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strong stability preserving explicit part
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Abstract. For many systems of differential equations modeling problems
in science and engineering, there are often natural splittings of the right
hand side into two parts, one of which is non-stiff or mildly stiff, and the
other part is stiff. Such systems can be efficiently treated by a class of
implicit-explicit (IMEX) diagonally implicit multistage integration methods
(DIMSIMs), where the stiff part is integrated by an implicit formula, and the
non-stiff part is integrated by an explicit formula. We will construct methods
where the explicit part has strong stability preserving (SSP) property, and
the implicit part of the method is A-, or L-stable. We will also investigate
stability of these methods when the implicit and explicit parts interact with
each other. To be more precise, we will monitor the size of the region of
absolute stability of the IMEX scheme, assuming that the implicit part of
the method is A-, or L-stable. Finally we furnish examples of SSP IMEX
DIMSIMs up to the order four with good stability properties.
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DIMSIMs, stability analysis, construction of highly stable methods

∗Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, 80126
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1 Introduction

Many practical problems in science and engineering are modeled by large sys-
tems of ordinary differential equations (ODEs) which arise from discretization
in space of partial differential equations (PDEs) by finite difference methods,
finite elements or finite volume methods, or pseudospectral methods. For
such systems there are often natural splittings of the right hand sides of the
differential systems into two parts, one of which is non-stiff or mildly stiff,
and suitable for explicit time integration, and the other part is stiff, and
suitable for implicit time integration. Such systems can be written in the
form

y′(t) = f
(
y(t)

)
+ g

(
y(t)

)
, t ∈ [t0, T ],

y(t0) = y0 ∈ Rm,
(1.1)

f : Rm → Rm, g : Rm → Rm, where f(y) represents the non-stiff processes,
for example advection, and g(y) represents stiff processes, for example diffu-
sion or chemical reaction, in semidiscretization of advection-diffusion-reaction
equations [14].

In this paper we will analyze methods, where the non-stiff part f(y) is
treated by the explicit general linear method (GLM) and the stiff part g(y)
by the implicit GLM, with the same abscissa vector c = [c1, . . . , cs]

T ∈ R
s,

and the coefficients
[
A U

B V

]
∈ R

(s+r)×(s+r),

[
A∗ U

B∗ V

]
∈ R

(s+r)×(s+r),

We assume that both methods have the same coefficients matrices U and
V, and that A is strictly lower triangular, and A∗ is lower triangular with
the same element λ > 0 on the diagonal. Denote the components of A, A∗,
U, B, B∗, and V by aij, a

∗
ij, uij, bij , b

∗
ij , and vij . Then on the uniform grid

tn = t0 + nh, n = 0, 1, . . . , N , Nh = T − t0, the IMEX GLMs are defined by

Y
[n+1]
i = h

i−1∑

j=1

aijf
(
Y

[n+1]
j

)
+ h

i∑

j=1

a∗ijg
(
Y

[n+1]
j

)
+

r∑

j=1

uijy
[n]
j , i = 1, 2, . . . , s,

y
[n+1]
i = h

s∑

j=1

(
bijf

(
Y

[n+1]
j

)
+ b∗ijg

(
Y

[n+1]
j

))
+

r∑

j=1

vijy
[n]
j , i = 1, 2, . . . , r,

(1.2)
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n = 0, 1, . . . , N − 1. Here, Y
[n+1]
i are approximations of stage order q to

y(tn + cih), i.e.,

Y
[n+1]
i = y(tn + cih) + O(hq+1), i = 1, 2, . . . , s, (1.3)

and y
[n]
i are approximations of order p to the linear combinations of the

derivatives of the solution y at the point tn, i.e.,

y
[n]
i =

p∑

k=0

qikh
ky(k)(tn) + O(hp+1), i = 1, 2, . . . , r, (1.4)

where y is the solution to (1.1). These IMEX methods were introduced in
[28] and further investigated in [8].

Putting

y[n+1] =




y
[n+1]
1
...

y
[n+1]
r


 , y[n] =




y
[n]
1
...

y
[n]
r


 , Y [n+1] =




Y
[n+1]
1

...

Y
[n+1]
s


 ,

f
(
Y [n+1]

)
=




f
(
Y

[n+1]
1

)

...

f
(
Y

[n+1]
s

)


 , g

(
Y [n+1]

)
=




g
(
Y

[n+1]
1

)

...

g
(
Y

[n+1]
s

)


 ,

the method (1.2) can be written in a more compact form

Y [n+1] = h(A⊗ I)f
(
Y [n+1]

)
+ h(A∗ ⊗ I)g

(
Y [n+1]

)
+ (U⊗ I)y[n],

y[n+1] = h(B⊗ I)f
(
Y [n+1]

)
+ h(B∗ ⊗ I)g

(
Y [n+1]

)
+ (V ⊗ I)y[n],

(1.5)

n = 0, 1, . . . , N − 1, I ∈ Rm, and the relation (1.4) takes the form

y[n] =

p∑

k=0

qkh
ky(k)(tn) + O(hp+1), (1.6)

with the vectors q0,q1, . . . ,qs given by

q0 =




q1,0
...

qr,0


 , q1 =




q1,1
...

qr,1


 , . . . , qp =




q1,p
...

qr,p


 .
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In this paper we will investigate the class of IMEX diagonally implicit
multistage integration methods (DIMSIMs). These are schemes with p =
q = r = s, where the coefficient matrix U = I, and V is a rank one matrix
of the form V = evT , e = [1, . . . , 1]T ∈ Rs, v = [v1, . . . , vs]

T ∈ Rs, with
vTe = 1. It was proved in [3] (see also [18]) that for given A, A∗, and V the
explicit method and the implicit method has order p and stage order q = p
if the coefficients matrices B and B∗ are computed from the formulas

B = B0 −AB1 −VB2 + VA, B∗ = B0 −A∗B1 −VB2 + VA∗, (1.7)

where B0, B1, and B2, are s× s matrices defined by

B0 =

[∫ 1+ci
0

φj(x)dx

φj(cj)

]
, B1 =

[
φj(1 + ci)

φj(cj)

]
, B2 =

[∫ ci
0
φj(x)dx

φj(cj)

]
,

i, j = 1, 2, . . . , s, and φi(x) are defined by

φi(x) =

s∏

j=1,j 6=i

(x− cj), i = 1, 2, . . . , s.

It was also proved in [28] that if the explicit and implicit methods have order
p and stage order q = p, then the same is true for the resulting IMEX scheme
defined by (1.5).

The methods investigated in this paper are also applicable to the hyper-
bolic systems with relaxation considered, for example, in [19, 21], and they
compare favorably with IMEX Runge-Kutta (RK) methods for these prob-
lems. In the stiff limit the IMEX RK schemes, considered for example in
[21] converge, but their order drops to p = 1, while all IMEX DIMSIMs con-
structed in this paper achieve the expected order of convergence, and no order
reduction occurs. This is confirmed in Section 5 by numerical experiments
on the shallow water equation.

The organization of the remainder of the paper is as follows. In Sec-
tion 2 we will review various stability concepts of explicit, implicit, and IMEX
schemes. In particular, we will recall the definition of strong stability pre-
serving (SSP) property of explicit methods, absolute stability, and definitions
of regions of absolute stability, of explicit, implicit, and the resulting IMEX
methods. In Section 3 we define transformed IMEX methods. In Section 4
we describe the construction of SSP transformed IMEX schemes of order
p = 1, 2, 3, and 4. In Section 5 the results of some numerical experiments
are presented.
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2 Stability analysis of IMEX DIMSIMs

2.1 SSP property of the explicit part

We recall first the concept of SSP property of explicit methods following the
presentation in [10]. To define this property we assume that the discretization
of the problem (1.1) with g ≡ 0, by the forward Euler method

yn+1 = yn + hf(yn), n = 0, 1, . . . , N − 1,

satisfies the inequality

‖yn+1‖ ≤ ‖yn‖, n = 0, 1, . . . , N − 1, (2.1)

in some norm or semi-norm ‖ · ‖, if the time step h is restricted by the
condition

h ≤ hFE. (2.2)

It is then of interest to construct higher order numerical methods for (1.1)
with g ≡ 0, which preserve the property (2.1) under the time step restrictions

h ≤ C · hFE, (2.3)

where C ≥ 0 is some constant. Numerical schemes for (1.1) with g ≡ 0, which
preserve the property (2.1) under the condition (2.3) are called SSP methods,
and the maximal constant C in (2.3) is called SSP coefficient. To compare
numerical methods with different number of stages s we also define, following
[9, 10, 20], the effective SSP coefficient Ceff by the relation Ceff = C/s.

The characterization of SSP coefficient for GLMs was discovered by Spi-
jker [26]. To describe this characterization for GLMs defined by the abscissa
vector c and coefficient matrices A, U, B, and V, consider the relations

(I + γA)−1U ≥ 0, I− (I + γA)−1 ≥ 0,

V − γB(I + γA)−1U ≥ 0, γB(I + γA)−1 ≥ 0,
(2.4)

where γ ≥ 0 is a constant, and where these inequalities should be interpreted
componentwise. Then it was demonstrated by Izzo and Jackiewicz [16], using
the results by Spijker [26], that the SSP coefficient is given by

C = C(c,A,U,B,V) = sup
{
γ ∈ R : γ satisfies (2.4)

}
. (2.5)
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It follows from this relation that SSP coefficient C can be computed by solving
the minimization problem

F (γ) := −γ −→ min, (2.6)

with a very simple objective function F (γ) = −γ, subject to the nonlinear
constrains (2.4). This process will be illustrated in Section 4.

2.2 Absolute stability of the implicit part

DIMSIMs investigated in the literature have so-called RK stability property,
i.e., their stability function p∗(w, z) assumes the form

p∗(w, z) = ws−1(w −R(z)),

where R(z) is an approximation of order p to the exponential function exp(z).
However, this stability requirement is quite restrictive and does not, in gen-
eral, permit the construction of IMEX schemes with A- or L-stable implicit
part and SSP explicit part, and, for this reason, we do not enforce RK stabil-
ity of implicit methods in this paper. But we will still refer to the resulting
implicit formulas as DIMSIMs.

In order to construct methods with A- or L-stable implicit part, we will
apply the the well known Schur criterion ([24]) in combination with the
maximum principle. Let us recall that the polynomial

φk(w) = ckw
k + ck−1w

k−1 + · · · + c1w + c0

where ci are complex coefficients, with ck 6= 0 and c0 6= 0, is said to be a Schur
polynomial if all of its roots wi, i = 1, 2, . . . , k , are inside of the unit circle,
that is |wi| < 1, for all i = 1, 2, . . . , k. Define the following two polynomials

φ̂k(w) = c0w
k + c1w

k−1 + · · · + ck−1w + ck,

and

φk−1(w) =
1

w

(
φ̂(0)φ(w) − φ(0)φ̂(w)

)
,

where ci represents the complex conjugate of the coefficient ci, i = 0, 1, . . . , k,
and let us remark that the polynomial φk−1(w) has degree at most k − 1.
The Schur recursive criterion is based on the following result.
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Theorem 2.1 (J. Schur [24]) The polynomial φk(w) is a Schur polynomial
if and only if ∣∣φ̂k(0)

∣∣ >
∣∣φk(0)

∣∣,
and φk−1(w) is a Schur polynomial.

To analyze stability properties of implicit methods it is convenient to
multiply stability function of these methods by the polynomial factor (1 −
λz)s. The resulting stability polynomial p∗(w, z) takes then the form

p∗(w, z) = (1 − λz)sws − p1(z)ws−1 + p2(z)ws−2 + · · · + (−1)sps(z), (2.7)

where p1(z), p2(z), . . . , ps(z) are polynomials of degree less than or equal to
s. To construct implicit formulas whose stability polynomial (2.7) is a Schur
polynomial in the left half of the complex plane, we will force all the roots
wj = wj(z), j = 1, 2, . . . , r, of p∗(w, z) to have no poles for Re(z) ≤ 0. Since
these roots are analytic functions of z for Re(z) ≤ 0, they fall inside the
unit circle for Re(z) ≤ 0 if and only if they are inside the unit circle for the
values of z on the imaginary axis. In other words, by the maximum principle
(compare [4]), it follows that |wj(z)| < 1, j = 1, 2, . . . , r, for all z ∈ C with
Re(z) ≤ 0, if and only if |wj(iy)| < 1, j = 1, 2, . . . , r, for all y ∈ R.

For methods with number of stages s = r, the stability polynomial
p∗(w, z) has degree r and the conditions given by the recursive Schur cri-
terion are the following
∣∣φ̂r(0)

∣∣−
∣∣φr(0)

∣∣ > 0,
∣∣φ̂r−1(0)

∣∣−
∣∣φr−1(0)

∣∣ > 0, . . . ,
∣∣φ̂1(0)

∣∣−
∣∣φ1(0)

∣∣ > 0.

Let us define the quantities

ak :=
∣∣φ̂r−k(0)

∣∣−
∣∣φr−k(0)

∣∣, k = 0, 1, . . . , r − 1.

Each ak depends on z, and when it is evaluated at z = iy, y ∈ R, it results
to be a polynomial in the unknown y with real coefficients, of the form

ak(iy) =

r2k∑

j=0

mkjy
2j, k = 0, 1, . . . , r − 1,

with mkj ∈ R for all k = 0, 1, . . . , r − 1 and j = 1, 2, . . . , r2k. Thus, a
sufficient condition to ensure the A-stability of the corresponding method is
to force

mkj ≥ 0, k = 1, 2, . . . , r, j = 1, 2, . . . , r2k, (2.8)
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where for each k at least one mkj, j = 0, 1, . . . , r2k, has to be strictly positive.
To construct methods which are L-stable we have to enforce the condition

that the polynomials p1(z), p2(z), . . . , ps(z) appearing in (2.7) have degrees
strictly less than s.

2.3 Absolute stability of the IMEX method

We will discuss next absolute stability. To analyze absolute stability proper-
ties of IMEX GLMs (1.5) we will use the test equation

y′(t) = λ0y(t) + λ1y(t), t ≥ 0, (2.9)

where λ0 and λ1 are complex parameters. Here, λ0y(t) corresponds to the
non-stiff part and λ1y(t) to the stiff part of the system (1.1). Applying (1.5)
to (2.9) and putting z0 = hλ0, z1 = hλ1, we obtain

Y [n+1] = (z0A + z1A
∗)Y [n+1] + Uy[n],

y[n+1] = (z0B + z1B
∗)Y n+1] + Vy[n],

n = 0, 1, . . .. Assuming that the matrix I − z0A − z1A
∗ is nonsingular, this

is equivalent to the vector recurrence relation

y[n+1] = M(z0, z1)y
[n], (2.10)

n = 0, 1, . . ., with the stability matrix M(z0, z1) defined by

M(z0, z1) = V + (z0B + z1B
∗)(I− z0A− z1A

∗)−1U. (2.11)

We also define the stability function p(w, z0, z1) of the IMEX scheme (1.5)
as the stability polynomial of M(z0, z1), i.e.,

p(w, z0, z1) = det
(
wI−M(z0, z1)

)
. (2.12)

To investigate stability properties of (1.5) is is usually more convenient to
work with the polynomial (1 − λz1)

sp(w, z0, z1), where λ is the diagonal
element of the coefficient matrix A∗. This polynomial will be denoted by the
same symbol p(w, z0, z1).

We say that the IMEX GLM (1.5) is stable for given z0, z1 ∈ C if all
the roots wi(z0, z1), i = 1, 2, . . . , r, of the stability function p(w, z0, z1) are
inside of the unit circle. In this paper we will be mainly interested in IMEX
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schemes which are A-stable with respect to the implicit part z1 ∈ C. To
investigate such methods we consider, similarly as in [7, 14, 28], the sets

Sα =
{
z0 ∈ C : the IMEX GLM is stable for any z1 ∈ Aα

}
,

where the set Aα ⊂ C is defined by

Aα =
{
z ∈ C : Re(z) < 0 and |Im(z)| ≤ tan(α)|Re(z)|

}
.

It follows from the maximum principle that Sα has a simple representation
given by

Sα =

{
z0 ∈ C : the IMEX GLM is stable for any

z1 = −|y|/ tan(α) + iy, y ∈ R

}
. (2.13)

For fixed values of y ∈ R we define also the sets

Sα,y =

{
z0 ∈ C : the IMEX GLM is stable for fixed

z1 = −|y|/ tan(α) + iy

}
. (2.14)

Observe that
Sα =

⋂

y∈R

Sα,y. (2.15)

Observe also that the region Sα,0 is independent of α, and corresponds to the
region of absolute stability of the explicit method with coefficients c, A, U,
B, and V. This region will be denoted by SE . We have

Sα ⊂ SE, (2.16)

and we will look for IMEX DIMSIMs for which the stability region Sα con-
tains a large part of the stability region SE of the explicit method.

All these regions SE , Sα,y, and Sα, for fixed y ∈ R and α ∈ (0, π/2],
can be determined by the algorithms developed in a recent paper [7]. These
algorithms are based on some variants of boundary locus method to compute
the boundaries ∂SE , ∂Sα,y , and ∂Sα, of the regions SE , Sα,y, and Sα. We
refer to the paper [7] for a detailed description of these algorithms. The areas
of SE and Sα can be computed by numerical integration in polar coordinates.
We refer again to [7] for a detailed description of this process.
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3 Transformed IMEX DIMSIMs

Similarly as in [6, 17], to increase our chances of finding SSP explicit GLMs
with large SSP coefficients C we consider a very general class of transformed
IMEX methods. These schemes are defined by multiplying the relation for
y[n+1] in (1.5) by T⊗ I, where T ∈ Rr×r, and det(T) 6= 0. This leads to

Y [n+1] = h(A⊗ I)f
(
Y [n+1]

)
+ h(A∗ ⊗ I)g

(
Y [n+1]

)

+ (U⊗ I)(T−1 ⊗ I)(T⊗ I)y[n],

(T⊗ I)y[n+1] = h(T⊗ I)(B⊗ I)f
(
Y [n+1]

)
+ h(T⊗ I)(B∗ ⊗ I)g

(
Y [n+1]

)

+ (T⊗ I)(V ⊗ I)(T−1 ⊗ I)(T⊗ I)y[n],

(3.1)
n = 0, 1, . . . , N − 1. Putting

y[n+1] = (T⊗ I)y[n+1], y[n] = (T⊗ I)y[n],

the equation (3.10 can be written in the form

Y [n+1] = h(A⊗ I)f(Y [n+1]) + h(A∗ ⊗ I)g(Y [n+1]) + (U⊗ I)y[n],

y[n+1] = h(B⊗ I)f(Y [n+1]) + h(B∗ ⊗ I)g(Y [n+1]) + (V ⊗ I)y[n],
(3.2)

where the transformed coefficient matrices A, A∗, U, B, B∗, and V, are
defined by

A = A, A∗ = A∗, U = UT−1,

B = TB, B∗ = TB∗, V = TVT−1.
(3.3)

It was demonstrated in [6] that transformed explicit and implicit methods
preserve the order p and stage order q = p of the original schemes. As a result,
it follows from [28], that the transformed IMEX method (3.2) preserve the
order p and stage order q = p of the original IMEX method (1.5).

Transformed IMEX GLMs (3.2) preserve also absolute stability properties
of the original IMEX schemes (1.5). This follows from

M(z0, z1) = V + (z0B + z1B∗)(I− z0A + z1A∗)−1U

= TVT−1 + (z0TB + z1TB∗)(I− z0A + z1A
∗)−1UT−1

= T
(
V + (z0B + z1B

∗)(I− z0A + z1A
∗)−1U

)
T−1

= M(z0, z1),

10



which shows that the stability matrix M(z0, z1) of the transformed method
is similar to the stability matrix M(z0, z1) of the original method. Hence, it
follows that

p(z0, z1) = det
(
wI−M(z0, z1)

)
= det

(
wI−M(z0, z1)

)
= p(z0, z1),

and we can conclude that the transformed explicit, implicit, and IMEX meth-
ods have identical absolute stability properties as the original explicit, im-
plicit, and the IMEX methods. However, SSP properties of the transformed
explicit GLMs are, in general, different from SSP properties of the original
explicit methods, and we will search for transformed explicit DIMSIMs with
maximal SSP coefficients. In addition, we will monitor the size of the region
of absolute stability Sα for α ∈ (0, π/2), preferably for α = π/2, of the IMEX
schemes, assuming that the implicit part of the method is A-, or L-stable.

4 Construction of SSP transformed IMEX DIM-

SIMs

In this section we investigate transformed SSP IMEX DIMSIMs of order
p = 1, 2, 3, and 4, with q = r = s = p. Our aim is to construct IMEX
methods whose explicit part has large SSP coefficient, the implicit part is
A- or L-stable, and the overall IMEX scheme has large region of absolute
stability. These methods will be compared with transformed SSP DIMSIMs
investigated recently in [17].

For many examples of DIMSIMs constructed in the literature on the sub-
ject, the abscissa vector c has components uniformly distributed in the in-
terval [0, 1], i.e.,

c =
[

0 1
s−1

· · · s−2
s−1

1
]T

∈ R
s.

In our search for IMEX schemes with good stability properties we relax this
condition and consider methods with abscissa vector c of the more general
form with abscissas satisfying the condition

0 < c1 < c2 < · · · < cs−1 < cs = 1.

Then the last stage Y
[n]
s of the method (1.5) approximates the solution y to

(1.1) at the point tn. This simplifies the implementation of these methods
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since no special finishing procedure is needed. This is discussed in more detail
in [17]. However, these methods still need starting procedures to compute
sufficiently accurate starting vector y[0]. Starting procedures for GLMs are
discussed in [5, 6, 16, 17] and for IMEX methods in [1].

The case p = 1 is not very interesting and it is not properly allowed for this
class of methods because it is not possible to construct an IMEX DIMSIMs
with p = q = r = s = 1 where the implicit and the explicit parts share the
same abscissa vector. However, if this last condition is relaxed (that is the
implicit and the explicit part are allowed to have different abscissa vectors),
then the explicit part is the forward Euler method, while the implicit part is
A-stable for λ ≥ 1/2 and L-stable for λ = 1. This last choice corresponds to
the backward Euler method. In this case, the stability function R(z0, z1) is
the product of the stability function of the explicit method and the stability
function of the implicit one. For this reason, the stability region Sπ

2
is equal

to the stability region SE of the explicit method, which corresponds to the
forward Euler method for any λ. The IMEX scheme corresponding to λ = 1/2
will be denoted by IMEX DIMSIM1A, and to λ = 1 by IMEX DIMSIM1L.

For order p = 2 and p = 3 we succeeded in obtaining methods with SSP
explicit part and SSP coefficients close to that obtained in [17], and with A-
or L-stable implicit part. Unfortunately, in some cases these IMEX methods
have quite small stability region Sπ

2
with respect to the stability region SE

of the explicit part. However, larger Sπ

2
stability regions can be obtained if

one is willing to accept smaller SSP coefficients.
We have searched for IMEX schemes with large SSP coefficients of the

explicit part and A- or L-stability of the implicit part by solving the min-
imization problem (2.6) subject to the nonlinear constrains (2.4), and the
constrains (2.8) required for A-stability, or the requirement that the polyno-
mials p1(z), p2(z), . . . , ps(z) appearing in (2.7) have degree less than s, which
is required for L-stability. These minimization problems were solved using
the MATLAB function fmincon with randomly generated initial guesses.

The results of our numerical searches are summarized in Tables 4.1 and
4.2, where we have listed SSP coefficients C, efficient SSP coefficients Ceff ,
area(SE), area(Sπ/2), and intervals of absolute stability int(SE), and int(Sπ/2).
These tables correspond to methods which have a good balance between area
of the stability region Sπ

2
and magnitude of SSP coefficient. Table 4.1 cor-

responds to IMEX schemes for which the implicit part is A-stable, and Ta-
ble 4.2 corresponds to IMEX schemes for which the implicit part is L-stable.
The corresponding methods of order p = 2 p = 3, and p = 4 are denoted
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Method C Ceff area(SE) area(Sπ/2) int(SE) int(Sπ/2) area(SRK)

IMEX DIMSIM1A 1 1 3.14 3.14 (−2, 0) (−2, 0) 3.14

IMEX DIMSIM2A 1.38 0.69 7.14 4.66 (−2.87, 0) (−2.87, 0) 5.87

IMEX DIMSIM3A 0.99 0.33 9.68 2.18 (−3.57, 0) (−1.32, 0) 9.12

IMEX DIMSIM4A 0.51 0.13 9.68 0.15 (−3.01, 0) (−0.30, 0) 12.70

Table 4.1: SSP coefficient C, effective SSP coefficients Ceff , area(SE)
area(Sπ/2), int(SE), int(Sπ/2), and area(SRK), for transformed IMEX SSP
DIMSIMs with p = q = r = s = 1, p = q = r = s = 2, p = q = r = s = 3,
and p = q = r = s = 4, with A-stable implicit part.

Method C Ceff area(SE) area(Sπ/2) int(SE) int(Sπ/2) area(SRK)

IMEX DIMSIM1L 1 1 3.14 3.14 (−2, 0) (−2, 0) 3.14

IMEX DIMSIM2L 1.17 0.59 7.46 7.34 (−3.01, 0) (−3.01, 0) 5.87

IMEX DIMSIM3L 0.85 0.28 9.52 3.84 (−4.10, 0) (−1.85, 0) 9.12

Table 4.2: SSP coefficient C, effective SSP coefficients Ceff , area(SE)
area(Sπ/2), int(SE), int(Sπ/2), and area(SRK), for transformed IMEX SSP
DIMSIMs with p = q = r = s = 1, p = q = r = s = 2, p = q = r = s = 3,
and p = q = r = s = 4, with L-stable implicit part.

by IMEX DIMSIM2A, IMEX DIMSIM2L, IMEX DIMSIM3A, IMEX DIM-
SIM3L, and IMEX DIMSIM4A. The coefficients of these methods are listed
in the Appendix.

The stability regions of these methods for order p = 2, 3, and 4 are
reported in Figures 4.1-4.3.

5 Numerical experiments

It has been shown in [13] (but also [15]) that IMEX RK can suffer from order
reduction when applied to stiff problem. In order to confirm the good perfor-
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Figure 4.1: Left: Stability region SE (thick line), stability region Sπ/2

(shaded region), of IMEX DIMSIM2A, and stability region of RK method of
order p = 2 (dashed line). Right: Stability region SE (thick line), stability
region Sπ/2 (shaded region), of IMEX DIMSIM2L, and stability region of RK
method of order p = 2 (dashed line).
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Figure 4.2: Left: Stability region SE (thick line), stability region Sπ/2

(shaded region), of IMEX DIMSIM3A, and stability region of RK method of
order p = 3 (dashed line). Right: Stability region SE (thick line), stability
region Sπ/2 (shaded region), of IMEX DIMSIM3L, and stability region of RK
method of order p = 3 (dashed line).
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Figure 4.3: Stability region SE (thick line), stability region Sπ/2 (shaded
region), of IMEX DIMSIM4A, and stability region of RK method of order
p = 4 (dashed line).

mances of the proposed methods when applied to stiff problems, we solved
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several problems from literature, such as shallow water equation [15, 21] with
ε = 10−8, Schnakenberg reaction-diffusion [2, 14, 23], Van der Pol oscillator
[2, 15] with ε = 10−6. In each considered case it has been confirmed that
DIMSIM2A, DIMSIM2L, DIMSIM3A and DIMSIM3L converge and achieve
the expected order of convergence, while order reduction can occur for IMEX
RK of order p = 2, 3 and 4. We also noticed that the performances of the
method DIMSIM4A were good too, but in some case, the behavior of the
method was somehow erratic. This was probably motivated by the fact that
the performances of this last method were sensitive to perturbation in the
starting procedure, were IMEX RK methods sometimes were not enough to
get good starting values.

For the sake of brevity, we report here detailed results for numerical res-
olution of an advection-reaction problem, an adsorption-desorption problem,
and a shallow water problem.

5.1 Problem 1: advection-reaction

Consider next the linear advection-reaction equation [2, 7, 14]





∂u

∂t
+ α1

∂u

∂x
= −k1u + k2v + s1,

∂v

∂t
+ α2

∂v

∂x
= k1u− k2v + s2,

(5.1)

0 ≤ x ≤ 1, 0 ≤ t ≤ 1, with parameters

α1 = 1, α2 = 0, k1 = 106, k2 = 2k1, s1 = 0, s2 = 1,

and with initial and boundary values

u(x, 0) = 1 + s2x, v(x, 0) =
k1
k2

u(x, 0) +
s2
k2

, 0 ≤ x ≤ 1,

u(0, t) = γ1(t), v(0, t) = γ2(t), 0 ≤ t ≤ 1.

(Observe that the condition v(0, t) = γ2(t) does not have to be specified
since α2 = 0). Discretization of (5.1) in space variable x on the uniform grid
xi = i∆x, i = 0, 1, . . . , N , N∆x = 1, leads to the initial value problem for
the system of ODEs of dimension 2N , with non-stiff part corresponding to
the advection terms, and stiff part corresponding to the reaction terms.
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We consider the spatial discretization of (5.1) which corresponds to the
time dependent Dirichlet data γ1(t) = 1 − sin(12t)4 at the left boundary,
where ux is approximated by fourth-order central differences in the interior
domain and third-order finite differences at the boundary, as in [2, 14].

The numerical results for the discretization of (5.1) with N = 400 spatial
points are presented in Figure 5.1, where for the sake of comparison we also
report the results obtained by IMEX RK methods constructed in [15]. For
these tests, the reference solution was computed by ODEPACK routine DLSODAR
([12]) with absolute tolerance and relative tolerance equal to 10−14 and 10−12,
respectively.

To start the integration, we used the starting procedure described in Sec-
tion 2 of [5], where the required starting values have been computed, for
methods of order p = 2 and p = 3, by IMEX RK of the same order p, applied
with a suitable stepsize, for the method of order p = 4, by DLSODAR with ab-
solute tolerance and relative tolerance equal to 10−14 and 10−12, respectively.

Figure 5.1 shows that all the presented IMEX DIMSIMs achieve the ex-
pected order of convergence for this stiff system of ODEs while order reduc-
tion to p = 1 occurs for IMEX RK of the same order.

5.2 Problem 2: adsorption-desorption model

Following Hundsdorfer and Ruuth [13] (see also [14]) we consider next the
adsorption-desorption problem given by the equations

{
ut + a(t)ux = κ

(
v − φ(u)

)
,

vt = −κ
(
v − φ(u)

)
,

(5.2)

0 ≤ x ≤ 1, t ∈ [0, tend], tend = 1.25, where φ(u) = k1u/(1 + k2u). The initial
values are u(x, 0) = v(x, 0) = 0, 0 ≤ x ≤ 1, and the boundary values are

{
u(0, t) = 1 − cos2(6πt), a ≥ 0,

u(1, t) = 0, a < 0.

As in [13] we choose the parameters κ = 106, k1 = 50, k2 = 100, and the
velocity a = a(t) = − arctan

(
100(t − 1)

)
/π. Then a(t) > 0 for 0 ≤ t ≤ 1,

which corresponds to the adsorption phase, and a(t) < 0 for t > 1, which
corresponds to the desorption phase.
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Figure 5.1: Error versus stepsize (double logarithmic scale plot) for SSP
transformed IMEX DIMSIMs and IMEX RK, applied to the discretization
of the Advection-Reaction problem (5.1), with N = 401, by fourth-order
central differences in the interior domain and by third-order finite differences
at the boundaries.
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Figure 5.2: Error versus stepsize (double logarithmic scale plot) for SSP
transformed IMEX DIMSIMs and IMEX RK, applied to the discretization
of the Adsorption-desorption problem (5.2), with N = 101, by a WENO5
space discretization scheme.
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Figure 5.3: Error versus stepsize (double logarithmic scale plot) for SSP
transformed IMEX DIMSIMs and IMEX RK, applied to the discretization
of the shallow water problem (5.3), with N = 201, by a WENO5 space
discretization scheme, and ǫ = 10−8.

As in [2], for the spatial discretization of ux we have implemented the
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WENO5 scheme [25] following the presentation in [27]. Further details can
be found in [2].

The results of these tests are reported in Figure 5.2 where it is confirmed
that all the presented IMEX DIMSIMs achieve the expected order of conver-
gence for this stiff system of ODEs while order reduction to p = 1 occurs for
IMEX RK of the same order. We also point out that several points on the
line corresponding to IMEX RK of order p = 4 are missing because it did
not converge for several values of the stepsize h.

5.3 Problem 3: shallow water model

We now consider a one-dimensional model of shallow water flow (compare
[21, 19]): 




∂

∂t
h +

∂

∂x
(hv) = 0,

∂

∂t
(hv) +

∂

∂x

(
h +

1

2
h2

)
=

1

ε

(
h2

2
− hv

)
,

(5.3)

where h is the water height with respect to the bottom and hv is the flux of
the velocity field. We use periodic boundary conditions and initial conditions
at t0 = 0

h(0, x) = 1 +
1

5
sin(8πx), hv(0, x) =

1

2
h(0, x)2, (5.4)

with x ∈ [0, 1]. For this problem the space derivative was discretized by
a fifth order finite difference weighted essentially non-oscillatory (WENO)
scheme following the implementation described in [25].

The numerical results for the discretization of (5.3) with ǫ = 10−8 and
N = 201 spatial points are presented in Figure 5.3, where for the sake of com-
parison we also report the results obtained by IMEX Runge-Kutta methods
constructed in [15]. For these tests, the reference solution was computed by
ODEPACK routine DLSODAR ([12]) with absolute tolerance and relative tolerance
equal to 10−14 and 10−12, respectively.

To start the integration, we used the starting procedure described in Sec-
tion 2 of [5], where the required starting values have been computed, for
methods of order p = 2 and p = 3, by IMEX RK of the same order p, applied
with a suitable stepsize, for the method of order p = 4, by DLSODAR with ab-
solute tolerance and relative tolerance equal to 10−14 and 10−12, respectively.
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The results reported in Figure 5.3 confirm that the IMEX RK just has the
asymptotic preserving property, while the methods proposed in this paper
are also asymptotically accurate in the stiff limit for ε → 0 (compare [21]).
In other words, the IMEX RK methods converge, but the order drop to
p = 1, while all the presented IMEX DIMSIMs achieve the expected order of
convergence and no order reduction occurs.

A Appendix

In this Appendix we report the coefficients of the methods of order p = 2, 3, 4,
described in Section 4.

A.1 Coefficients of method DIMSIM2A

c =
[

0.5207015987954746 1
]T

,

A =

[
0 0

0.6335780271090006 0

]
,

A∗ =

[
0.9756662942012514 0

1.065344873186484 0.9756662942012514

]
,

U =

[
1 0

0.8760323181723925 1

]T

,

V =

[
0.8035259425918053 1.584881273180670

0.09961124839144930 0.1964740574081947

]
.
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A.2 Coefficients of method DIMSIM2L

c =
[

0.5725000000000000 1
]T

,

A =

[
0 0

0.5507246376811594 0

]
,

A∗ =

[
0.4025509997331064 0

0.3054637337141530 0.4025509997331064

]
,

U =

[
1 0

0.8970000000000000 1

]T

,

V =

[
0.7976747326679189 1.964322983806612

0.08216049746479565 0.2023252673320811

]
.

A.3 Coefficients of method DIMSIM3A

c =
[

0.3785922442536512 0.7369632894601272 1
]T

,

A =




0 0 0

0.6105030326964779 0 0

0.5054775907409634 0.3826213150653439 0


 ,

A∗ =




0.5023463944444552 0 0

−0.8899211224523407 0.5023463944444552 0

−3.305290943287502 0.4193402392399124 0.5023463944444552


 ,

U =




1 0 0

0.6070215241878391 1 0

0.5361152778084712 1.091180739129647 1




T

,

V =




0.5418838673478645 0.9017144383487438 2.958352027358458

0.2129486962575630 0.3543543656001081 1.162568670627143

0.01900613148571312 0.03162689316015439 0.1037617670520274


 .
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A.4 Coefficients of method DIMSIM3L

c =
[

0.4020684033460171 0.7554528159803609 1
]T

,

A =




0 0 0

0.5925366351567699 0 0

0.5582112117594124 0.3256969821842126 0


 ,

A∗ =




0.5201730949739405 0 0

−1.082981144838764 0.5201730949739405 0

−2.860648399647160 0.2917933416909193 0.5201730949739405


 ,

U =




1 0 0

0.6343850217261301 1 0

0.5123644514467803 1.138668063964801 1




T

,

V =




0.4816666646770200 0.7031253548332313 3.663136087971684

0.1761045471411361 0.2570731613311589 1.339297421217996

0.03435316450098294 0.05014791919551827 0.2612601739918211


 .
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A.5 Coefficients of method DIMSIM4A

c =
[

0.2561983471074380 0.4485981308411215 0.7622950819672131 1
]T

,

A =




0 0 0 0

0.3245033112582781 0 0 0

0.1102941176470588 0.6486486486486486 0 0

0.3111111111111111 0.1603053435114504 0.4729729729729730 0



,

A∗ =




1.228571428571429 0 0 0

−2.659574468085106 1.228571428571429 0 0

−6.431818181818182 −0.4444444444444444 1.228571428571429 0

−5.931034482758621 −4.906250000000000 1.103448275862069 1.228571428571429



,

U =




1 0 0 0

0.7011494252873563 1 0 0

0.2363213391750847 0.3563218390804598 1 0

0.3704826947154125 0.5083355703606088 0.6222222222222222 1




T

,

V =




0.3181770223788457 1.319227410800732 0.2619374293792898 1.680623378297797

0.09508738599827574 0.3942518698944718 0.07828015130875329 0.5022552624798014

0.2091032901032768 0.8669852710621154 0.1721430978104653 1.104491692074865

0.02185292729383308 0.09060673356209266 0.01799029847272758 0.1154280099162172



.
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