Taking the limit over the subsequence (ℓj)j∈N, we get
〈

βkAi(x
k) + βku

k
i , x

k − Jk
i

〉

≤ δ‖xk − Jk
i ‖

2. (16)

It follows from (3) that
βkAi(x

k) = xk − Jk
i − βkv

k
i ,

for some vki ∈ Bi(J
k
i ).

Now, the above equality together with (16), lead to

‖xk − Jk
i ‖

2 ≤
〈

xk − Jk
i − βkv

k
i + βku

k
i , x

k − Jk
i

〉

≤ δ‖xk − Jk
i ‖

2,

using the monotonicity of Bi for the first inequality. So,

(1− δ)‖xk − Jk
i ‖

2 ≤ 0,

implying that xk = Jk
i , which contradicts that i ∈ I \ I∗k. Thus, the algorithm is well-defined. �

A useful algebraic property on the sequence generated by Algorithm 1 and 2, which is a direct
consequence of the Inner Loop, is the following.

Corollary 4.2 Let (xk)k∈N, (βk)k∈N and (α(k,i))k∈N be sequences generated by Algorithm 1 or 2.

With δ and β̂ as defined in the algorithms. Then,

〈Ai(x̄
k
i ) + ūki , x

k − x̄ki 〉 ≥
αk,iδ

β̂
‖xk − Ji(x

k, βk)‖
2 ≥ 0, (17)

for all k.

Note that we have the same property if we replace i by ρ(k).

The following proposition shows that the Stopping Criteria 1 of both algorithms are well
defined.

7



Proposition 4.3 If Algorithm 1 or 2 stops at iteration k by the Stopping Criteria 1, then
xk ∈ S∗.

Proof. If Stopping Criteria 1 is satisfied, then I
∗
k = I for both algorithms, then by Proposition

2.5 we have that xk ∈ Si
∗ for all i ∈ I which imply that xk ∈ S∗. �

4.1 Convergence Analysis of Algorithm 1

This subsection is dedicated to prove the convergence of the Algorithm 1.

Proposition 4.4 xk ∈ Hk if and only if, xk ∈ S∗.

Proof. Direct consequence of Proposition 4.2 of [4] and the definition of Hk. �

Now we prove that the Stopping Criteria 2 is well defined.

Proposition 4.5 If Stop Criteria 2 is satisfied, then xk ∈ S∗.

Proof. If xk+1 = PX

(

PHk
(xk)

)

= xk, using Proposition 2.3(ii), we have

〈PHk
(xk)− xk, z − xk〉 ≤ 0, (18)

for all z ∈ X. Now using Proposition 2.3(ii) again,

〈PHk
(xk)− xk, PHk

(xk)− z〉 ≤ 0, (19)

for all z ∈ Hk. Since X ∩Hk 6= ∅ summing (18) and (19), with z ∈ X ∩Hk, we get

‖xk − PHk
(xk)‖2 = 0.

Hence, xk = PHk
(xk), implying that xk ∈ Hk and by Proposition 4.4, xk ∈ S∗. �

From now on assume thatAlgorithm 1 generate an infinite sequence (xk)k∈N. The next property
show some good properties on the sequence generated by Algorithm 1.

Proposition 4.6 (i) The sequence (xk)k∈N is Fejér convergent to S∗ ∩X.

(ii) The sequence (xk)k∈N is bounded.

(iii) limk→∞ ‖PHk
(xk)− xk‖ = 0.

(iv) limk→∞ ‖x
x+1 − xk‖ = 0.

Proof. (i) Take x∗ ∈ S∗ ∩X. Using Proposition 2.3(i) and Lemma 2.6, we have

‖xk+1 − x∗‖2 = ‖PX(PHk
(xk))− PX(PHk

(x∗))‖2 ≤ ‖PHk
(xk)− PHk

(x∗)‖2

≤ ‖xk − x∗‖2 − ‖PHk
(xk)− xk‖2. (20)

So, ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.

(ii) Follows immediately from item (i) and Proposition 2.2(i).

8



(iii)Take x∗ ∈ S∗ ∩X. Using (20) yields

‖PHk
(xk)− xk‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (21)

Now using Proposition 2.2(ii) and item (ii) we have that the right side of equation (21) goes to
zero. Obtaining the result.

(iv) Since the sequence {xk}k∈N belongs to X, we have

‖xk+1 − xk‖2 = ‖PX (PHk
(xk))− PX(xk)‖2 ≤ ‖PHk

(xk)− xk‖2.

Taking limits in the above equation and using the previous item we have the result. �

The following proposition gives us an important behavior of the sequences involved in the algo-
rithm.

Proposition 4.7 For all i ∈ I we have,

lim
k→∞
〈Ai(x̄

k
i ) + ūki , x

k − x̄ki 〉 = 0.

Proof. For all i ∈ I. Using the fact that Hk ⊆ Hi(x̄
k
i , ū

k
i ) by (9) and Step 2.5, we have that,

‖PHi(x̄k
i ,ū

k
i )
(xk)− xk‖2 ≤ ‖PHk

(xk)− xk‖2.

Using the fact that,

PHi(x̄k
i ,ū

k
i )
(xk) = xk −

〈Ai(x̄
k
i ) + ūki , x

k − x̄ki 〉

‖Ai(x̄ki ) + ūki ‖
2

(Ai(x̄
k
i ) + ūki ),

and the previous equation, we have

(

〈Ai(x̄
k
i ) + ūki , x

k − x̄ki 〉
)2

‖Ai(x̄ki ) + ūki ‖
2

≤ ‖PHk
(xk)− xk‖2. (22)

By Proposition 2.4 and the continuity of Ai we have that Ji is continuous, since (xk)k∈N and
(βk)k∈N are bounded then (Ji(x

k, βk))k∈N and (x̄ki )k∈N are bounded. This implies the boundedness
of (‖Ai(x̄

k
i ) + ūki ‖)k∈N for all i ∈ I.

Using Proposition 4.6(iii), the right side of (22) goes to 0 when k goes to ∞, establishing the
result. �

Next we establish our main convergence result for Algorithm 1.

Theorem 4.8 The sequence (xk)k∈N converges to some element belonging to S∗ ∩X.

Proof. We claim that there exists a cluster point of (xk)k∈N belonging to S∗. The existence of the
cluster points follows from Proposition 4.6(ii). Let (xjk)k∈N be a convergent subsequence of (xk)k∈N
such that, for all i ∈ I the sequences (x̄jki )k∈N, (ū

jk
i )k∈N, (αjk ,i)k∈N and (βjk)k∈N are convergent, and

limk→∞ xjk = x̃.

9



Using Proposition 4.6(iii) and taking limits in (17) over the subsequence (jk)k∈N, we have for all
i ∈ I,

0 = lim
k→∞
〈Ai(x̄

jk
i ) + ūjki , xjk − x̄jki 〉 ≥ lim

k→∞

αjk,iδ

β̂
‖xjk − Ji(x

jk , βjk)‖
2 ≥ 0. (23)

Therefore,
lim
k→∞

αjk,i‖x
jk − Ji(x

jk , βjk)‖ = 0.

Now consider the two possible cases.

(a) First, assume that limk→∞ αjk,i 6= 0, i.e., αjk,i ≥ ᾱ for all k and some ᾱ > 0. In view of (23),

lim
k→∞

‖xjk − Ji(x
jk , βjk)‖ = 0. (24)

Since Ji is continuous, by continuity of Ai and (I + βkBi)
−1 and by Proposition 2.4, (24) becomes

x̃ = Ji(x̃, β̃),

which implies that x̃ ∈ S∗
i for all i ∈ I. Then x̃ ∈ S∗ establishing the claim.

(b) On the other hand, if limk→∞ αjk,i = 0 then for θ ∈ (0, 1) as in the Algorithm 1, we have

lim
k→∞

αjk,i

θ
= 0.

Define
yjki :=

αjk,i

θ
Ji(x

jk , βjk) +
(

1−
αjk,i

θ

)

xjk .

Then,
lim
k→∞

yjki = x̃. (25)

Using the definition of the ji(k) and (12), we have that yjki does not satisfy (4) implying

〈

Ai(y
jk
i ) + ujk

ji(k)−1 −
δ

βk
(xk − Ji

(

xk, βk)
)

, xk − Ji(x
k, βk)

〉

> 0,

equivalent to
〈

Ai(y
jk
i ) + ujk

j(jk)−1,i, x
k − Ji(x

k, βk)
〉

>
δ

βk
‖xk − Ji

(

xk, βk
)

‖2, (26)

for ujk
j(jk)−1,i ∈ Bi(y

jk
i ) and all k ∈ N and i ∈ I.

Redefining the subsequence (jk)k∈N, if necessary, we may assume that (ujk
j(jk)−1,i

)k∈N converges to

ũi. By the maximality of Bi, ũi belongs to Bi(x̃). Using the continuity of Ji, (J(x
jk , βjk))k∈N

converges to Ji(x̃, β̃). Using (25) and taking limit in (26) over the subsequence (jk)k∈N we have

〈

Ai(x̃) + ũi, x̃− Ji(x̃, β̃)
〉

≤
δ

β̃
‖x̃− Ji(x̃, β̃)‖

2. (27)

Using (3) and multiplying by β̃ on both sides of (27) we get

〈x̃− Ji(x̃, β̃)− β̃ṽi + β̃ũi, x̃− Ji(x̃, β̃)〉 ≤ δ‖x̃ − Ji(x̃, β̃)‖
2,

10



where ṽi ∈ Bi(Ji(x̃, β̃)). Applying the monotonicity of Bi, we obtain

‖x̃− Ji(x̃, β̃)‖
2 ≤ δ‖x̃ − Ji(x̃, β̃)‖

2,

implying that ‖x̃− Ji(x̃, β̃)‖ ≤ 0. Thus, x̃ = Ji(x̃, β̃) and hence, x̃ ∈ Si
∗ for all i ∈ I, thus x̃ ∈ S∗.

�

4.2 Convergence Analysis of Algorithm 2

In this subsection we prove the convergence analysis of Algorithm 2.

Proposition 4.9 (i) The sequence (xk)k∈N is Fejér convergent to S∗ ∩X.

(ii) The sequence (xk)k∈N is bounded.

(iii) limk→∞ ‖x
x+1 − xk‖ = 0.

Proof.

(i) Take x∗ ∈ S∗ ∩X. Using (15), Proposition 2.3(i) and Lemma 2.6, we have

‖xk+1 − x∗‖2 = ‖PX(PHρ(k)(x̄k,ūk)(x
k))− PX(PHρ(k)(x̄k,ūk)(x

∗))‖2

≤ ‖PHρ(k)(x̄k,ūk)(x
k))− PHρ(k)(x̄k ,ūk)(x

∗)‖2

≤ ‖xk − x∗‖2 − ‖PHρ(k)(x̄k,ūk)(x
k)− xk‖2. (28)

So, ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.

(ii) Follows immediately from item (i) and Proposition 2.2(i).

(iii) Using that the sequence (xk)k∈N ⊂ X by (15), we have

‖xk+1 − xk‖2 = ‖PX

(

PHρ(k)(x̄k,ūk)(x
k)
)

− xk‖2 ≤ ‖PHρ(k)(x̄k,ūk)(x
k)− xk‖2.

Now, using (28) we obtain,

‖xk+1 − xk‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (29)

Taking limit in (29), using Proposition 2.2(ii) and item (i), we get the result.

�

Proposition 4.10 For the sequences (ūk)k∈N, (x̄k)k∈N and (xk)k∈N generated by Algorithm 2
holds

lim
k→∞
〈Aρ(k)(x̄

k) + ūk, xk − x̄k〉 = 0.

11



Proof.

Reordering (28), for all x∗ ∈ S∗ ∩X we get

‖PHρ(k)(x̄k,ūk)(x
k)− xk‖2 ≤ |xk − x∗‖2 − ‖xk+1 − x∗‖2.

Using the fact that

PHρ(k)(x̄k,ūk)(x
k) = xk −

〈Aρ(k)(x̄
k) + ūk, xk − x̄k〉

‖Aρ(k)(x̄k) + ūk‖2
(Aρ(k)(x̄

k) + ūk),

and the previous equation, we have

(〈Aρ(k)(x̄
k) + ūk, xk − x̄k〉)2

‖Aρ(k)(x̄k) + ūk‖2
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (30)

By Proposition 2.4 and the continuity of Aρ(k) we have that Jρ(k) is continuo. Since (xk)k∈N and

(βk)k∈N are bounded we get that (x̄k)k∈N is bounded, implying the boundedness of (‖Aρ(k)(x̄
k) +

ūk‖)k∈N. As we had seen by Proposition 29 and Proposition 4.9(i), the right side of (30) goes to 0
when k goes to ∞, establishing the result. �

Next we establish our main convergence result for Algorithm 2.

Theorem 4.11 The sequence (xk)k∈N converges to some element belonging to S∗ ∩X.

Proof. Since (xk)k∈N is bounded then have cluster points, as every xk belong to X by (15) and X
is closed, then all clusters point of (xk)k∈N belong to X.

It is sufficient to proof that at least one cluster point of the sequence (xk)k∈N belongs to the
solution set. Applying Proposition 2.2(iii) and Proposition 4.9(i) we will get that the whole sequence
is convergent to the solution set. Note that due to the property of periodicity and surjective (as
was defined) of the function ρ : N→ I, there exist subsequences (ni

k)k∈N,i∈I such that |ni
k−nj

k| ≤ m
for all k ∈ N and all i, j ∈ I and ρ(ni

k) = i for all i ∈ I. Using Proposition 4.9(iii) it is easy to proof

that limk→∞ ‖x
ni
k − xn

j
k‖2 = 0, for all i, j ∈ I. This result imply that all subsequences (xn

i
k)k∈N for

i ∈ I, have the same cluster points. Now we can take subsequences of (x
ni
lk ) such that x

ni
lk → x̃

for all i ∈ I. This subsequence can be chosen such that (αnlk
)k∈N and (βnlk

)k∈N be convergent and

let limk→∞ βnlk
= β̃.

Rewriting (17) for the case of Algorithm 2, we have

〈Aρ(k)(x̄
k) + ūk, xk − x̄k〉 ≥

αkδ

β̂
‖xk − Jρ(k)(x

k, βk)‖
2. (31)

Using Proposition 4.10 and taking limits in (31) over the subsequences (ni
lk
)k∈N, we have for all

i ∈ I,

0 = lim
k→∞
〈Ai(x̄

nlk ) + ūnlk , xnlk − x̄nlk 〉 ≥ lim
k→∞

αnlk
δ

β̂
‖xnlk − Ji(x

nlk , βnlk
)‖2 ≥ 0. (32)

Therefore,
lim
k→∞

αnlk
‖xnlk − Ji(x

nlk , βnlk
)‖2 = 0.

12



Now consider the two possible cases.

(a) First, assume that limk→∞ αnlk
6= 0, i.e., αnlk

≥ ᾱ for all k and some ᾱ > 0. In view of (32),

lim
k→∞

‖xnlk − Ji(x
nlk , βnlk

)‖ = 0. (33)

Since Ji is continuous, by continuity of Ai and (I + βkBi)
−1 by Proposition 2.4, (33) becomes

x̃ = Ji(x̃, β̃) = (I + β̃Bi)
−1(I − β̃Ai)(x̃),

which implies that x̃ ∈ Si
∗ for all i ∈ I using Proposition 2.5. Then x̃ ∈ S∗ establishing the claim.

(b) On the other hand, if limk→∞ α
lk

= 0 then for θ ∈ (0, 1) as in Algorithm 2, we have

lim
k→∞

αnlk

θ
= 0.

Define

y
nlk

i :=
αnlk

θ
Ji(x

nlk , βnlk
) +

(

1−
αnlk

θ

)

xnlk ,

then,
lim
k→∞

y
nlk

i = x̃. (34)

Using the definition of the j(k) and (12), we have that yjki does not satisfy (11) implying

〈

Ai(y
nlk

i ) + u
nlk

j(nlk
)−1,i, x

nlk − Ji(x
nlk , βnlk

)
〉

<
δ

βnlk

‖xnlk − Ji(x
nlk , βnlk

)‖2, (35)

for u
nlk

j(nlk
)−1,i ∈ Bi(y

nlk

i ) and all k ∈ N and i ∈ I.

Redefining the subsequence (nlk)k∈N, if necessary, we can assume that (u
nlk

j(nlk
)−1,i)k∈N converges to

ũi, due to the maximality of Bi we obtain that ũi belongs to Bi(x̃). Using the continuity of Ji, (34)
and taking limit in (35) over the subsequence (nlk)k∈N we have

〈

Ai(x̃) + ũi, x̃− Ji(x̃, β̃)
〉

≤
δ

β̃
‖x̃− Ji(x̃, β̃)‖

2. (36)

Using the definition of Ji(x̃, β̃) := (I + β̃Bi)
−1(I − β̃Ai)(x̃) and multiplying by β̃ on both sides of

(36), we get
〈x̃− Ji(x̃, β̃)− β̃ṽi + β̃ũi, x̃− Ji(x̃, β̃)〉 ≤ δ‖x̃ − Ji(x̃, β̃)‖

2,

where ṽi ∈ Bi(Ji(x̃, β̃)). Applying the monotonicity of Bi, we obtain

‖x̃− Ji(x̃, β̃)‖
2 ≤ δ‖x̃ − Ji(x̃, β̃)‖

2,

implying that ‖x̃ − Ji(x̃, β̃)‖ ≤ 0. Thus, x̃ = Ji(x̃, β̃) and hence, x̃ ∈ Si
∗ for all i ∈ I, thus x̃ ∈ S∗

This prove the convergence of the whole sequence to a point of the set S∗ ∩X. �

13



5 Numerical Experiments

In this section, we compare numerically Algorithm 1 and Algorithm 2 through two examples.
In one of the examples, we compare both algorithms with Algorithm 3.3 in [26]. We use MATLAB
version R2015B on a PC with Intel(R) Core(TM) i5-4570 CPU 3.20GHz and Windows 7 Enterprise,
Service Pack 1. For the calculation of the projection steps we use the Quadratic Programming
(quadprog) tool. In both examples, we consider the system of inclusion problems with the operators
Bi = NC for i = 1, 2, · · · ,m, C = {x ∈ R

n : Ax ≤ b} where A ∈M l,n(R) (a matrix with l rows and
n columns with real entries) and b ∈ R

l
+ are computed randomly. In both cases, we take l = 20,

δ = 0.1, θ = 0.5, βk = 1 for all k ∈ N and the initial point is x0 = (1, 1, · · · , 1)T ∈ R
n. The

tolerance is taken as ‖xk − x∗‖ ≤ 0.001, with x∗ being the solution. Note that in both examples
the problem turns into a system of variational inequalities, then we can choose X = C, no need to
be bounded. In Table 1 and Table 2 we denote the number of iterations by iter and the number
of evaluation of the operators by nT.

Example 5.1 [14, 26] For all i = 1, 2, · · · ,m consider the operator Ti = Mix, with

Mi = QT
i Qi,

where Q is an n×n random matrix, then the matrix Mi is positive semi-definite, hence the operator
Ti is maximal monotone. We compare our two algorithms with Algorithm 3.3 in [26]. We took the
same initial data used in [26]. See results in Table 1.

Table 1 Results for Example 5.1.

Algor 1 Algor 2 Algor 3.3 in [26]

n m iter(nT) CPU time iter(nT) CPU time iter(nT) CPU
time

2 10 7(132) 0.561604 30(53) 0.234001 83(853) 4.14963

5 10 22(774) 1.40401 100(387) 0.670804 150(1887) 10.7797

10 10 46(2377) 2.04361 110(576) 0.702004 584(6416) 190.181

2 20 6(224) 0.780005 40(73) 0.234002 57(1213) 4.50843

5 20 19(1300) 1.76281 100(401) 0.686404 232(5041) 65.692

10 20 29(3039) 2.38682 120(640) 0.811205 261(5860) 88.7802

20 30 33(7308) 4.49283 150(1111) 1.21681 –(–) > 104

30 30 67(18032) 9.39126 210(1741) 1.85641 –(–) > 104

50 30 87(27381) 14.7265 420(4408) 4.58643 –(–) > 104

Example 5.2 Consider the operators Ai = Mix+ f(x), where Mi is obtained as in Example 5.1
and f : Rn → R

n is defined for each x = (x1, x2, · · · , xn) by

f(x) = (x31, x
3
2, · · · , x

3
n).

So, the operators Ai are maximal monotone and continuous but non-Lipschitz continuous. We
don’t compare our algorithms with others algorithms in the literature. As well as we know, there

14



not algorithms for systems of variational inequalities where the operators being non-Lipschitz. See
results in Table 2.

Table 2 Results for Example 5.2.

Algorithm 1 Algorithm 2

n m iter(nT) CPU time iter(nT) CPU time

5 10 21(913) 1.09201 80(375) 0.499203

20 10 71(5941) 3.57242 260(2183) 2.02801

50 10 127(14128) 7.84685 450(5023) 4.38363

5 20 15(1286) 1.35721 140(716) 0.982806

20 20 39(6531) 3.88442 160(1327) 1.29481

50 20 63(14676) 7.47245 380(4282) 4.04043

Remark 5.3 The numerical results confirm that ours proposed algorithms have a competitive
behavior respect to similar methods, such as Algorithm 3.3 in [26]. Note that Algorithm 3.3 in [26]
have the better results, compared with others algorithm proposed in [26], as can be seen in its
numerical experiments. The advantage of Algorithm 1 and Algorithm 2 over Algorithm 3.3 lies
in the difference between the number of iterations and the CPU time.

6 Conclusions

We present two algorithms for solving systems of inclusion problems for the sum of two maxi-
mal monotone operators in Euclidean spaces with finite dimension. Both algorithms are variants
of the forward-backward splitting method. One of them is also a hybrid with the alternating
projection method. The algorithms contain two steps, a line-search, and a projection onto the sep-
arating hyperplane. The convergence analysis of both algorithms is established assuming maximal
monotonicity of all the operators without the hypothesis of Lipschitz continuity. The numerical
experiments show a better performance for our algorithms when compared with similar ones in
the literature. The analysis of the complexity and the development of these algorithms for Banach
spaces is a topic for future research.

Acknowledgments

The author was partially supported by CNPq grant 200427/2015-6. This work was concluded while
the author was visiting the School of Information Technology and Mathematical Sciences at the
University of South Australia. The author would like to thank the great hospitality received during
his visit, particularly to Regina S. Burachik and C. Yalçin Kaya. The author would like to express
his gratitude to two anonymous referees for their valuable comments and suggestions that are very
helpful to improve this paper.

15



References

[1] Al-Homidan, S., Alshahrani, M., Ansari, Q. H.: System of nonsmooth variational inequalities
with applications. Optimization 64 (5) (2015) 1211-1218.

[2] Bauschke, H. H., Borwein, J.M.: On projection algorithms for solving convex feasibility prob-
lems. SIAM Review 38 (1996) 367–426.

[3] Bauschke, H. H., Combettes, Patrick L.: Convex Analysis and Monotone Operator Theory in

Hilbert Spaces. Springer, (2011).

[4] Bello Cruz, J. Y., Dı́az Millán, R.: A variant of forward-backward splitting method for the sum
of two monotone operators with a new search strategy. Optimization 64 (7) (2015) 1471–1486.

[5] Browder, F. E.: Convergence theorems for sequences of nonlinear operators in Banach spaces.
Mathematische Zeitschrift 100 (1967) 201–225.

[6] Censor, Y., Gibali, A., Reich, S.: A von Neumann alternating method for finding common solu-
tions to variational inequalities. Nonlinear Analysis Series A: Theory, Methods and Applications

75 (2012) 4596–4603.

[7] Censor, Y., Gibali, A., Reich, S., Sabach, S.: Common solutions to variational inequalities.
Set-Valued and Variational Analysis 20 (2012) 229–247.

[8] Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Nu-
merical Algorithms 59 (2012) 301–323.

[9] Combettes, P. L.: Fejér monotonicity in convex optimization. Encyclopedia of Optimization

(2009) 1016–1024.

[10] Dı́az Millán, R.: On several algorithms for variational inequality and inclusion problems. PhD
thesis, Federal University of Goiás, Goiânia, GO, 2015. Institute of Mathematic and Statistic,
IME-UFG.

[11] Douglas J, Rachford, Jr. H. H.: On the numerical solution of heat conduction problems in two
or three space variables. Trans. Amer. Math. Soc. 82 (1956) 421–439.

[12] Eckstein, J.: Splitting Methods for Monotone Operators, with Applications to Parallel Opti-

mization. PhD thesis, Massachusetts Institute of Techonology, Cambridge, MA, 1989. Report
LIDS-TH-1877, Laboratory for Information and Decision Systems, M.I.T.

[13] Eslamian, M., Saejung, S., Vahidi, J.: Common solutions of a system of variational inequality
problems. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics Seria A 77 1
(2015) 55–62.

[14] Harker, P. T., Pang, J. S.: A damped-newton method for the linear complementarity problem.
Lect. Appl. Math. 26 (1990) 265–284.

[15] Iusem, A. N., Svaiter, B. F., Teboulle, M.: Entropy-like proximal methods in convex program-
ming. Mathematics of Operations Research 19 (1994) 790–814.

16



[16] Kopecká, E., Reich, S. Another note on the von Neumann alternating projections algorithm.
Journal of Nonlinear and Convex Analysis Vol.11 (3) (2010) 455–460.

[17] Kopecká, E., Reich, S. A note on the von Neumann alternating projections algorithm, JJournal
of Nonlinear Convex Analysis Vol. 5 (2004) 379–386.

[18] Konnov,I.V.: On systems of variational inequalities. Russian Mathematics, 41, No. 12, (1997)
79-88.

[19] Konnov, I.V.: Splitting-type method for systems of variational inequalities. Computer and

Operations Research 33, (2006) 520–534.

[20] Minty, G.: On the maximal domain of a “monotone” function. Michigan Mathematical Journal

8 (1961) 135-137.

[21] Minty, G.: Monotone (nonlinear) operators in Hilbert Space. Duke Mathetematical Journal 29
(1962) 341–346.

[22] Rosasco, L., Villa, S., Vu, B. C.: Stochastic forward-backward splitting for monotone inclu-
sions. Journal of Optimization Theory and Applications 169(2) (2016) 388–406.

[23] Semenov, V. V.: Hybrid splitting methods for the system of operator inclusions with monotone
operators. Cybernetics and Systems Analysis 50 (2014) 741–749.

[24] Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and inexact forward-backward
algorithms. SIAM Journal of Optimization 23 (3) (2013) 1607–1633.

[25] Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings.
SIAM on Journal Control Optimization 38 (2000) 431–446.

[26] Van Hieu, D., Anh, P. K., Muu, L. D.: Modified hybrid projection methods for finding com-
mon solutions to variational inequality problems. Computational Optimization and Applications

(2016). doi:10.1007/s10589-016-9857-6.

[27] Zarantonello, E. H.: Projections on convex sets in Hilbert space and spectral theory. In:
Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, Academic Press, New
York (1971) 237–424.

17


	1 Introduction
	2 Preliminaries
	3 The Algorithms
	4 Convergence Analysis
	4.1 Convergence Analysis of Algorithm 1
	4.2 Convergence Analysis of Algorithm 2

	5 Numerical Experiments
	6 Conclusions

