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Abstract

This paper focuses on efficient computational approaches to compute approximate solutions of a linear
inverse problem that is contaminated with mixed Poisson–Gaussian noise, and when there are additional
outliers in the measured data. The Poisson–Gaussian noise leads to a weighted minimization problem,
with solution-dependent weights. To address outliers, the standard least squares fit-to-data metric is
replaced by the Talwar robust regression function. Convexity, regularization parameter selection schemes,
and incorporation of non-negative constraints are investigated. A projected Newton algorithm is used
to solve the resulting constrained optimization problem, and a preconditioner is proposed to accelerate
conjugate gradient Hessian solves. Numerical experiments on problems from image deblurring illustrate
the effectiveness of the methods.

Keywords Poisson-Gaussian model, weighted least squares, robust regression, preconditioner, image restora-
tion
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1 Introduction

In this paper we consider efficient computational approaches to compute approximate solutions of a linear
inverse problem,

b = Axtrue + η, A ∈ Rm×n, (1)

where A is a known matrix, vector b represents known acquired data, η represents noise, and vector xtrue
represents the unknown quantity that needs to be approximated. We are particularly interested in imaging
applications where xtrue ≥ 0 and Axtrue ≥ 0. Although this basic problem has been studied extensively (see,
for example, [9, 15, 26, 32] and the references therein), the noise is typically assumed to come from a single
source (or to be represented by a single statistical distribution) and the data to contain no outliers. In this
paper we focus on a practical situation that arises in many imaging applications, and for which relatively little
work has been done, namely when the noise is comprised of a mixture of Poisson and Gaussian components
and when there are outliers in the measured data. While some research has been done on the two topics
separately (i.e., mixed Poisson–Gaussian noise models or outliers in measured data), to our knowledge no
work has been done when the measured data contains both issues. In the following, we review some of the
approaches used to handle each of the issues.
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Poisson–Gaussian noise

A Poisson–Gaussian statistical model for the measured data takes the form

bi = nobj(i) + g(i), i = 1, . . . ,m, nobj(i) ∼ Pois([Axtrue]i), g(i) ∼ N (0, σ2), (2)

where bi is the ith component of the vector b and [Axtrue]i the ith component of the true noise-free data
Axtrue. We assume that the two random variables nobj(i) and g(i) are independent. This mixed noise model
arises in many important applications, such as when using charged coupled device (CCD) arrays, x-ray
detectors, and infrared photometers [2, 12, 21, 22, 30]. The Poisson part (sometimes referred to as shot
noise) can arise from the accumulation of photons over a detector, and the Gaussian part usually is due to
read-out noise from a detector, which can be generated by thermal fluctuations in interconnected electronics.

Since the log-likelihood function for the mixed Poisson–Gaussian model (2) has an infinite series represen-
tation [30], we assume a simplified model, where both random variables have the same type of distribution.
There are two main approaches one can take to generate a simplified model. The first approach is to add σ2

to each component of the vector b, and from (2) it then follows that

E(bi + σ2) = [Axtrue]i + σ2 and var(bi + σ2) = [Axtrue]i + σ2.

For large σ, the Gaussian random variable g(i) +σ2 is well-approximated by a Poisson random variable with
the Poisson parameter σ2, and therefore bi + σ2 is also well approximated by a Poisson random variable
with the Poisson parameter [Axtrue]i + σ2. The data fidelity function corresponding to the negative Poisson
log-likelihood then has the form

m∑
i=1

([Axtrue]i + σ2)− (bi + σ2) log([Axtrue]i + σ2); (3)

see also [30]. An alternative approach is to approximate the true negative log-likelihood by a weighted
least-squares function, where the weights correspond to the measured data, i.e.,

m∑
i=1

1

2

(
[Ax]i − bi√
bi + σ2

)2

; (4)

see [17, Sec. 1.3]. A more accurate approximation can be achieved by replacing the measured data by the
computed data (which depends on x), i.e., replace the fidelity function (4) by

m∑
i=1

1

2

(
[Ax]i − bi√
[Ax]i + σ2

)2

; (5)

see [31] for more details. Additional additive Poisson noise (e.g., background emission) can be incorporated
into the model in a straightforward way.

Outliers

For data corrupted solely with Gaussian noise, i.e.,

bi = [Ax]i + g(i), i = 1, . . . ,m, g(i) ∼ N (0, σ2),

employing the negative log-likelihood leads to the standard least-squares functional

m∑
i=1

1

2
([Ax]i − bi)2 . (6)
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It is well known however that a computed solution based on least squares is not robust if outliers occur,
meaning that even a small number of components with gross errors can cause a severe deterioration of our
estimate. Robustness of the least squares fidelity function can be achieved by replacing the loss function 1

2 t
2

used in (6) by a function ρ(t) as
m∑
i=1

ρ ([Ax]i − bi) , (7)

where the function ρ is less stringent towards the gross errors and satisfies the following conditions:

1. ρ(t) ≥ 0;

2. ρ(t) = 0⇔ t = 0;

3. ρ(−t) = ρ(t);

4. ρ(t′) ≥ ρ(t), for t′ ≥ t ≥ 0;

see also [17, Sec. 1.5]. A list of eight most commonly used loss functions ρ can be found in [6] or in MATLAB
under robustfit; some of them are discussed in Section 2.1. Each of these functions also depends on a
parameter β (see Section 2.2) defining the trade-off between the robustness and efficiency. Note that if we
use this robust regression approach, in order to reduce the influence of possible outliers, we always sacrifice
some efficiency at the model.

In this paper, we focus on combining these two approaches to suppress the influence of outliers for data
with mixed noise (2). Our work has been motivated by O’Leary [29], and more recent work by Calef [5].
The initial ideas of our work were first outlined in the conference paper [20].

The paper is organized as follows. In Section 2 we introduce a data-fidelity function suitable for data
corrupted both with mixed Poisson–Gaussian noise and outliers. In Section 3 we propose a regularization
parameter choice method for the regularization of the resulting inverse problem, and in Section 4 we focus
on the optimization algorithm and the solution of the linear subproblems. Section 5 demonstrates the
performance of the resulting method on image deblurring problems with various types of outliers.

Throughout the paper, D (or D with an accent) denotes a general real diagonal matrix, ei denotes the
ith column of the identity matrix of a suitable size.

2 Data-fidelity function

In Section 1, we reviewed fidelity functions (3), (4), and (5), commonly used for problems with mixed Poisson–
Gaussian noise and also robust loss functions used to handle problems with Gaussian noise and outliers (7).
Since we need to deal with both issues simultaneously here, we propose combining both approaches. More
specifically, combining a robust loss function with the weighted least squares problem (5), so that the data
fidelity function becomes

J(x) =

m∑
i=1

ρ

(
[Ax]i − bi√
[Ax]i + σ2

)
. (8)

In the remainder of this section, we investigate the properties of the proposed data-fidelity function (8) and
the choice of the robustness parameter β, which is defined in the next subsection.

2.1 Choice of the loss function – convexity analysis

For ordinary least squares, functions known under names Huber, logistic, Fair, and Talwar, shown in Figure 1,
lead to an interval-wise convex data fidelity function, see [29], i.e., positive-semidefinite Hessian, which is
favorable for Newton-type minimization algorithms. This however does not always hold in our case where
the weighted least squares formulation (8) has solution-dependent weights.
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To see this, let us begin by denoting the components of the residual as ri ≡ [Ax]i − bi and the solution-
dependent weights as wi ≡ 1√

[Ax]i+σ2
. Then the gradient and the Hessian of (8) can be rewritten as

gradJ(x) = AT z, zi = (w′iri + wi) ρ
′(wiri);

HessJ(x) = ATDA, Dii = (w′′i ri + 2w′i)ρ
′(wiri) + (w′iri + wi)

2ρ′′(wiri). (9)

We investigate the entries Dii in order to examine the positive semi-definiteness of the Hessian HessJ(x).
Recall that ATDA is positive semi-definite, if Dii ≥ 0.

Assuming ρ′′ ≥ 0, the signs of the diagonal entries Dii in (9) are

sign(Dii) = ( + · sign(ri) + 2− ) · sign(ρ′(wiri)) + + + ,

where we have replaced some of the quantities in the expression for Dii shown in equation (9) with the
symbol − when the value it replaces is always a negative number and with + when the value it replaces is
always nonnegative. We will now investigate all possible cases with respect to sign(ρ′(wiri)):

• Case 1: ρ′(wiri) < 0
ρ′(wiri) < 0 yields ri < 0, and therefore Dii > 0.

• Case 2: ρ′(wiri) = 0
ρ′(wiri) = 0 yields Dii = 0.

• Case 3: ρ′(wiri) > 0
Substituting for wi and ri in (9), we obtain

Dii =

(
3

4
([Ax]i − bi)([Ax]i + σ2)−5/2 − ([Ax]i + σ2)−3/2)

)
ρ′(wiri)

+

(
−1

2
([Ax]i − bi)([Ax]i + σ2)−3/2 + ([Ax]i + σ2)−1/2

)2

ρ′′(wiri).

For [Ax]i � bi + σ2, to achieve Dii ≥ 0,√
[Ax]i · ρ′′(

√
[Ax]i) & ρ′(

√
[Ax]i),

must hold. This corresponds to

ρ′(t) & t yielding ρ(t) & t2/2,

i.e., for large [Ax]i, the loss function ρ has to grow at least quadratically.

Concluding, for large t, the loss function ρ(t) has to be either constant or grow at least quadratically,
which is in contradiction with the idea of robust regression. Therefore, considering the functions from [6], the
only loss function ρ for which the data fidelity function (8) has positive semidefinite Hessian, is the function
Talwar:

ρ(t) =

 t2/2, |t| ≤ β,
β2/2, |t| > β.

(10)

2.2 Selection of the robustness parameter

Parameters β for 95% asymptotic efficiency with respect to the standard loss function 1
2 t

2 when the distur-
bances come from the unit normal distribution can again be found in [6]. For Talwar, the 95% efficiency
tuning parameter is

β95 = 2.795. (11)
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Figure 1: Loss functions Fair, Huber, logistic and Talwar for the tuning parameter β corresponding to 95%
efficiency (solid line) together with the standard loss function t2/2 (dashed line).

Note that in our specific case, the random variable inside the function ρ in (8) is already rescaled to have
unit variance and therefore approximately unit normal distribution. We may therefore apply the parameter
β95 without any further rescaling based on estimated variance, which is usually required in case of ordinary
least squares with unknown variance of noise. Function Talwar with β = β95 is shown in Figure 1d.

2.3 Non-negativity constraints

In many applications, such as imaging, the reconstruction will benefit from taking into account the prior
information about the component-wise non-negativity of the true solution xtrue. Here, however, imposing
non-negativity is not just a question of visual appeal, it also guarantees the two estimates (3) and (5) of the
negative log-likelihood will provide similar results; see [31]. Therefore, the component-wise non-negativity
constraint is an integral part of the resulting optimization problem. However, employment of the non-
negativity constraint results in the need of more sophisticated optimization tools. The use of one of the
possible algorithms is discussed in Section 4.

3 Regularization and selection of the regularization parameter

As a consequence of noise and ill-posedness of the inverse problem (1), some form of regularization needs to
be employed in order to achieve a reasonable approximation of the true solution xtrue. For computational
convenience, we use Tikhonov regularization with a quadratic penalization term, i.e., we minimize the
functional of the form

Jλ(x) ≡
m∑
i=1

ρ

(
[Ax]i − bi√
[Ax]i + σ2

)
+
λ

2
‖Lx‖2, x ≥ 0. (12)
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We assume that a good regularization parameter λ with respect to L is used so that the penalty term
is reasonably close to the prior and the residual therefore is close to noise. In case of robust regression,
it is particularly important not to over-regularize, since this would lead to large residuals and too many
components of the data b would be considered outliers. Methods for choosing λ are discussed in this section.

3.1 Morozov’s discrepancy principle

Since the residual components are scaled, and for data without outliers we have the expected value

E

{
1

n

n∑
i=1

([Ax]i − bi)2

[Ax]i + σ2

}
= 1, (13)

an obvious choice would be to use the Morozov’s discrepancy principle [25, 32]. However, as reported in [31],
even without outliers, the discrepancy principle based on (13) tends to provide unsatisfactory reconstructions
for problems with large signal-to-noise ratio. Therefore we will not consider this approach further.

3.2 Generalized cross validation

The generalized cross validation method [11][32, chap. 7] is a method derived from the standard leave-one-
out cross validation. To apply this method for linear Tikhonov regularization, one selects the regularization
parameter λ such that it minimizes the GCV functional

GCV(λ) =
n‖rλ‖2

(trace(I −Aλ))2
, (14)

where rλ = Axλ − b = (Aλ − I)b is the residual, n is its length, and the influence matrix Aλ takes the form
Aλ = A(ATA+ λLTL)−1AT . Here, due to the non-negativity constraints and the weights, the residual and
the influence matrix have a more complicated form. An approximation of the influence matrix for problems
with mixed noise, but without outliers, has been proposed in [1]. There the numerator of the GCV functional
takes the form n‖Wrλ‖2 and the approximate influence matrix

Aλ = WA(Dλ(ATW 2A+ λLTL)Dλ)†DλA
TW, (15)

where W and Dλ are diagonal matrices:

Wii =
1√

[Axλ]i + σ2
;

[Dλ]ii =

 1 [xλ]i > 0,

0 otherwise,

and † denotes the Moore-Penrose pseudoinverse. Matrix Dλ only handles the non-negativity constraints,
and therefore can be adopted directly. The matrix W needs a special adjustment, due to the change of the
loss function to Talwar. The aim is to construct a matrix W satisfying

‖Wrλ‖2 =

m∑
i=1

ρ

(
[Axλ]i − bi√
[Axλ]i + σ2

)
.

Substituting for ρ from the definition of the function Talwar (10), we redefine the scaling matrix as

Wii ≡


1√

[Axλ]i+σ2

∣∣∣∣ [Axλ]i−bi√
[Axλ]i+σ2

∣∣∣∣ ≤ β,
β

[Axλ]i−bi otherwise;
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In order to make the evaluation of (15) feasible for large-scale problems, we approximate the trace of a
matrix using the random trace estimation [18, 32] as trace(M) ≈ vTMv, where the entries of v take values
±1 with equal probability. Applying the random trace estimation to (15), we obtain

(trace(I −Aλ))2 ≈ (vT v − vTAλv)2.

Finally, Aλv is approximated by WAy, with y obtained applying truncated conjugate gradient iteration to

(Dλ(ATW 2A+ λLTL)Dλ)y = DλA
TWv. (16)

4 Minimization problem

In this section we discuss numerical methods to compute a minimum of (12). We consider incorporating a
non-negative constraint and solution of linear subproblems, including proposing a preconitioner.

4.1 Projected Newton’s method

Various methods for constrained optimization have been developed over the years, some related to image
deblurring can be found in [2, 4, 14, 24, 28]. For our computations, we chose a projected Newton’s method1,
combined with projected PCG to compute the search direction in each step, see [13, sec. 6.4]. The con-
venience of this method lies in the fact that the projected PCG does not require any special form of the
preconditioner and a generic conjugate gradient preconditioner can be employed. Besides lower bounds, up-
per bounds on the reconstruction can also be enforced. For completeness, we include the projected Newton
method in Algorithm 1, and projected PCG in Algorithm 2.

Algorithm 1 Projected Newton’s method [13]

k = 0
while not converged do

Active = (x(k) ≤ 0)
g = gradJλ(x(k))

H = HessJλ(x(k))
M = prec(H) {setup preconditioner for the Hessian}
s = projPCG(H,−g,Active,M) {compute the search direction for inactive cells}
ga = g(Active)
if max(abs(ga)) > max(abs(s)) then
ga = ga ·max(abs(s))/max(abs(ga)) {rescaling needed}

end if
s(Active) = ga {take gradient direction in active cells}
x(k+1) = linesearch(s, x(k), Jλ, gradJλ)
k = k + 1

end while
return x(k)

1In [13], the method was derived as the Projected Gauss–Newton method. Here, since the evaluation of the Hessian does
not represent a computational difficulty, we use it as a variant of Newton’s method. Therefore, in the remainder of the text,
the method is referred to as the Projected Newton’s Method.
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Algorithm 2 Projected PCG [13]

input: A, b, Active, M
x0 = 0
DI = diag(1−Active) {projection onto inactive set}
r0 = DIb
z0 = DI(M−1r0)
p0 = z0
k = 0
while not converged do

αk =
rTk zk

pTDIApk
xk+1 = xk + αkpk
rk+1 = xk − αkDIApk
zk+1 = DI(M−1rk)

βk+1 =
zTk+1rk+1

zTk rk

pk+1 = zk+1 + βkpk
k = k + 1

end while
return xk

4.2 Solution of the linear subproblems

Each step of the projected Newton method (Algorithm 1) requires solving a linear system with the Hessian:

HessJλ(x(k))s = −gradJλ(x(k))

(ATD(k)A+ λLTL)s = −
(
AT z(k) + λLTLx(k)

)
. (17)

For the objective functional (12), the diagonal matrix D(k) and the vector z(k) have the form:

zi =


1
2

(
1− (bi+σ2)

2

([Ax]i+σ2)2

)
,

∣∣∣∣ [Ax]i−bi√
[Ax]i+σ2

∣∣∣∣ ≤ β,
0, otherwise.

Dii =


(bi+σ2)

2

([Ax]i+σ2)3
,

∣∣∣∣ [Ax]i−bi√
[Ax]i+σ2

∣∣∣∣ ≤ β,
0, otherwise.

(18)

Note that in case of constant weights, robust regression represents extra computational cost in comparison
with standard least squares because it leads to a sequence of weighted least squares problems, while standard
least squares problems are solved in one step. In our setting, the weights in (5) themselves have to be updated
and therefore employing a different loss function does not change the type of the problem we need to solve.

Without preconditioning, the convergence of projected PCG can be rather slow, and it is therefore impor-
tant to consider preconditioning. The idea of many preconditioners, such as constraint [19, 8], constraint-type
[7] or Hermitian and skew-Hermitian [3] preconditioners is based on the fact that in many cases it is possible
to efficiently solve the linear system in (17) if the diagonal matrix D(k) is the identity matrix; that is, if the
linear system involves the matrix

ATA+ λLTL. (19)

For example, in the case of image deblurring, it is well known that linear systems involving the matrix (19)
can be solved efficiently using fast trigonometric or fast Fourier transforms (FFT).
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Although the constraint-type, and Hermitian and skew-Hermitian preconditioners seem to perform well
for problems with a random matrix D(k) (i.e., a random row scaling), see [3], they performed unsatisfactorily
for problems of the form (17), (18).

A preconditioner based on a similar idea of fast computations with matrices of type (19) for imaging
problems was proposed in [10]. In this case, the row scaling is approximated by a column scaling; that is,
we find D̂(k) such that

ATD(k)A ≈ D̂(k)(ATA)D̂(k), (20)

where

D̂
(k)
ii ≡

√
eTi (ATD(k)A)ei
eTi (ATA)ei

. (21)

Note that for D̂(k) defined in (21), the diagonals of the matrices on the two sides of approximation (20) are
exactly equal.

Since for large-scale problems, matrix A is typically not formed explicitly, exact evaluation of the entries
of D̂(k) might become too expensive. To get around this restriction, note that

eTi (ATD(k)A)ei = ((AT ) .2 diag(D(k)))i and eTi (ATA)ei = ((AT ) .2 1)i, (22)

where 1 a vector of all ones, and we use MATLAB notation .2 to mean component-wise squaring. In some
cases it may be relatively easy to compute both the entries of (AT ).2 and the vector (AT ).21; this is the case
for image deblurring, and is discussed in more detail in Section 5.

Using (20), we define the preconditioner for the linear system (17) as

M ≡ D̂(k)
(
ATA+ λ̂LTL

)
D̂(k), (23)

with

λ̂ ≡ λ/mean
(

diag(D̂(k))
)2
.

More details on the computational costs involved in constructing and applying the preconditioner in the case
of image deblurring are provided in Section 5.

5 Numerical tests

The Poisson–Gaussian model arises naturally in image applications, so in this section we present numerical
examples from image deblurring. Specifically, we consider the inverse problem (1) with data model (2), where
vector b is an observed image that is corrupted by blur and noise, matrix A models the blurring operation,
vector xtrue is the true image, and η is noise. Although an image is naturally represented as an array of pixel
values, when we refer to ‘vector’ representations, we assume the pixel values have been reordered as vectors.
For example, if we have a p × p image of pixel values, these can be stored in a vector of length n = p2 by,
for example, lexicographical ordering of the pixel values.

In many practical image deblurring applications, the blurring is spatially invariant, and A is structured
matrix defined by a point spread function (PSF). In this situation, image deblurring can also be referred
to as image decovolution, because the operation Axtrue is the convolution of xtrue and the PSF. Although
the PSF may be given as an actual function, the more common situation is to compute estimates of it
by imaging point source objects. Thus, the PSF can be represented as an image; we typically display the
PSF as a mesh plot, which makes it easier to visualize how a point in an image is spread to its neighbors
because of the blurring operation. The precise structure of the matrix A depends on the imposed boundary
condition; see [16] for details. In this section we impose periodic boundary conditions, so that A and L are
both diagonalizable by FFTs.

So far we have only described what we refer to as the single-frame situation, where b is a single observed
image. It is often the case, especially in astronomical imaging, to have multiple observed images of the

9



Table 1: Operation counts for single-frame case.

operation fft2 ifft2 mults adds

Hessian (17) multiply 2 2 4 1

preconditioner (23) solve 1 1 3 0

same object, but with each having a different blurring matrix associated with it. We refer to this as the
multi-frame image deblurring problem. Here, b represents all observed images, stacked one on top of each
other, and similarly A is formed by stacking the various blurring matrices.

Before describing the test problems used in this section, we first summarize the computational costs.
From the discussion around equation (22), to construct the preconditioner we need to be able to efficiently
square all entries of the matrix AT , or equivalently those of A; this can easily be approximated by squaring
the point-spread function component-wise before forming the operator, i.e.,

(APSF).2 ≈ APSF.2 .

Using this approximation, in each Newton step we only need to perform one multiplication by a matrix, one
component-wise multiplication, and one component-wise square-root to obtain the entries of the diagonal
matrix (21). With the assumption that A and L are both diagonalizable by FFTs, efficient multiplication
by the Hessian (17) involves two two-dimensional forward and inverse FFTs, which we refer to as fft2 and
ifft2, respectively. Solving systems with matrix (23) involves only one fft2 and one ifft2. In addition
to the fft2 requirements, multiplication by the Hessian (17) involves 4 pixel-wise multiplications and 1
addition. Solving systems with the preconditioner (23) involves 3 pixel-wise multiplications (component-wise
reciprocals are assumed to be computed only once at the beginning). The total counts for each operation
are shown in Table 1.

The robustness and the efficiency of the proposed method is demonstrated on two test problems adopted
from [27]:

Satellite An atmospheric seeing problem with spatially invariant atmospheric blur (moderate seeing con-
ditions with the Fried parameter 30). We also consider a multi-frame case, where the same object is blurred
by three different PSFs. These PSFs are generated by transposing and flipping the first PSF. The setting is
shown in Figures 2 and 4a.

Carbon ash An image deblurring problem with spatially invariant non-separable Gaussian blur, where
the PSF has the functional definition

PSF(s, t) =
1

2π
√
γ

exp

−1

2

[
s t

]
C−1

 s

t

 ,

where

C =

 γ21 τ2

τ2 γ22

 , and γ21γ
2
2 − τ4 > 0 .

The shape of the Gaussian PSF depends on the parameters γ1, γ2 and τ ; we use γ1 = 4, γ2 = 2; τ = 2. We
also consider a multi-frame case, where the same object is blurred by three different PSFs. The other two
PSFs are Gaussian blurs with parameters γ1 = 4, γ2 = 2, τ = 0, and γ1 = 4, γ2 = 2, τ = 0. The setting is
shown in Figures 3 and 4b.

As previously mentioned, in the multi-frame case, the vector b in (1) is concatenation of the vectorized
blurred noisy images, the matrix A is concatenation of the blurring operators, i.e., A ∈ R3n×n. For the
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test problems all true images are 256 × 256 arrays of pixels (with intensities scaled to [0, 255]), and thus
n = 65536.

Computation was performed in MATLAB R2015b. Noise is generated artificially using MATLAB func-
tions poissrnd and randn. Unless specified otherwise, the standard deviation σ is set to 5. We use the
discretized Laplacian, see [16, p. 95], as the regularization matrix L. The Projected Newton method (Algo-
rithm 1) is terminated when the relative size of the projected gradient

P(gradJλ(x(k))), where P(v) ≡ v. ∗ (1−Active) + Active. ∗ (v < 0),

reaches the tolerance 10−4 or after 40 iterations. We use MATLAB notation .∗ to mean component-wise
multiplication. Projected PCG (Algorithm 2) is terminated when the relative size of the projected residual
(denoted in Algorithm 2 by ri) reaches 10−1, or the number of iterations reaches 100. We use the pre-
conditioner given in (23) as the default preconditioner. Given a search direction sk, we apply a projected
backtracking linesearch, with the initial step length equal to 1, which we terminate when

Jλ(x(k+1)) < Jλ(x(k)).

Figure 2: Test problem Satellite: true image (left) together with three blurred noisy images (right).

Figure 3: Test problem Carbon ash: true image (left) together with three blurred noisy images (right).

5.1 Robustness with respect to various types of outliers

In this section, we consider several types of outliers, whose choice was motivated by [5], and demonstrate the
robustness of the proposed method. Note that the difference between [5] and the proposed approach lies,
among others, in the fact that while in [5], the approximation of the solution is computed in order to update
the outer (robust) weights associated with the components of residual. Here, the weights are represented
by the loss function ρ and are updated implicitly in each Newton step and therefore our approach does not
involve any outer iteration.
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Figure 4: Point-spread functions for the first frame of each test problem.

Random corruptions

First we consider the most simple case of the outliers – a given percentage of pixels is corrupted at random.
These corruptions are generated artificially by adding a value randomly chosen between 0 and max(Axtrue)
to the given percentage of pixels. The location of these pixels is also chosen randomly. Figures 5a, 5b,
5c, and 5d show semiconvergence curves2, representing the dependence of the error on the regularization
parameter λ, when we increase the percentage of corrupted pixels. It is no surprise that when outliers occur,
more regularization is needed in order to obtain a reasonable approximation of the true image xtrue. This is
however not the case if we use loss function Talwar, for which the semiconvergence curve remains the same
even with increasing percentage of outliers, and therefore no adjustment of the regularization parameter is
needed. In Figures 6 and 7, we show the reconstructions corresponding to 10% outliers. The regularization
paramter is chosen as a close-to-the-optimal regularization parameter for the same problem with no outliers.
Note that Figures 6 and 7 show only one frame for illustration. In the multi-frame case, the corruptions look
similar for all frames, except that the random locations of the outliers is different. For random outliers like
this, robust regression is clearly superior to standard weighted least squares. The influence of the outliers in
the multi-frame case is less severe, due to intrinsic regularization of the overdetermined system (1). A more
comprehensive comparison of the standard and robust approach is shown in Table 2, giving the percentage
of cases in which the robust approach provides better reconstruction. The robust approach provides better
reconstruction in all cases except for the test problem Satellite with no outliers, where the standard approach
gave sometimes slightly better reconstructions. However, even in these cases we observed that the difference
between the errors of the reconstructions is rather negligible, about 3%.

Added object with different blurring

We also consider a situation when a small object appears in the scene, but is blurred by a different PSF
than the main object (satellite). The aim is to recover the main object, while suppressing the influence of
the added one. In our case, the added object is a small satellite in the left upper corner that is blurred
by a small motion blur. In the multi-frame case, the small satellite is added to the first frame only. The
difference between the reconstructions using standard and robust approach is shown in Figure 8. For the
single frame problem, reconstructions obtained using the standard loss function is fully dominated by the
small added object. For the multi-frame situation, the influence of the outlier is somewhat compensated by

2For ill-posed problems, the relative error of an iterative method generally does not decrease monotonically. Instead, unless
the problem is highly over-regularized, the relative errors decrease in the early iterations, but at later iterations the noise and
other errors tend to corrupt the approximations. This behavior, where the relative errors decrease to a certain level and then
increase at later iterations, is referred to as semiconvergence; for more information, we refer readers to [9, 15, 26, 32].
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Table 2: Comparison of the quality of reconstruction for the standard vs. the robust approach. For each test
problem and each percentage of outliers, the results are averaged over 100 independent positions and sizes of
random corruptions. Regularization parameters are chosen identically as in Figures 6 and 7. Reconstructions
are considered to be of the same quality if the difference between the corresponding relative errors is smaller
than 1%.

better reconstruction: robust/same/standard

problem/% outliers 0% 1% 2% 5%

Satellite single-frame 0/93/7 100/0/0 100/0/0 100/0/0

Satellite multi-frame 0/94/6 100/0/0 100/0/0 100/0/0

Carbon ash single-frame 0/100/0 100/0/0 100/0/0 100/0/0

Carbon ash multi-frame 0/100/0 100/0/0 100/0/0 100/0/0

the two frames without outliers. In both cases, however, robust regression provides better reconstruction,
comparable to the reconstruction from the data without outliers.

Outliers introduced by boundary conditions

Defining the boundary conditions plays an important role in solving image deblurring problems. As is well
known, see e.g. [16], unless some strong a priori information about the scene outside the borders is available,
any choice of the boundary conditions may lead to artefacts around edges in the reconstruction. Similarly
as in [5], we may expect that the robust objective functional (12) can to some extent compensate for these
edge artifacts, i.e., the outliers are represented by the ‘incorrectly’ imposed boundary conditions. In our
model we assume periodic boundary conditions, which is computationally very appealing, since it allows
evaluating the multiplication by A very efficiently using the fast Fourier transform. However, if any of the
objects in the scene is close to the boundary, these boundary conditions will most probably cause artifacts.
In order to demonstrate the ability of the proposed scheme to eliminate influence of this type of outlier,
we shifted the satellite to the right edge of the image. Other settings remain unchanged. Reconstructions
using standard and robust approach are shown in Figure 9. We see that, although not spectacular, robust
regression can reduce the artifacts caused by incorrectly imposed boundary conditions and therefore provide
better reconstruction of the true image. Quantitative results for this and all the previous types of outliers
are shown in Tables 3a and 3b.

5.2 Generalized cross-validation

For the remainder of this section we will only assume the robust approach, i.e., functional (12) with the loss
function Talwar. In Section 3.2 we described a regularization parameter selection rule based on leave-one-
out cross validation. Since GCV belongs to standard methods, we focus here mainly on the influence of the
outliers on its reliability. To obtain various noise levels, we scale the original true scene (with maximum
intensity = 255) by 10 and by 100, which results in a decrease of the relative size of Poisson noise. The
standard deviation σ for the additive Gaussian noise is scaled accordingly by

√
10 and 10. We compute the

resulting signal-to-noise ratio as the reciprocal of the coefficient of variation, i.e.,

SNR =
‖Ax‖√∑n

i=1([Ax]i + σ2)
.

For our computations, we use CG to solve (16), which we terminate if the relative size of the residual
reaches 10−4 or if the number of iterations reaches 150. To minimize the GCV functional, we use the
MATLAB built-in function fminbnd, for which we set the lower bound to 0 and the upper bound to 10−1,
10−2, 10−4, depending on the maximum intensity of the image. The tolerance TolX was set to 10−8.
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Table 3: Comparison of the standard and robust approach in terms of relative error of the reconstruction.
Each row contains results for the standard and robust approach. Abbreviation ‘# it’ stands for the number
of Newton steps performed before the relative size of the projected gradient reached the tolerance 10−4.
Corresponding reconstructions are shown in Figures 6–9.

(a) single-frame

standard robust

problem # it rel. error # it rel. error

Satellite 15 3.40×10−1 16 3.42×10−1

Satellite random corr. 10% 14 6.78×10−1 14 3.57×10−1

Carbon ash 10 3.10×10−1 11 3.08×10−1

Carbon ash random corr. 10% 11 3.80×10−1 14 3.10×10−1

Satellite added object 15 4.72×10−1 15 3.43×10−1

Satellite boundary conditions 15 5.48×10−1 25 4.51×10−1

(b) multi-frame

standard robust

problem # it rel. error # it rel. error

Satellite 12 2.89×10−1 11 2.89×10−1

Satellite random corr. 10% 11 6.45×10−1 13 3.00×10−1

Carbon ash 12 3.07×10−1 11 3.05×10−1

Carbon ash random corr. 10% 9 3.70×10−1 19 3.06×10−1

Satellite added object 13 3.33×10−1 11 2.90×10−1

Satellite boundary conditions 14 5.26×10−1 14 4.27×10−1

For test problem Satellite, we show the semiconvergence curves including the minimum error and the
error obtained using GCV in Figure 10. Quantitative results (averaged over 10 realizations of outliers) for
both test problems are shown in Table 4. We observe that the proposed rule is rather stable with respect to
the increasing number of outliers and generally better for the Carbon ash than for the Satellite. As expected,
the method provides better approximation of the optimal regularization parameter for smaller noise levels
(larger Axtrue), where the functional (5) approximates better the maximum likelihood functional for the
mixed Poisson–Gaussian model. Occasionally, GCV provides slightly worse reconstruction for the highest
percentage (10%) of outliers.
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(b) Satellite multi-frame
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(c) Carbon ash single-frame

10-6 10-4 10-2

λ

0.2

0.4

0.6

0.8

1

re
l.
e
rr
o
r

0% outliers

standard

robust

10-6 10-4 10-2

λ

0.2

0.4

0.6

0.8

1

re
l.
e
rr
o
r

2% outliers

standard

robust

10-6 10-4 10-2

λ

0.2

0.4

0.6

0.8

1

re
l.
e
rr
o
r

10% outliers

standard

robust

(d) Carbon ash multi-frame

Figure 5: Semiconvergence curves – dependence of the relative error of the reconstruction on the size of the
regularization parameter λ for various percentages of outliers: Talwar (8) - (11) (solid line) and the standard
data fidelity function (5) (dashed line).
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(a) data (b) single-frame
standard

(c) single-frame
robust

(d) multi-frame,
standard

(e) multi-frame
robust

Figure 6: Random corruptions: (a) blurred noisy image with 10% corrupted pixels (only first frame is shown);
(b) - (d) reconstructions corresponding to λ = 10−4.

(a) data (b) single-frame
standard

(c) single-frame
robust

(d) multi-frame,
standard

(e) multi-frame
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Figure 7: Random corruptions: (a) blurred noisy image with 10% corrupted pixels (only first frame is shown);
(b) - (d) reconstructions corresponding to λ = 10−3.

(a) data (b) single-frame
standard

(c) single-frame
robust

(d) multi-frame,
standard

(e) multi-frame
robust

Figure 8: Added object: (a) blurred noisy image with a small object added to the first frame (only first
frame is shown); (b) - (d) reconstructions corresponding to λ = 10−4.

(a) data (b) single-frame
standard

(c) single-frame
robust

(d) multi-frame,
standard

(e) multi-frame
robust

Figure 9: Incorrectly imposed periodic boundary conditions: (a) blurred noisy image close to the edge (only
first frame is shown); (b) - (d) reconstructions corresponding to λ = 10−4.
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(a) Satellite single-frame, max. intensity 255 (SNR = 5).
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(b) Satellite single-frame, max. intensity 2550 (SNR = 17).
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(c) Satellite single-frame, max. intensity 25500 (SNR = 52).
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(d) Satellite multi-frame, max. intensity 255 (SNR = 5).

Figure 10: GCV for data with outliers.
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5.3 Linear subproblems

As mentioned earlier, various types of preconditioners have been developed to speed up convergence of
iterative methods applied to systems of type (17) or its saddle-point counterpartD−1 A

AT λLTL

 =

 −z
λLTLx

 .

The Hermitian and skew-Hermitian (HSS) preconditioner, as well as constraint precondtioner belong to the
best known preconditioners for this type of linear system. Both were incorporated in GMRES and tested
on deblurring problems with random diagonal scaling D in [3]. Using random D, they indeed accelerate
convergence also in our case, as shown in Figure 11. However, our preconditioner (23) provides a much
better speedup. Moreover, for real computations, e.g., when the matrix D is actually generated during
the Projected Newton computation, the HSS and constraint preconditioners did not perform well, and even
slowed down the convergence, see Figure 12. This is fortunately not the case for our proposed preconditioner.
In this experiment, we did not assume projection on the non-negative half-plane and since in (5.3), we need
to evaluate D−1, if some component Dii = 0, we replaced it by 2

√
εmach, see also [23]. We also did not

incorporate any outliers for these initial experiments with the preconditioners; these results are intended to
show that our proposed preconditioning for these problems often performs much better than the well-known
standard preconditioners. In fact, we see that the behavior of the constraint and HSS preconditioner depends
heavily on the actual setting of the problem. In the remainder of this section we will therefore focus on the
preconditioner given in (23).
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(a) Satellite single-frame, random diagonal

Figure 11: Preconditoner defined in (23), constraint preconditioner (CP), and Hermitian and skew-Hermitian
splitting preconditioner (HSSP) performance for (ATDA + λLTL)s = −AT b, where A and b are adopted
from the test problem Satellite, and D is a diagonal with random entries uniformly distributed in (0, 1).

In Figure 13, we investigate the overall speedup of the convergence by plotting the number of projected
PCG steps needed in each Newton iteration to reach the desired tolerance on the relative size of the projected
gradient. Even for the most generous tolerance 10−1, preconditioner (23) significantly reduces the number
of projPCG iterations. Note that in this experiment, the linear subproblems solved in each Newton iteration
are generally not identical, since the subproblems are not solved exactly and therefore the approximations
x(k) are not the same. We set the outer tolerance to 0 in order to perform always at least 15 Newton
iterations. The choice of projPCG tolerance is a difficult question, but from the average number of Newton
iterations/projPCG iterations/fast Fourier transforms shown in Table 5, we observe that raising the tolerance
does not considerably increase the number of Newton steps we need to perform here. Therefore larger
tolerance, here 10−1, leads to a smaller total number of projPCG iterations. This is independent of the
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(a) Satellite single-frame, Newton it = 3

Figure 12: Preconditoner defined in (23), constraint preconditioner (CP), and Hermitian/skew-Hermitian
preconditioner (HSSP) performance for (ATD(k)A+ λLTL)s = −

(
AT z(k) + λLTLx(k)

)
.

percentage of outliers. For each setting, the number of projPCG iterations is significantly smaller for the
preconditioned version. This is not always the case for the total count of the fast Fourier transforms, since
we need to perform 6 fft2/ifft2 in each iteration vs. 4 for the unpreconditioned iterations; see Table 1. For
large scale problems, however, the computational complexity of fast Fourier transform, which is O(n log n)
is comparable to other operations performed in projPCG, such as the inner products, whose complexity is
O(n), and therefore the number of projPCG iterations seems to be the more important indicator of efficiency
of the preconditioner. Recall here that n is the number of pixels in the image, so if we have a 256 × 256
array of pixels, then n = 65535.

6 Conclusion

We have presented an efficient approach to compute approximate solutions of a linear inverse problem that
is contaminated with mixed Poisson–Gaussian noise, and when there are outliers in the measured data.
We investigated the convexity properties of various robust regression functions and found that the Talwar
function was the best option. We proposed a preconditioner, and illustrated that it was more effective than
other standard preconditioning approaches on the types of problems studied in this paper. Moreover, we
showed that a variant of the GCV method can perform well in estimating regularization parameters in robust
regression. A detailed discussion of computational costs, and extensive numerical experiments illustrate the
approach proposed in this paper is effective and efficient on image deblurring problems.
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Figure 13: The effect of preconditioning by preconditioner defined in (23): number of projPCG iterations
performed in each Newton iteration to achieve the desired tolerance. 5 % outliers.
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Table 5: Average number of Newton iterations, projPCG iterations, and (inverse) 2D Fourier transforms for
projPCG with and without preconditioning, and two tolerances on the relative size of the projPCG residual.
Results are averaged over 10 independent realization of noise and outliers.

(a) projPCG tol = 10−1

average count: Newton/CG/fft2s

% outliers

problem precond 0% 2% 10%

Satellite single-frame
no 14/290/1383 14/274/1329 14/283/1374

yes 15/161/1280 16/172/1362 14/158/1252

Satellite multi-frame
no 12/250/2398 12/216/2104 13/241/2364

yes 12/107/1545 11/107/1535 12/103/1507

Carbon ash single-frame
no 11/190/939 10/179/891 11/184/915

yes 10/71/641 11/72/654 13/82/753

Carbon ash multi-frame
no 14/221/2200 14/219/2179 16/254/2542

yes 16/88/1510 15/85/1419 17/99/1654

(b) projPCG tol = 10−2

average count: Newton/CG/fft2s

% outliers

problem precond 0% 2% 10%

Satellite single-frame
no 13/536/2359 13/539/2373 14/641/2819

yes 14/284/2001 15/302/2117 14/296/2091

Satellite multi-frame
no 11/457/4082 11/460/4130 12/499/4511

yes 11/201/2536 11/197/2499 12/213/2747

Carbon ash single-frame
no 11/393/1754 11/432/1912 13/526/2315

yes 10/121/934 11/129/1004 13/155/1201

Carbon ash multi-frame
no 13/426/3813 14/461/4127 16/498/4467

yes 13/144/1954 14/150/2038 16/173/2359
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