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Abstract
It is known that the Lagrange interpolation problem at equidistant nodes is ill-
conditioned. We explore the influence of the interval length in the computation of
divided differences of the Newton interpolation formula. Condition numbers are
computed for lower triangular matrices associated to the Newton interpolation for-
mula at equidistant nodes. We consider the collocation matrices L and PL of the
monic Newton basis and a normalized Newton basis, so that PL is the lower trian-
gular Pascal matrix. In contrast to L, PL does not depend on the interval length, and
we show that the Skeel condition number of the (n + 1) × (n + 1) lower triangular
Pascal matrix is 3n. The ∞-norm condition number of the collocation matrix L of
the monic Newton basis is computed in terms of the interval length. The minimum
asymptotic growth rate is achieved for intervals of length 3.

Keywords Newton interpolation formula · Divided differences · Condition
number · Pascal matrix
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1 Introduction

Divided differences can be used for obtaining approximations of the derivatives of
a function, leading to numerical differentiation formulae. In order to study the sta-
bility of the computation of divided differences arising in the Newton interpolation
formula at equidistant nodes, we consider the behavior of the Newton basis at the
nodes by means of the corresponding lower triangular collocation matrix. This paper
studies the conditioning of these matrices. In particular, the collocation matrix L of
the monic Newton basis and the lower triangular Pascal matrix PL are considered.
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The traditional and the Skeel condition numbers are used. It is proved that the Skeel
condition number of the (n + 1) × (n + 1) lower triangular Pascal matrix is 3n. The
∞-norm condition number of L is also obtained and its asymptotic behavior in terms
of the interval length is analyzed and we show that the optimal interval length is 3.
Analogous results for the collocation of the monomial basis and the conditioning of
Vandermonde matrices can be found in [7].

The analysis of interpolation with equidistant nodes is a classical issue in Approx-
imation Theory (cf. §4 of [14]). On the one hand, interpolation at equidistant nodes
is unstable (see section 5 of [4]), illustrated by the Runge phenomenon (cf. [13]).
On the other hand, interpolation at equidistant nodes arises in practice when deal-
ing with experimental data, tables of functions, difference equations, and numerical
integration with fixed stepsize. In addition to the instability of the Lagrange inter-
polation problem at equidistant nodes, the computation of the divided differences is
also unstable due to the exponential growth of κ∞(L). We shall study the influence
of the scaling and the interval length on this instability.

Section 2 presents basic concepts and notations as well as auxiliary results. The
lower triangular matrices L and PL are related with the computation of the divided
and finite differences corresponding to two different forms of the Newton formula,
based on a different scaling. In Section 3, the Skeel condition number of the lower
triangular Pascal matrix PL is obtained. In Section 4, κ∞(L), the ∞-norm condi-
tion number of L, is given in terms of the interval length. Numerical examples are
included. The asymptotic behavior of κ∞(L), as the degree of the interpolant tends
to infinity, is analyzed in Section 5. It is shown that the interval length correspond-
ing to a minimum asymptotic growth rate equals 3. Comparisons with the asymptotic
behavior of the conditioning of PL are also performed.

2 Basic notations and auxiliary results

Condition numbers measure the sensitivity of the solution of a linear system with
respect to the perturbations of the data. For a given matrix A = (aij )i,j=0,...,n, we
shall denote by |A| := (|aij |)i,j=0,...,n the matrix whose entries are the absolute
values of the corresponding entries of A.

The Skeel condition number of a nonsingular matrix A is given by

Cond(A) := || |A−1| |A| ||∞. (1)

The usual ∞-norm condition number of a nonsingular matrix is defined as

κ∞(A) := ||A||∞||A−1||∞. (2)

By the submultiplicative property of the ∞-norm, we derive

Cond(A) ≤ κ∞(A), (3)

so that the Skeel condition number gives lower bounds than the traditional condition
number. Another feature of the Skeel condition number is that it is invariant under
row scaling (see Section 7.2 of [8]).
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We want to analyze the conditioning of linear systems arising in the polynomial
Lagrange interpolation problem. Given a function f ∈ C[a, b] and distinct inter-
polation nodes x0, . . . , xn, there exists a unique polynomial p in Pn, the space of
polynomials with degree not greater than n, such that p(xi) = f (xi), i = 0, . . . , n,
called the Lagrange interpolation polynomial.

The coefficients of the interpolation polynomial with respect to a basis can be
computed by solving a linear system of equations, where some computations can be
performed with high relative accuracy (see [11]). An explicit solution of the poly-
nomial interpolant is given by the Lagrange interpolation formula. In particular, the
barycentric form of the Lagrange formula is recommended due to its computational
advantages (cf. [2]). The Lagrange interpolation polynomial can also be expressed
by means of the Newton formula. The Newton formula provides a correction of the
interpolant when the number of data increases by adding simple terms where divided
differences play an essential role. This property is used to estimate practical error
bounds.

The Newton formula is given by

p(x) =
n∑

i=0

dif ωi(x) (4)

where
dif := [x0, . . . , xi]f, i = 0, . . . , n, (5)

are the divided difference functionals and

ω0(x) := 1, ωi(x) := (x − x0) · · · (x − xi−1), i = 1, . . . , n + 1. (6)

are the monic Newton basis. The coefficients are the divided differences, which play
a crucial role in numerical differentiation. Another form of the Newton formula,
based on a different scaling, is given by

p(x) =
n∑

i=0

d̃if ω̃i(x), (7)

where
d̃if := ωi(xi)dif, (8)

are the finite difference functionals and

ω̃i(x) = ωi(x)

ωi(xi)
, i = 0, . . . , n, (9)

are a normalized Newton basis, in the sense that ω̃i(xi) = 1 for all i = 0, . . . , n.
Since the nodes are distinct, we have the following explicit formulae for the

divided differences:

dkf =
k∑

i=0

f (xi)

ω′
k+1(xi)

, (10)

with
ω′

k+1(xi) =
∏

j∈{0,...,k}\{i}
(xi − xj ). (11)
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For the finite differences, we have

d̃kf =
k∑

i=0

ωk(xk)

ω′
k+1(xi)

f (xi). (12)

We are concerned with the conditioning of the problem of computing the divided
differences (resp. finite differences) for a given function f . We shall adopt a matrix
approach. Let us define the vectors

d := (d0f, . . . , dnf )T , d̃ := (d̃0f, . . . , d̃nf )T , f := (f (x0), . . . , f (xn))
T ,

(13)
and the collocation matrices

L = (ωj (xi))0≤i,j≤n, L̃ = (ω̃j (xi))0≤i,j≤n. (14)

Taking into account that ωk(xi) = 0 for k > i, we deduce that L and L̃ are lower
triangular matrices. Observe that the matrix L̃ has ones on the diagonal. Besides the
matrix L̃ is invariant under affine transformation of the nodes because, by (6) and (9),

ω̃j (xi) = ωj (xi)

ωj (xj )
=

j−1∏

k=0

xi − xk

xj − xk

. (15)

is a product of simple ratios of the nodes.
The sensitivity of divided differences has been analyzed by several authors in

different contexts (cf. section 5.3 and 5.5 of [8]). From (4) to (7), d and d̃, the
coefficients of the Newton formulae are the solutions of the systems

Ld = f, L̃d̃ = f, (16)

respectively. On the other hand, L (resp., L̃) is the matrix of change of basis between
the Lagrange basis and the monic (resp., normalized) Newton basis. Thus, we are
interested in the computation of the condition numbers of these matrices. Note that if
the component di of the vector of divided differences is computed with high relative
error, this can be compensated if the corresponding factor ωi(x) is sufficiently small.
In practice, inaccurate computation of divided differences may still reproduce the
interpolation polynomial well (see page 100 of [8]).

From the system (16), we obtain L−1f = d, and using (10), we conclude that the
entries of L−1 are

l
(−1)
kj =

{
0, if j > k,

1
ω′

k+1(xj )
, if j ≤ k. (17)

From formula (9), we obtain the relation between L and L̃

L̃ = LD, D = diag(1/ω0(x0), . . . , 1/ωn(xn)). (18)

From now on, we will consider equidistant nodes x0, . . . , xn in an interval [a, b]
in increasing order, that is,

xi = a + (b − a)
i

n
, i = 0, . . . , n. (19)
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In this particular case, by (6), the entries of L = (lij )0≤i,j≤n of (14) for j ≤ i are
given by

lij = ωj (xi) =
j−1∏

k=0

(xi − xk) =
(b − a

n

)j
j−1∏

k=0

(i − k) =
(b − a

n

)j i!
(i − j)! . (20)

By (11) and (17), we also have for j ≤ i

l
(−1)
ij =

( n

b − a

)i 1∏
k∈{0,...,i}\{j}(j − k)

= (−1)i−j
( n

b − a

)i 1

j !(i − j)! . (21)

3 Conditioning of Pascal matrices

In this section, we obtain the Skeel condition number and the ∞-norm condition
number of L̃ at equidistant nodes given by (19).

Recall that the lower triangular Pascal matrix PL := (qij )0≤i,j≤n is given by (cf.
[1])

qij :=
(

i

j

)
. (22)

Pascal matrices play an important role in many fields (cf. [6, 10]) and it is well known
(cf. [5] and example 6.1 of chapter 3 of [9]) that they are totally positive matrices,
that is, all their minors are nonnegative.

Remark 1 For equidistant nodes (19), using (15), we have that the entries of the
collocation matrix L̃ = (ω̃j (xi))0≤i,j≤n are

ω̃j (xi) =
j−1∏

k=0

i − k

j − k
= i(i − 1) · · · (i − j + 1)

j (j − 1) · · · 1
=

(
i

j

)
. (23)

We conclude that the collocation matrix associated to the Newton representation with
finite differences L̃ does not depend on the interval [a, b] and coincides with the
lower triangular Pascal matrix PL, that is, L̃ = PL.

By the relation (18), we have

P −1
L = D−1L−1. (24)

So, using (20) and (21) and the previous relation, the entries of the matrix P −1
L =

(q
(−1)
ij )0≤i,j≤n are, for j ≤ i,

q
(−1)
ij = ωi(xi)

ω′
i+1(xj )

= (−1)i+j

(
i

j

)
. (25)

In the following result, we compute the Skeel condition number of the lower
triangular Pascal matrix and of its inverse.
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Theorem 1 Let PL be the lower triangular Pascal matrix. Then,

Cond(PL) = Cond(P −1
L ) = 3n.

Proof By (22) and (25), |PL| = |P −1
L |. Then, we have

Cond(PL) = || |P −1
L | |PL| ||∞ = || |PL| |P −1

L | ||∞ = Cond(P −1
L ).

By (25) and (22), we can compute the Skeel condition number

Cond(PL) = || |P −1
L | |PL| ||∞ = max

i=0,...,n

i∑

j=0

i∑

k=j

(
i

k

)(
k

j

)

= max
i=0,...,n

i∑

j=0

i∑

k=j

(
i

j

)(
i − j

k − j

)
= max

i=0,...,n

i∑

j=0

(
i

j

)
2i−j = max

i=0,...,n
3i = 3n.

Let us observe that Theorem 1 provides a lower bound for κ∞(PL). In fact, by (3),

3n = Cond(PL) ≤ κ∞(PL).

Theorem 1 can also be used to bound κ∞(L) for the collocation matrix L of the monic
Newton basis. Due to the invariance of the Skeel condition number by row scaling,
we obtain as a by-product the Skeel condition number of L−1. By (1), (24), and (2),

3n = Cond(P −1
L ) = || |LD| |D−1L−1| ||∞ = Cond(L−1) ≤ κ∞(L−1) = κ∞(L).

(26)
From (22) and (25), it follows that ||PL||∞ = ||P −1

L ||∞ = 2n. Then, we can state
the following known result (cf. proposition 2 of [3]). Related inequalities can also
be derived using the analysis of the spectral conditioning of a Pascal matrix given in
page 520 of [8].

Proposition 1 The ∞-norm condition number of the lower triangular Pascal matrix
is κ∞(PL) = 4n.

4 Condition number of the collocationmatrix of Newton basis

In this section, we are going to study κ∞(L) for the matrix L at equidistant nodes
given by (19), whose entries are computed in (20). This matrix is not invariant by
affine transformations of the nodes and its entries depend on the length of the interval
� := b − a.

Let us recall the upper incomplete gamma function

�(a, x) :=
∫ +∞

x

ta−1e−t dt .

From the definition, we deduce that

�(a, x) < �(a, 0) =: �(a), ∀x > 0.
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It is well known (see formula 8.4.8 of [12]) that the incomplete gamma function gives
an integral representation of the Taylor polynomial of the exponential function

n∑

k=0

xk

k! = ex �(n + 1, x)

�(n + 1)
= 1

n!
∫ +∞

0
ex−t tn dt . (27)

The following result gives us an inequality for this function.

Lemma 1 If � > 1, then

�(n + 1,
n

�
) ≥ �(n + 1) − e−n/�

(n

�

)n+1

and

lim
n→∞

�(n + 1, n/�)

�(n + 1)
= 1.

Proof If � > 1 we have

0 <
�(n + 1) − �(n + 1, n/�)

�(n + 1)
=

∫ n/�

0

tn

n!e
−t dt .

The function f (t) = tne−t is increasing for 0 ≤ t ≤ n. So

�(n + 1) − �(n + 1, n/�)

�(n + 1)
≤

∫ n/�

0

(n

�

)n 1

n!e
−n/� dt =

(n

�

)n+1 1

n!e
−n/�,

and we deduce the inequality

�(n + 1,
n

�
) ≥ �(n + 1) − e−n/�

(n

�

)n+1
.

Hence, in order to prove the result, it is sufficient to see that (n/�)n+1 1
n!e

−n/� → 0
as n → ∞. We denote by

cn :=
(n

�

)n+1 1

n!e
−n/�.

We have
cn+1

cn

=
(n + 1

�

)n+2 1

(n + 1)!e
−(n+1)/�

(n

�

)−(n+1)

n!en/�

=
(n + 1

n

)n+1 n + 1

�

1

n + 1
e−1/� → 1

�
e1−1/�, as n → ∞.

Let us show that e1−1/�/� < 1. Let be g(x) := xe1−x . Then,

g′(x) = e1−x(1 − x) > 0, if x < 1.

Hence, g(x) is increasing for x < 1, and thus

1

�
e1−1/� = g

(1

�

)
< g(1) = 1.

So, limn→∞ cn+1/cn < 1 and limn→∞ cn = 0.

The following result provides ||L||∞.
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Proposition 2 Let L be the lower triangular matrix given by (14) at equidistant
nodes in [a, b] given by (19) and let � = b − a. Then,

||L||∞ = n!
(n

�

)−n
n∑

k=0

1

k!
(n

�

)k =
(n

�

)−n

en/��
(
n + 1,

n

�

)
.

Proof By (14), the ∞-norm of L is

||L||∞ = max
i=0,...,n

i∑

k=0

|ωk(xi)|,

and taking into account that

|ωk(xi)| ≤ |ωk(xn)|, k = 0, . . . , i, i = 0, . . . , n,

we have that this maximum is achieved in n. Using (20), we derive

||L||∞ =
n∑

k=0

|ωk(xn)| = n!
n∑

k=0

1

(n − k)!
( �

n

)k

. (28)

By formula (28),

||L||∞ = n!
n∑

k=0

1

(n − k)!
( �

n

)k = n!
n∑

k=0

1

k!
( �

n

)n−k = n!
(n

�

)−n
n∑

k=0

1

k!
(n

�

)k

.

Using formula (27), we obtain the result.

From (28), we deduce that the ∞-norm of L is an increasing function of the
interval length for a given value of n.

The computation of the ∞-norm of L−1 has different cases depending on the
interval length. For this purpose, we use the floor function

	x
 := max{k ∈ Z|k ≤ x}.

Proposition 3 Let L be the lower triangular matrix given by (14) at equidistant
nodes in [a, b] given by (19) and let � = b − a. Then,

||L−1||∞ =

⎧
⎪⎪⎨

⎪⎪⎩

1
n!

(
2n
�

)n

, if � ≤ 2,

1
in!

(
2n
�

)in
, in = 	 2n

�

, if 2 ≤ � ≤ 2n,

1, if � ≥ 2n.

Proof By formula (17),

||L−1||∞ = max
i=0,...,n

(n

�

)i
i∑

j=0

1

j !(i − j)! = max
i=0,...,n

1

i!
(2n

�

)i

. (29)
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We define

ri := 1

i!
(2n

�

)i

, i = 0, . . . , n.

Let us compute the maximum of the sequence {ri}i=0,...,n. We consider the quotient
between two consecutive elements

ri+1

ri
= 2n

(i + 1)�
.

If 2/� ≥ 1, the sequence is increasing and then

||L−1||∞ = rn = 1

n!
(2n

�

)n

.

If 2n/� ≤ 1, the sequence is decreasing and so

||L−1||∞ = r0 = 1.

Finally, if 1 ≤ 2n/� ≤ n, the maximum is achieved at in := 	 2n
�


, that is,

||L−1||∞ = rin = 1

in!
(2n

�

)in
.

As a consequence of the previous Propositions 2 and 3, we obtain the following
result for κ∞(L).

Theorem 2 Let L be the lower triangular matrix given by (14) at equidistant nodes
in [a, b] given by (19) and let � = b − a. Then,

κ∞(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2n
∑n

k=0
1
k!

(
n
�

)k

, � ≤ 2,

n!
in!2

in

(
�
n

)n−in ∑n
k=0

1
k!

(
n
�

)k

, in = 	 2n
�


, 2 ≤ � ≤ 2n,

n!
(

�
n

)n ∑n
k=0

1
k!

(
n
�

)k

, � ≥ 2n.

Let us analyze some consequences of the previous result. For � ≤ 2, we have that
κ∞(L) is a decreasing function of the interval length. So, in this case, the lowest
conditioning is attained at � = 2 and its value can be bounded by

κ∞(L) = 2n
n∑

k=0

1

k!
(n

2

)k ≤ (2
√

e)n, � = 2.

If � ≥ 2n, then κ∞(L) is an increasing function of � and its smallest value is obtained
when � = 2n

κ∞(L) = n!2n
n∑

k=0

1

k!2−k ≥ n!2n, � = 2n.

Since n! ≥ en/2 for n ≥ 3, we have that κ∞(L) is higher for � ≥ 2n than for
� = 2. Furthermore, taking into account the growth more than exponential of the
factorial, we show that the conditioning increases much more than in the case � = 2.
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So, in order to have low-condition number, we must take interval lengths satisfying
2 ≤ � ≤ 2n.

Table 1 shows the conditioning of the matrix L at equidistant nodes for different
values of n. We have analyzed κ∞(L) in the intervals [0, 1], [0, 2], [0, 3], [0, 4],
and [0, 5]. We see that the intervals of lengths 2, 3, 4, and 5 give better results than
the standard interval [0, 1]. We also observe that among the considered lengths and
degrees, length 3 provides the best results except for n = 2, where length 2 is the
best one.

5 Asymptotic analysis of condition number of the collocationmatrix
of Newton basis

In this section, we want to analyze whether there exists an interval length � =
b − a such that the growth of κ∞(L) is as small as possible. We will show that
limn→∞ κ∞(L)1/n is a constant and, by (26), this constant is greater than or equal
to 3. Therefore, κ∞(L) presents an exponential growth. We will also show that the
length corresponding to the least asymptotic growth rate is � = 3.

Theorem 3 Let L be the lower triangular matrix given by (14) at equidistant nodes
in [a, b] given by (19) and let � = b − a. Then,

lim
n→∞ κ∞(L)1/n =

⎧
⎨

⎩

�e3/�−1, � ≥ 2,

2e1/�, 1 < � ≤ 2,
2e
�
, � ≤ 1.

The lowest value of the previous limit is 3 for � = 3 and we have

lim
n→∞

κ∞(L)

3n
=

√
3

2
, � = 3. (30)

Table 1 κ∞(L) at equidistant nodes in different intervals

n [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

2 20 10 11.3333 13 18.5

3 104 33.5 32 44.8333 60.5333

4 549.3333 112 101.2222 130 208.35

5 2.9253 × 103 373.4583 302.7358 428.1050 652

6 1.5654 × 104 1.2424 × 103 882.6667 1.2736 × 103 2.3051 × 103

7 8.4041 × 104 4.1254 × 103 2.720 × 103 4.1212 × 103 7.599 × 103

8 4.5219 × 105 1.3679 × 104 8.1458 × 103 1.2410 × 104 2.5393 × 104

9 2.4370 × 106 4.5301 × 104 2.3969 × 104 3.9799 × 104 8.6057 × 104

10 1.3151 × 107 1.4989 × 105 7.3189 × 104 1.2071 × 105 2.7930 × 105

14 1.1239 × 1010 1.7865 × 107 5.9094 × 106 1.1396 × 107 3.6139 × 107

19 5.2459 × 1013 6.9906 × 109 1.4329 × 109 3.3928 × 109 1.5233 × 1010
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Proof If � ≥ 2, there exists a sufficiently large n such that 2 ≤ � ≤ 2n. Let in :=
	 2n

�

. Using formula (27), we deduce from Theorem 2 that

κ∞(L) = �n n!nin

in!nn

(2

�

)in
en/�

�(n + 1, n
�
)

n! =
(
�e1/�

)n(2

�

)in n!nin

in!nn

�(n + 1, n
�
)

n! .

(31)
Since

lim
n→∞

in

n
= lim

n→∞
	 2n

�



n
= 2

�
, (32)

we have

lim
n→∞

(nin

in!
)1/n = lim

n→∞
( nin

e−in
√

2πini
in
n

)1/n = lim
n→∞

( e

in/n

)in/n =
(�e

2

)2/�

.

We also have

lim
n→∞

( n!
nn

)1/n = e−1.

Applying Lemma 1, we deduce that

lim
n→∞

�(n + 1, n
�
)

n! = 1.

So, for � ≥ 2,

lim
n→∞ κ∞(L)1/n = �e1/�

(2

�

)2/�

e−1
(�e

2

)2/� = �e3/�−1.

If � ≤ 2, we have by formula (27) and Theorem 2

κ∞(L) = 2n

n∑

k=0

1

k!
(n

�

)k =
(

2e1/�
)n �(n + 1, n

�
)

n! .

If 1 < � ≤ 2, we can use Lemma 1 and deduce that

lim
n→∞ κ∞(L)1/n = 2e1/�.

In the case � < 1, we have

κ∞(L) = 2n
n∑

k=0

1

k!
(n

�

)k = 2n nn

n!�n

(
1 + n�

n
+ n(n − 1)�2

n2
+ · · · + n!�n

nn

)

≤ 2n nn

n!�n

(
1 + � + · · · + �n

)
= 2n nn

n!�n

1 − �n+1

1 − �
≤ 2n nn

n!�n

1

1 − �
.

Taking the limit as n → ∞ of the nth root,

lim
n→∞ sup κ∞(L)1/n ≤ lim

n→∞
(

2n nn

n!�n

1

1 − �

)1/n = 2

�
lim

n→∞
(nn

n!
)1/n = 2e

�
.

For � = 1,

κ∞(L) = 2n
n∑

k=0

nk

k! = 2n nn

n!
(

1 + n

n
+ n(n − 1)

n2
+ · · · + n!

nn

)
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and, since each term of the sum inside the brackets is less than or equal to 1, we have

lim
n→∞ sup κ∞(L)1/n ≤ lim

n→∞
(

2n nn(n + 1)

n!
)1/n = 2e.

On the other hand,

κ∞(L) = 2n

n∑

k=0

1

k!
(n

�

)k ≥
(2n

�

)n 1

n! , � ≤ 1.

Hence, for � ≤ 1,

lim
n→∞ inf κ∞(L)1/n ≥ lim

n→∞
[(2n

�

)n 1

n!
]1/n = 2

�
lim

n→∞
(nn

n!
)1/n = 2e

�
.

Therefore,

lim
n→∞ κ∞(L)1/n = 2e

�
.

Let us observe that, for � ≤ 2, limn→∞ κ∞(L)1/n is a decreasing function of
�. Since the function �e3/�−1 attains its minimum at � = 3, we have the lowest
exponential growth for � = 3. In this case, using formula (31) with � = 3, Lemma 1,
and Stirling’s formula (see formula 5.11.7 of [12]), we obtain

lim
n→∞

κ∞(L)

3n
= lim

n→∞
1

3n

3nn!nin

in!nn

(2

3

)in �(n + 1, n
3 )

n! en/3

= lim
n→∞

nne−n
√

2πnnin

i
in
n e−in

√
2πinnn

(2

3

)in �(n + 1, n
3 )

n! en/3 = lim
n→∞

( 2n

3in

)in
ein−2n/3

√
n

in
.

By formula (32), we have in/n → 2/3, as n → ∞. Let us denote by

sn := ein−2n/3
( 2n

3in

)in

and show that limn→∞ sn = 1 or, equivalently, limn→∞ log sn = 0. We use the
following property

lim
x→0

log(1 − x) + x

x
= 0.

to derive that

f (x) :=
{ log(1−x)+x

x
, x �= 0,

0, x = 0,

is continuous in x = 0. Since in − 2n/3 is bounded, we have

lim
n→∞ log sn = lim

n→∞

(
in − 2n

3

)
+ in log

(
2n

3in

)

= lim
n→∞ f

(
1 − 2n

3in

) (
in − 2n

3

)
= 0.

Hence,

lim
n→∞

κ∞(L)

3n
= lim

n→∞ sn lim
n→∞

√
n

in
=

√
3

2
.
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Observe that for � ≤ 1, the lowest value of limn→∞ κ∞(L)1/n is attained in � = 1
and this limit is 2e ≈ 5.4366. If 1 ≤ � ≤ 2, the smallest value is 2

√
e ≈ 3.2974 for

� = 2. Finally, for � ≥ 2, we have that the minimum is 3 for � = 3.
Let us compare κ∞(L)1/n and κ∞(PL)1/n for different interval lengths. For

1/ log 2 ≤ � ≤ 2, we have

κ
1/n∞ (L) = 2e1/� ≤ 4 = κ∞(PL)1/n.

If � ≥ 2, we observe that limn→∞ κ∞(L)1/n ≤ limn→∞ κ∞(PL)1/n if and only if

�e3/�−1 ≤ 4.

This inequality holds for lengths between 2 and approximately 7.1451. If � ≤ 1,
limn→∞ κ∞(L)1/n = 2e/� ≥ 4 = κ∞(PL)1/n, that is, L has worse asymptotic
behavior than PL.

We have proved that the minimum asymptotic growth rate of κ∞(L) is achieved
in intervals of length 3. In order to take advantage of the good properties of the
intervals of length 3, we can perform an affine change of variables from the working
interval [a, b] to an interval of length 3 and compute the divided differences, d

(3)
i f ,

with respect to the transformed nodes in the interval of length 3. In this case, divided
differences are rescaled

d
(3)
i f =

(b − a

3

)i

dif, i = 0, . . . , n,

which implies the following rescaling of the Newton basis

ω
(3)
i (x) :=

( 3

b − a

)i

ωi(x), i = 0, . . . , n.

With these normalizations, we gain stability in the processes of getting divided
differences from data and recovering data from the divided differences.

The matrix interpretation of this procedure is that the collocation matrix L has to
be replaced by the matrix L(3) = (ω

(3)
j (xi))i,j=0,...,n. Both matrices are related by

L(3) = Ldiag

(
1,

3

b − a
, . . . ,

( 3

b − a

)n
)

.

By Theorem 3, the asymptotic condition number of L(3) is given by

κ∞(L(3)) ∼
√

3

2
3n,

providing a more stable alternative than finite differences.

Funding information This work has been partially supported by the Spanish Research Grant MTM2015-
65433-P (MINECO/FEDER), by Gobierno the Aragón and Fondo Social Europeo.

References

1. Alonso, P., Delgado, J., Peña, J.M.: Conditioning and accurate computations with Pascal matrices. J.
Comput. Appl. Math. 8, 21–26 (2013)



Numerical Algorithms

2. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)
3. Carnicer, J.M., Khiar, Y., Peña, J.M.: A matrix approach to the Newton formula and divided differ-

ences. In: Trends in Differential Equations and Applications, SEMA SIMAI Springer Series, vol. 8,
pp. 107–123 (2016)

4. Carnicer, J.M., Khiar, Y., Peña, J.M.: Optimal stability of the Lagrange formula and conditioning of
the Newton formula, to appear in J. Approx. Theory, https://doi.org/10.1016/j.jat.2017.07.005

5. Chen, X., Liang, H., Wang, Y.: Total positivity of recursive matrices. Linear Algebra Appl. 471, 383–
393 (2015)

6. Edelman, A., Strang, G.: Pascal matrices. Amer. Math. Month. 111, 189–197 (2004)
7. Gautschi, W.: Norm estimates for inverses of vandermonde matrices. Numer. Math. 23, 337–347

(1975)
8. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. 2nd edn. Society for Industrial and

Applied Mathematics, Philadelphia (2002)
9. Karlin, S.: Total Positivity. Stanford University Press, Stanford (1968)

10. Lewis, B.: Revisiting the Pascal matrix. Amer. Math. Month. 117, 50–66 (2010)
11. Marco, A., Martı́nez, J.J.: A fast and accurate algorithm for solving Bernstein-Vandermonde linear

systems. Linear Algebra Appl. 422, 616–628 (2007)
12. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions.

Cambridge University Press, Cambridge (2010). Department of Commerce, National Institute of
Standards and Technology, Washington, DC. http://dlmf.nist.gov/
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