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Abstract

Calculating cost-effective solutions to particle dynamics in viscous flows is an important

problem in many areas of industry and nature. We implement a second-order symmetric

splitting method on the governing equations for a rigid spheroidal particle model with torques,

drag and gravity. The method splits the operators into a vector field that is conservative

and one that takes into account the forces of the fluid. Error analysis and numerical tests

are performed on perturbed and stiff particle-fluid systems. For the perturbed case, the

splitting method greatly improves the solution accuracy, when compared to a conventional

multi-step method, and the global error behaves as O(εh2) for roughly equal computational

cost. For stiff systems, we show that the splitting method retains stability in regimes where

conventional methods blow up. In addition, we show through numerical experiments that

the global order is reduced from O(h2/ε) in the non-stiff regime to O(h) in the stiff regime.

Keywords: Splitting methods; time integration; numerical analysis; order reduction; multiphase

flows; anisotropic particles.

1 Introduction

Simulating the dynamics of particles in a fluid is of importance to many industrial applications

such as paper making [1], pharmaceutical processing [2] and soot emission from combustion pro-

cesses [3] as well as natural processes including the transportation of plankton in the sea [4], the
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Sciences, The Norwegian University of Science and Technology, 7491 Trondheim, Norway.
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formation of ice clouds [5] and the dispersion of pollen in the atmosphere [6]. With growing needs

for larger models and longer simulation times, there is an increasing demand for effective numerical

methods that minimise computational cost. Over the past 50 years, splitting methods have been

used to model problems in molecular biology, physics and fluid dynamics, for example, and have

been shown to supersede classical integration schemes in terms of both quantitative and quali-

tative accuracy [7]. In this paper, we employ splitting methods on the axisymmetric rigid-body

equations with Stokes viscous force, torque and gravity. Splitting methods are often used when

the differential equation has geometric properties that should be preserved under disretisation,

such as being Hamiltonian or divergence-free; or possessing a symmetry or a first integral. The

idea behind splitting methods is to split the system into two or more simpler sub-systems and

compute the numerical flow as the composition of the analytic flows of the subsystems at discrete

time-steps. As these methods are purpose-built for the problem under study, they have the ability

to mimic the qualitative behaviour of the continuous solution resulting in efficiency and stability

improvements over standard, all-purpose integration techniques.

The particle-fluid system is modelled under the assumptions that the particle size is smaller than

the smallest fluid length scale (e.g., the Kolomogrov scale) and that the particle shape can be

approximated by a triaxial ellipsoid. Under the first assumption, the particle-Reynolds number is

likely to be low and the fluid can be approximated by Stokes flow conditions where the dominant

forces are drag, torque and gravity. We adopt the second assumption for numerous reasons. Due

to the inherent complexity of fluid dynamics, ellipsoids are the only shape where the fluid forces

are exactly known at leading order without making overly restrictive assumptions. For example,

slender body theory can tell us the forces on the particle only but only if the particle is very long

and thin [8–10] and perturbation theory can tell us the translational [11] and rotational [12] forces

only for nearly spherical particles. Other than these two cases, the only shape where the forces

are known at leading order are ellipsoids, which are modelled by Stokes viscous force, derived by

Brenner [13], and torques, derived by Jeffery [14]. Such models have been adopted in studies such

as [15–17]. Additionally, modelling general non-spherical particles as axisymmetric spheroids, such

as rigid rods [16] or disks [17], is a common leading order approximation, for example, ice-cloud

particles are hexagonal plates and columns but are modelled as oblate and prolate spheroids [5].

For a comprehensive review on particle modelling the reader is referred to [18]. In this paper we

pay particular attention to two cases, one where the fluid forces are seen as a perturbation to an

otherwise free rigid-body system and the second is a stiff system, where the fluid forces dominate

the free rigid-body equations.

For non-spherical particles, the orientation couples with the translational dynamics and therefore

greatly increases the model complexity. As a result, a system of 13 coupled ordinary differential

equations (ODEs) need to be solved per time-step: three each for the position, velocity and
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angular momentum vectors and four for the rotation quaternion. A typical approach to solving

these ODEs has been to integrate the system using Runge-Kutta methods and/or linear multi-

step methods such as a second-order explicit Adams-Bashforth method [15, 17]. These methods,

although straightforward to implement, present a number of drawbacks when calculating long-time

numerical solutions to ODEs: (1) stability restrictions on the time-step h; (2) not time symmetric;

and (3) limited ability to conserve properties specific to the underlying physics of the system.

Such issues can only be overcome by enforcing small time-steps, thus increasing the total cost of

the solution method, which limits the feasibility of large (e.g., N > 106 particles) or long (e.g.,

T ∈ [0, 103] seconds) simulations [18]. Alternatively, one could approach the problem with a

purpose-built algorithm, such as a splitting method, which takes advantage of particular proper-

ties of the vector field under study. Here, we show that when compared to a conventional two-step

Adams-Bashforth method, the splitting method is both cheaper, more accurate and more robust

thus allowing for larger time-steps to achieve the same accuracy.

The next section of the paper reviews relevant theory in particle modelling. We then introduce

the numerical splitting method and present an error analysis. Section 5 presents some numerical

experiments and the last section is dedicated to conclusions.

2 Governing equations

To describe the forces on the particle we first establish three reference frames. First, we define an

inertial frame by variables x = (x, y, z)T that is an inertial coordinate system as shown in figure

1. Secondly, we define a translating frame by variables x′′ = (x′′, y′′, z′′)T that is translating with

the particle and has its origin co-located with the particles center of mass. Lastly, we introduce a

body frame denoted by variables x′ = (x′, y′, z′)T that is translating and rotating with the parti-

cle. Henceforth, all primed and double primed variables are respectively defined in the body and

translating frame and unprimed variables are defined in the inertial frame.

Jeffery and Brenner derived forces for general rigid ellipsoids, which have three distinct semi-axis

lengths; however, for simplicity we will focus on spheroids, which are axisymmetric. In the body

frame, a spheroid is defined by
x′2

a2
+
y′2

a2
+
z′2

c2
= 1, (1)

where a and c are the distinct semi-axis lengths. The particle shape is characterised by the

dimensionless aspect ratio λ = c/a > 0, which distinguishes between spherical (λ = 1), prolate

(λ > 1) and oblate (λ < 1) particles (the latter two shapes are also called as rods and disks). The
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Figure 1: A prolate spheroid (λ = 3) with coordinate lines of the inertial frame (thick black
arrows), translating frame (thin black arrows) and the body frame (thin blue arrows).

axisymmetric moment of inertia tensor for a spheroid in the body frame is

I ′ = ma2diag

(
(1 + λ2)

5
,
(1 + λ2)

5
,
2

5

)
, (2)

where m = 4
3
πλa3ρp is the particle mass and ρp is the particle density.

A spheroid immersed in a fluid will experience forces on its surface that have magnitude governed

by many parameters such as the particles density ρp, semi-major axis length a, aspect ratio λ,

fluid density ρf , dynamic viscosity ν and fluid relaxation time τf , which is defined in section 2.3.

Hence, it is a logical step to non-dimensionalise our equations by introducing a dimensionless

Stokes number. The particle Stokes number is formally defined as the ratio of the particle and

fluid relaxation times St = τp/τf . In this paper, we will adopt the definition

St =
Dλ2a2

ντf
, (3)

where D = ρp
ρf

is the particle-fluid density ratio. The Stokes number is a dimensionless measure of

the relative importance of particle inertia, that is, as St→∞ the particle behaves as a free body

and as St→ 0 the particle behaves as if itself were part of the fluid. Henceforth, all equations are

presented in their non-dimensional form and all parameters have dimension equal to 1.
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The linear momentum, angular momentum and position can be described by the column vectors

p, m′, x ∈ R3, and the orientation can be represented using Euler parameters [19], i.e. a vector

q = (e0, e1, e2, e3) ∈ R4 satisfying the constraint

1 = e20 + e21 + e22 + e23, (4)

that uniquely determines the orientation of the body frame relative to the axes of translating frame

(and hence to the inertial frame subject to an additional translation). The Euler parameters were

first used for particle modelling by Fan [20] and are used in place of the conventional Euler angles

to avoid singularities. Each q uniquely determines a rotation matrix Q ∈ SO(3) that transforms

a vector in the body frame x′ to a vector in the translating frame x′′ via

x′′ = Qx′. (5)

There is a 2-to-1 correspondence between Euler parameters and 3× 3 rotation matrices given by

the so called Euler-Rodriguez map E : q 7→ Q [21]. Setting e = (e1, e2, e3), the rotation matrix

E(q) = Q is constructed via

Q = 1 + 2e0ê + 2êê, (6)

where 1 is the 3 × 3 identity matrix and we have introduced the hat map ·̂ : R3 → so(3) defined

by  ω1

ω2

ω3

 7→ ω̂ =

 0 −ω1 ω2

ω1 0 −ω3

−ω2 ω3 0

 , (7)

where so(3) is the Lie algebra of SO(3) containing 3 × 3 skew-symmetric matrices satisfying

ω × v = ω̂v for ω,v ∈ R3. This gives the following expression for Q explicitly in terms of the

Euler parameters

Q =

 e20 + e21 − e22 − e23 2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e2e3 + e0e1) e20 − e21 − e22 + e23

 . (8)

2.1 Translational dynamics

The Stokes viscous force, derived in [13] and gravity force terms, are given in their non-dimensional

form by

Fh =
3λ

4St
QK ′QT(u− v), (9)

Fg =−mg, (10)

5



where v is the inertial frame linear velocity, which is related to linear momentum via p = mv.

Note that in our non-dimensional formalism we take m = 1 to be a dimensionless constant;

however, we will leave m in our equations for consistency with the literature. The inertial frame

fluid velocity vector u = u(x, t) is taken at the location of the particle x and the inertial frame

gravity acceleration vector is g = (0, 0, g)T for some positive constant g that is typically defined

as g = 1− 1/D to account for the buoyancy force. The body frame resistance tensor K ′, derived

by Oberbeck [22], is given by

K ′ = 16πλ diag

(
1

χ0 + α0

,
1

χ0 + β0
,

1

χ0 + λ2γ0

)
(11)

where the constants χ0, α0, β0 and γ0 were calculated for ellipsoidal particles by Siewert [23] and

are presented in table 1. Note that the inertial frame resistance tensor K is calculated from the

similarity transformation K = QK ′QT.

λ < 1 λ = 1 λ > 1

χ0
λ2(π−κ0)√

1−λ2 2 −κ0λ√
λ2−1

α0 = β0
−λ(κ0−π+2λ

√
1−λ2)

2(1−λ2)3/2
2
3

λ2

λ2−1 + λκ0
2(λ2−1)3/2

γ0
(λ(κ0−π)+2

√
1−λ2)

(1−λ2)3/2
2
3

−2
λ2−1 −

λκ0
(λ2−1)3/2

κ0 2 arctan
(

λ√
1−λ2

)
1 ln

(
λ−
√
λ2−1

λ+
√
λ2−1

)
Table 1: The values for the constants χ0, α0, β0 and γ0 for λ < 1, λ = 1 and λ > 1.

It will be convenient for the formulation of the methods to rewrite equation (9) as

Fh = −A1p + b1, (12)

where

A1 =
3λ

4mSt
K and b1 = mA1u(x, t). (13)

Here, b1 is implicitly dependent on time through the fluid. This leads to the following ODE for

momentum

ṗ = −A1p + b1 −mg. (14)

The inertial frame position vector x is calculated by solving

ẋ = v. (15)
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2.2 Rotational dynamics

The rotational dynamics of an ellipsoidal particle are governed by the free rigid-body equations [24]

with torques N′ = (N ′x, N
′
y, N

′
z)

T that describe the rotational forces acting on an ellipsoid in

creeping Stokes flow in the body frame [14]. These are presented in their non-dimensional form

N ′x =
16πλ

3(β0 + λ2γ0)

[
(1− λ2)S ′yz + (1 + λ2)(Ω′x − ω′x)

]
, (16)

N ′y =
16πλ

3(α0 + λ2γ0)

[
(λ2 − 1)S ′zx + (1 + λ2)(Ω′y − ω′y)

]
, (17)

N ′z =
32πλ

3(α0 + β0)
(Ω′z − ω′z), (18)

where ω′ = (ω′x, ω
′
y, ω

′
z)

T is the body frame angular velocity, which is related to body frame angular

momentum by m′ = I ′ω′. The dimensionless body frame shear S′ = (S ′yz, S
′
zx, S

′
xy)

T and fluid

rotation Ω′ = (Ω′x,Ω
′
y,Ω

′
z)

T terms are

S ′ij =
1

2

(
∂u′i
∂x′j

+
∂u′j
∂x′i

)
and Ω′i =

1

2
(∇′ × u′)i. (19)

We write equations (16), (17) and (18) compactly as

N′ = −A′2m′ + b′2, (20)

where

A′2 =
12λ2

St
diag

(
(1 + λ2)

(β0 + λ2γ0)
,

(1 + λ2)

(α0 + λ2γ0)
,

2

(α0 + β0)

)
I ′−1, (21)

and

b′2 =
12λ2

St
diag

(
(1− λ2)

(β0 + λ2γ0)
,

(λ2 − 1)

(α0 + λ2γ0)
, 0

)
S′ + A2I

′Ω′. (22)

Here, b′2 is implicitly dependent on time through the shear and rotation terms. The dimensionless

equation governing the angular momentum of the particle in the body frame is therefore

ṁ′ = m′ × ω′ − A′2m′ + b′2, (23)

where the cross-product term is the Poisson bracket for the free rigid-body [24] that arises from the

fact that m′ is represented in the (non-inertial) body frame. The rotation matrix Q is calculated

by solving the matrix ODE

Q̇ = Qω̂′, (24)

which arises from the quaternion formulation for the rigid-body, see [21] for details. When design-

ing a splitting method, it is notationally convenient to express the ODEs as vector equations. To
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do so we will denote qi to be the ith column of QT, then

q̇i = −ω̂′qi for i = 1, 2, 3 (25)

which represents three vector equations. It is important to stress, that to ensure that the orthog-

onality of Q is preserved, it is equation (24) that is being solved during the implementation of the

splitting method and not equation (25).

2.3 Fluid field

This paper is only concerned with the performance of numerical methods in calculating solutions

to particle dynamics, so as to measure this in isolation of the costs associated with discrete fluid

field interpolation, an analytic fluid field that is known everywhere in time and space is used.

The inertial frame fluid velocity vector u = (u, v, w)T is modelled by an analytic solution to the

Navier-Stokes equations derived by Ethier and Steinman [25]

u =− αf [eαfx sin(αfy ± βfz) + eαf z cos(αfx± βfy)]e−β
2
f t, (26)

v =− αf [eαfy sin(αfz ± βfx) + eαfx cos(αfy ± βfz)]e−β
2
f t, (27)

w =− αf [eαf z sin(αfx± βfy) + eαfy cos(αfz ± βfx)]e−β
2
f t, (28)

for positive constants αf and βf . The fluid model has time scale τf = β−2f and is chosen as it

has non-zero, non-trivial velocities that depend on every direction in each component of u and

its Jacobian ∇u, and is derived from the full Navier-Stokes equation (i.e., without neglecting

the convective, diffusive, unsteady or pressure terms). We assert that this fluid field provides a

reasonable test of the solution methods in a non-trivial fluid and insights into their performance

when the flow is transitioned to a realistic field, for example in [15–17]. In addition, we will con-

duct long-time experiments on an oscillating shear flow field defined by uS = (0, 0, x cos(2πt)/τf )
T.

3 Numerical methods

3.1 Splitting

Splitting methods can be used when an ODE can be expressed as the sum of two or more operators,

ẏ(t) = f(y) = f1(y) + f2(y), (29)
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where y ∈ Rn and f1, f2 : Rn → Rn. Ideally, the splitting is chosen in such a way that the flows∗

ϕ
[1]
h and ϕ

[2]
h of the systems ẏ(t) = f1(y) and ẏ(t) = f2(y) can be computed exactly. In this case,

numerical approximations can be generated by

Φh = ϕ
[1]
h ◦ ϕ

[2]
h , or Φ∗h = ϕ

[2]
h ◦ ϕ

[1]
h , (30)

which are known as Lie-Trotter splittings [26] and are each others adjoints. Taylor expansion

shows that the method is first-order. Another numerical method can be generated by

Φ
[S]
h = ϕ

[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2, (31)

which is the Strang splitting method [27]. Note that this can be written as the composition of

the above Lie-Trotter methods with half time-steps Φ
[S]
h = Φh/2 ◦ Φ∗h/2, hence the method is of

second-order and is symmetric [28, pg. 45]. Similarly, Φ
[S]
h = Φ∗h/2 ◦ Φh/2 is also a second-order

symmetric method. Symmetric methods of arbitrarily high order can be generated by composition

of the above methods, however, we refer the reader to [29, 30] for a more complete description of

high-order splitting methods. For a full review of splitting theory, we refer the reader to [7].

3.2 System of differential equations

Let y(t) = (pT,m′T,qT
1 ,q

T
2 ,q

T
3 ,x

T)T ∈ R18 be the solution to the ODE in the form of equation

(29). The particles dynamics is governed by the following system of first-order coupled ODEs

ṗ = −A1p + b1 −mg,

ṁ′ = m′ × ω′ − A′2m′ + b′2,

q̇i = −ω̂′qi, for i = 1, 2, 3

ẋ = v,


f(y) (32)

where the RHS of the equations in (32) arises due to the vector field f(y). The kinetic and

potential energies K and U , and Hamiltonian H are given by

K(y) =
1

2
pTm−1p +

1

2
m′

T
I ′−1m′, (33)

U(y) =
1

2

(
qT
1 q1 + qT

2 q2 + qT
3 q3

)
+mxTg, (34)

H(y) =K(y) + U(y), (35)

∗We denote by ϕh the flow operator such that y(h) = ϕh(y0) is the solution of the ODE at time t = h with
initial conditions y0 at t = 0.
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where
∑3

i=1 qT
i qi = 3 is a constant. The gradient of the Hamiltonian is

∇H(y) =
(
vT,ω′

T
,qT

1 ,q
T
2 ,q

T
3 ,mgT

)T
, (36)

and is related to the solution vector y by the following non-injective mapping

∇H = My + g1, (37)

where the matrix M := diag(m−11, I−1, 1, 1, 1, 0) ∈ R18×18 is diagonal and singular and g1 =

(0, · · · , 0,mgT)T ∈ R18. Now ẏ can be written as

ẏ = f(y) = S∇H − Ay + b, (38)

where S ∈ R18×18 is a skew-symmetric matrix given by

S =



0 0 0 0 0 −1

0 m̂′ 0 0 0 0

0 0 −ω̂′ 0 0 0

0 0 0 −ω̂′ 0 0

0 0 0 0 −ω̂′ 0

1 0 0 0 0 0


, (39)

A ∈ R18×18 is a diagonal matrix given by

A = diag(A1, A
′
2, 0, . . . , 0), (40)

b ∈ R18 is a vector given by

b = (bT
1 ,b

′T
2 , 0, . . . , 0)T ∈ R18, (41)

and 0 ∈ R3×3 is the zero matrix. Note from equations (13) and (21) that matrices A1 and A′2 are

positive definite, hence A is positive semi-definite and therefore represents a linear dissipation.

Additionally, vectors b1 and b′2 represent the forces of the fluid on the particle, hence b is a

non-conservative force term. As the energy of such a system is necessarily non-constant, we can

calculate the exact energy dissipation by taking the time derivative of the Hamiltonian

Ḣ = ∇HTẏ = ∇HT(−Ay + b), (42)

where we have used the fact that ∇HTS∇H = 0 for skew-symmetric matrix S. With the fore-

thought that we would like a dissipation-preserving splitting scheme, we split f(y) into the fol-
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lowing two sub-systems

ẏ =f1(y) = S∇H, (43)

ẏ =f2(y) = −Ay + b. (44)

The first system is Hamiltonian and hence Ḣ [1] = 0 while the second system dissipates energy

according to Ḣ [2] = ∇HTf2(y) = ∇HT(−Ay + b). Hence, the numerical flow given by equation

(31) preserves, up to the order of the method, the energy dissipation of the continuous system

given by equation (42). Equations (43) and (44) correspond to the following systems of ODEs

ṗ = −g

ṁ′ = −ω̂′m′

q̇i = −ω̂′qi
ẋ = v

(ṫ = 1)


f1(y) and

ṗ = −A1p + b1

ṁ′ = −A′2m′ + b′2

q̇i = 0

ẋ = 0

(ṫ = 0)


f2(y), (45)

where f1(y) represents a free rigid-body vector field with gravity, while f2(y) represents a purely

energy dissipative (exponential decaying) vector field with a non-conservative force that leaves Q

and x constant. Note that we freeze the flow of time in the second system to remove any implicit

time dependence that b1 and b′2 may have through the fluid vector field.

3.2.1 Solutions to f1(y)

The original system of ODEs is split such that the resulting sub-systems have solutions that can be

computed analytically. The first system is solved using the well known solutions for axisymmetric

rigid bodies [28, chapt. VII.5]. Note that this method can be generalised to triaxial ellipsoids, see

for example [21,24,31]. First, the angular velocity ω′ is solved by

ω′(h) = R′z(µh)ω′0, (46)

where µ = ω′z(0) I
′
x−I′z
I′x

and R′z(µh) is a planar rotation of angle µh about the z′ axis of the body

frame

R′z(µh) =

 cos(µh) sin(µh) 0

− sin(µh) cos(µh) 0

0 0 1

 . (47)

This immediately yields the angular momentum

m′(h) = I ′ω′(h). (48)
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Next, setting w(h) = (0,ω′(h)T)T ∈ R4, the rotation matrix Q = E(q) is solved by computing the

quaternion

q(h) = q0 · expq

(
h

2
w(h/2)

)
, (49)

where expq is the quaternion exponential and the · represents multiplication of two quaternions

(see [21] for details). Here, w(h/2) is evaluated at a half time-step to maintain symmetry. The

linear momentum p is solved by

p(h) = −mgh+ p0, (50)

and the position x is calculated by integrating the velocity

x(h) = −1

2
gh2 +

1

m
p0h+ x0. (51)

These solutions to p, m′, Q and x at time h are represented by the flow map ϕ
[1]
h in equation (31).

3.2.2 Solutions to f2(y)

The m′ and p equations in f2(y) of equation (45) are solved using the variation of constants

formula

p(h) = exp (A1h)
(
p0 + A−11 b1

)
− A−11 b1, (52)

m′(h) = exp (A′2h)
(
m′0 + A′

−1
2 b′2

)
− A′−12 b′2. (53)

Where vectors b1 and b′2 are constant in this system as we have enforced ṫ = 0. Additionally, the

rotation matrix Q and the position vector x are also kept constant in this system. These solutions

at time h are represented by the flow map ϕ
[2]
h in equation (31).

4 Error Analysis

The dissipative system f2(y) that represents the fluid forces is inversely proportional to the Stokes

number St which can be taken to be small (St << 1) or large (St >> 1), depending on the

application. In addition, the choice of λ can greatly effect the magnitude of matrix A and vector

b. In fact it can be shown that ||A|| ≤ c1λ
4/St for λ > 1 and ||A|| ≤ c2

√
λ/St for λ < 1 (see

table 1) and for some positive constants c1 and c2. This leads us to consider at least two main

cases: one where f2(y) = εf̃2(y) is a perturbation and another where f2(y) = 1
ε
f̃2(y) is a stiff

term for 0 < ε << 1. For the remainder of this section we will set b = 0 (i.e. that f2 consists

only of a linearly dissipative term) and assume that gravity is negligible such that ∇H ≈My. We

will use backward error analysis to study the error in the non-stiff case, and we will illustrate the

behaviour of the error in the stiff case by numerical tests. We will let γi represent the eigenvalues
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of the dissipation matrix A, of which six are non-zero and are the diagonal elements of matrices

A′1 = QTA1Q and A′2, given in equations (13) and (21) respectively.

The local error for the energy H is given by the scalar

δH(y0) = H(y(h))−H(y1). (54)

If gravity is negligible, the particles energy is only kinetic, hence H = 1
2
yTMy = 1

2
∇HTy. Using

the fact that the numerical approximation y1 differs from the exact solution y(h) by the local

error y1 = y(h) + δ(y0), it follows that the local energy error reduces to

δH(y0) = −∇HTδ(y0) +O(||δ||2). (55)

The next section will be dedicated to calculating the local solution error δ(y0) and local energy

error δ[H](y0) for the numerical method for the perturbed case. For the stiff case we will explore

the global error using numerical experiments.

4.1 Non-stiff case

Here, we will look at a modified vector field that coincides exactly with the flow of the numerical

method and compare this to the exact vector field. For γi << 1, we can write the ODE as

ẏ = f1(y) + f2(y) = f1(y) + εf̃2(y). Here, we have introduced the scaled variables, denoted

by the tilde, in our case εf̃2 = εÃy. For arguments sake, we will analyse the error for the Lie-

Trotter splitting as the results are more concise and analogous to the Strang splitting method.

The numerical flow corresponding to the Lie-Trotter operator is

Φ
[LT ]
h (y0) = ϕ

[1]
h ◦ ϕ

[2]
h (y0), (56)

The local error can be determined by taking the difference between the exact and numerical flow

over one time-step starting from the initial conditions y(0) = y0. It follows that the local error

for the Lie-Trotter method is

δ[LT ](y0) = ϕh(y0)− Φ
[LT ]
h (y0) =

h2

2
[f1, f2]y0 +O(h3), (57)

where we have Taylor expanded the flows and use the bilinear Lie bracket of vector fields [28, chapt.

IV], which expressed in coordinates is given by

[f1, f2] =
n∑

i,j=1

(
f i1∂if

j
2 − f i2∂if

j
1

)
∂j, (58)
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where f j1 is the jth element of f1 and ∂i = ∂/∂yi. Inserting equations (43) and (44) into (57) we

can write the local error explicitly

δ[LT ](y) =
εh2

2
(S∇2HÃy − ÃS∇H −∇Ã(S∇H, y, ·)−∇S(Ãy,∇H, ·)) +O(h3), (59)

where the tri-linear tensor ∇S is calculated by taking the gradient of S and satisfies the skew-

symmetric relationship ∇S(u,v,w) = −∇S(u,w,v) in it’s last two components for vectors

u,v,w ∈ R18, hence ∇S(Ãy,∇H, ·) is interpreted as a column vector. If we insert equation

(59) into equation (55) we can compute the local energy error

δ
[LT ]
H (y) =

εh2

2
(∇HTS∇2HÃy −∇HTÃS∇H −∇Ã(S∇H, y,∇H)−∇S(Ãy,∇H,∇H)) +O(h3),

=
εh2

2
(∇HTS∇2HÃy −∇HTÃS∇H −∇Ã(S∇H, y,∇H)) +O(εh3), (60)

where, we have used the fact that ∇S(Ãy,∇H,∇H) vanishes due to the skew-symmetry of its

last two components.

To compute the global error of the Lie-Trotter method, we first assume that both vector fields f1

and f2 are one-sided Lipschitz with L1 and L2 as their respective one-sided Lipschitz constants.

We will also use a result of [32, pg. 37], which states that for a first-order ODE that has two

solutions y1(h) and y2(h), their difference is bounded by the inequality

||y1(h)− y2(h)|| ≤ eLh||y1(0)− y2(0)||, (61)

for one-sided Lipschitz constant L. The global error at time t = tn+1 is

e
[LT ]
n+1 =y(tn+1)− yn+1

=Φ
[LT ]
h (y(tn)) + δ[LT ](y(tn))−Φ

[LT ]
h (yn), (62)

which is computed by decomposing Φ
[LT ]
h = ϕ

[1]
h ◦ ϕ

[2]
h into its flow operators as follows

||Φ[LT ]
h (y(tn))−Φ

[LT ]
h (yn)|| = ||ϕ[1]

h ◦ ϕ
[2]
h y(tn)− ϕ[1]

h ◦ ϕ
[2]
h yn||

≤ eL1h||ϕ[2]
h y(tn)− ϕ[2]

h yn||,

≤ e(L1+L2)h||e[LT ]n ||, (63)

where we have used inequality (61) twice. If we then assume that the local error is bounded by

εh2d ≥ ||δ[LT ](y(t))||, ∀t ∈ [0, T ] for some constant d and for sufficiently small h, then

||e[LT ]n+1 || ≤ e(L1+L2)h||e[LT ]n ||+ ||εh2d||, (64)

14



this implies that the global error is bounded as follows

||e[LT ]n+1 || ≤ εh2||d
n∑
i=0

(
eh(L1+L2)

)i ||, (65)

where n = T/h. Taylor expanding the exponential shows the sum is O(1/h). We can therefore

conclude that the global error magnitude is ||e[LT ]n+1 || ∼ O(εh).

The same argument of calculating the local error can be applied to the Strang method and although

straightforward, involves the computation of nested commutator brackets. The results, however,

are analogous and the local error δ[S](y) is presented in appendix A. We find that the local error for

the Strang splitting is ||δ[S](y)|| ∼ O(εh3) at leading order and terms proportional to O(ε2h3) can

be ignored for ε < h. It then follows that the global error of the Strang method is |e[S]n+1| ∼ O(εh2).

For conventional one-step or multistep methods, such as the Adams-Bashforth two-step method,

the perturbed and non-perturbed parts of the vector field are treated together, which means that

the method does not see any error advantages due to the small parameter ε. As such, the global

error is independent of ε. Using Taylor series it can be shown [32, chapt. III] that the global error

of the Adams-Bashforth two-step method is

||e[AB]
n+1 || ∼

5h2

12
||f ′′(yn)||+O(h3), (66)

which is O(h2) as opposed to the Strang splitting method which is O(εh2).

4.2 Stiff case

In this section we will examine the error of the splitting method when the vector field f2(y) is stiff

(i.e., when γi >> 1). The differential equation can then be represented by ẏ = f1(y) + 1
ε
f̃2(y). A

classical error analysis can be used in the non-stiff regime h < ε, and this shows that the global

error behaves according to O(h2/ε). However, in practise, one would like to use a step size h > ε

and in this situation, the flow operator ϕ
[2]
h becomes somewhat more difficult to analyse because

||1
ε
f̃2(y)|| ≥ 1 and we cannot expand the flow of f2 in its Taylor series, hence the classical error

analysis fails when taking a Taylor expansion about the initial point of this flow operator. Many

authors have studied the local error of various first- and second-order splitting methods in this

situation using other means, such as singular perturbation theory [33, 34] or Lie series [33]. In

these studies, it is shown that in the regime h < ε the local error behaves according to the classical

theory; however, for h > ε different order reduction phenomena are observed depending on the

splitting operator. These studies were performed in the context of designing robust splitting meth-

ods that use step size control based on local error estimates; however, we are primarily interested
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in the behaviour of the global error. There has been somewhat less research into how the global

error behaves in the stiff case or how the order reduction in the local error evolves when measuring

the global error of ODEs. Here, we present numerical experiments relating the local and global

error to the step size h and stiffness parameter ε. The results are presented in the next section.

5 Numerical Results

Numerical tests were performed for a perturbed and stiff fluid-particle system in the 3D flow field

described by equations (26), (27) and (28). Numerical solutions are calculated using the second-

order splitting method (SP2) and the second-order Adams-Bashforth two-step method (AB2)

for comparison. The perturbed system uses the values λ = 0.1, St = 100, and the maximum

eigenvalue of the dissipation matrix A is γmax ≈ 0.0806. The stiff system uses the values λ = 10,

St = 1, and γmax ≈ 24, 062. Both systems use gravity and 3D fluid terms of g = 0.99, αf = 2π

and βf = π. The initial conditions for both experiments are p0 = (1, 1, 1)T, m0 = (1, 1, 1)T,

x0 = (0, 0, 0)T and q0 = (1/
√

2, 0, 1/
√

2, 0)T is the initial rotation quaternion. The error presented

in the following figures is

error =
||yn − y(tn)||
||y(tn)||

, (67)

where y(tn) is a reference solution calculated using the classical Runge-Kutta fourth-order method

with a comparatively small time-step (e.g., h = 2−14).

Figure 2 shows the second-order convergence of the SP2 solution compared to the AB2 solution for

step sizes h = 2−n for n = 2, 4, 6, 8, 10, 12, 14. We observe that both methods achieve the correct

order of convergence, however the error of the SP2 solution is significantly lower in the perturbed

case compared to the AB2 solution. In the stiff case, the SP2 solution achieves the correct order

of convergence for low time-steps and reduced order for larger time-steps. For large time-steps the

AB2 solution becomes unstable as denoted by the nearly vertical line.

Figure 3 shows the relative computational cost of the two methods measured in simulation wall-

clock time for MATLAB serial code implementation. We observe that the SP2 method yields

numerical solutions that have over an order of magnitude less error for the same computational

cost over the one second interval for the perturbed case.

Figure 4a shows the local error ||δ[ST ]|| for varying stiffness parameters ε that are calculated via

ε = 1/γ̄, where γ̄ = ||(γ1, γ2, . . . , γ18)||/18 for eigenvalues γi of A. Here, we observe the order

reduction phenomenon sometimes referred to as the ”hump” [35, p. 113] where we see no increase

in error when the step size is increased. This usually occurs in the region ε < h <
√
ε as was
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Figure 2: Second-order convergence of the splitting method (blue line) and the AB2 method (red
line).
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Figure 3: Simulation wall-clock time of the splitting method (Blue line) and the AB2 method (red
line.

17



10-5 100

step size h

10-10

10-5

100
er

ro
r

Local error

 = 6.59e-04
 = 1.86e-04
 = 5.23e-05
 = 1.47e-05
 = 4.16e-06

(a)

100

step size h

10-5

100

er
ro

r

Global error

(b)

Figure 4: Convergence plots for varying stiffness parameters for the local error (a) and global error
(b). Order-two and order-one reference lines are plotted on both figures as well as order-three for
(a).

observed in [33] for the Van der Pol oscillator when the Strang splitting operator used contains the

non-stiff flow operator in the middle. In the non-stiff regime, the local error behaves according to

classical theory: it is order-three and proportional to 1/ε. In the stiff regime, we observe various

order reduction phenomena including convergence to an ε-independent low-order line. In addition

to the predictions made by [33], we observe that the order is also reduced to about 1.5 in the

region just below the ”hump”. This is most clearly observed by the blue line of figure 4a and is

again emphasised in figure 5. Figure 4b presents the corresponding global errors. As expected,

we observe that the solutions are of order two and proportional to 1/ε in the non-stiff regime.

As the time-step is increased the order converges to an ε-independent order-one line. Although

we perform no rigorous error analysis to explain this, our experiments suggest that there is some

ε-independent upper bound of the form u ≤ hc(y0) for some value c that can depend on the initial

conditions y0. This is highlighted by the dashed order-one reference line.

Figure 5 presents the orders of the lines in figure 4 and the corresponding values of ε by vertical

dotted lines. We observe in figure 5a that for h < ε, the method has local order three and as

the step size increases, we see some strange ε dependent order reduction phenomena. The global

order of figure 5b shows a similar phenomenon in the transition region, where the lines go from

order two to one in the stiff regime.

The reference energy H and dissipation Ḣ are calculated from equations (35) and (42) using the

reference solution and is compared against the numerical energy and dissipation from the SP2

and AB2 solutions in an oscillating shear flow uS, described in section 2.3, over a 20 second time

interval with time-step h = 0.001. The system uses the same input parameters as the perturbed
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Figure 5: The global order for the stiff equation for varying values of ε (same as figure 4), which
are displayed as vertical dotted lines.

case in the previous experiment. Figure 6a presents the energy of the particle as its dynamics

evolves over the 20 second interval. The solution errors are displayed in figure 6b, the energy

errors are displayed in figure 6c and the dissipation errors are displayed in figure 6d, in all cases,

the SP2 solution errors are approximately two orders of magnitude lower than those of the AB2.
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Figure 6: The particle energy (a), solution error (b), energy error (c) and dissipation error (d)
as functions of time for the splitting solution (blue line) and Adams-Bashforth solution (red line)
compared to the reference solution (black line) for a perturbed system.

6 Conclusion

We have proposed a splitting method for particle dynamics in viscous flows, obtained by splitting

the vector fields of the forced rigid-body dynamics equations into a conservative vector field and

a vector field that accounts for the fluid forces. Using backward error analysis, we have shown

for perturbed systems, the global error is proportional to O(εh2) which is an order ε lower than

conventional methods. For the stiff case, the splitting method produces solutions that are stable

in the unstable regime of the conventional method and retains stability for all h ≤ 1. Via nu-

merical experiment, we confirm results from the literature [33], on the local error order reduction

phenomena for the splitting method. In the non-stiff regime, the global error is observed to behave

according to O(h2/ε) and transitions to O(h) in the stiff regime.
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A Local error for Strang splitting

The local error for the Strang operator is given by

δ[S](y0) =ϕh(y0)− Φ
[S]
h (y0)

=h3(
1

12
[f1, [f1, f2]]−

1

24
[f2, [f2, f1]])y0 +O(h4), (68)
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and can be computed explicitly by inserting equations (43) and (44)

δ[S](y) =
h3

12

(
−∇2A(S∇H − 1

2
Ay, S∇H,y, ·)−∇A(c1,y, ·)−∇A(2S∇H − 1

2
Ay, S∇H, ·)

+∇A(S∇H, 1

2
Ay, ·) +∇A(y, S∇H − 1

2
Ay, (·)S∇2H)

− 1

2
∇A(S∇H,y, (·)A) +∇A(S∇H,y, (·)∇2HS)

−∇S(S∇H − Ay,∇H, (·)A) +∇S(c2,∇H, ·)

+∇S(S∇H − Ay,∇2HAy, ·) +∇S(Ay,∇2HS∇H, ·)

−∇S(Ay,∇H, (·)∇SH2) + AS∇2H(S∇H − Ay) + 2S∇2HAS∇H

− S∇2HS∇2HAy − 1

2
(S∇2HA2y + A2S∇H)

)
+O(h4), (69)

where we have used the fact that the matrix S is linear in y and vectors c1 = ∇S(S∇H −
Ay,∇H, ·) + S∇H(S∇H − Ay) + AS∇H + ∇A(S∇H,y, ·) and c2 = ∇A(S∇H − 1

2
Ay,y, ·) +

A(S∇H − 1
2
Ay) + 2

h2
δ[LT ](y) and A = εÃ for the perturbed case.
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