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Abstract. We consider the problem of symbolic-numeric integration
of symbolic functions, focusing on rational functions. Using a hybrid
method allows the stable yet efficient computation of symbolic antideriva-
tives while avoiding issues of ill-conditioning to which numerical methods
are susceptible. We propose two alternative methods for exact input that
compute the rational part of the integral using Hermite reduction and
then compute the transcendental part two different ways using a combi-
nation of exact integration and efficient numerical computation of roots.
The symbolic computation is done within bpas, or Basic Polynomial Al-
gebra Subprograms, which is a highly optimized environment for poly-
nomial computation on parallel architectures, while the numerical com-
putation is done using the highly optimized multiprecision rootfinding
package MPSolve. We show that both methods are forward and back-
ward stable in a structured sense and away from singularities tolerance
proportionality is achieved by adjusting the precision of the rootfinding
tasks.

1 Introduction

Hybrid symbolic-numeric integration of rational functions is interesting for sev-
eral reasons. First, a formula, not a number or a computer program or subroutine,
may be desired, perhaps for further analysis such as by taking asymptotics. In
this case one typically wants an exact symbolic answer, and for rational func-
tions this is in principle always possible. However, an exact symbolic answer
may be too cluttered with algebraic numbers or lengthy rational numbers to
be intelligible or easily analyzed by further symbolic manipulation. See, e.g.,
Figure 1. Discussing symbolic integration, Kahan [7] in his typically dry way
gives an example “atypically modest, out of consideration for the typesetter”,
and elsewhere has rhetorically wondered: “Have you ever used a computer alge-
bra system, and then said to yourself as screensful of answer went by, “I wish I
hadn’t asked.” ” Fateman has addressed rational integration [5], as have Noda
and Miyahiro [8,9], for this and other reasons.

Second, there is interest due to the potential to carry symbolic-numeric meth-
ods for rational functions forward to transcendental integration, since the ratio-
nal function algorithm is at the core of more advanced algorithms for symbolic
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Fig. 1: Maple output for the integral
∫

x2−1
x4+5x2+7

dx.

integration. Particularly in the context of exact input, which we assume, it can
be desirable to have an intelligible approximate expression for an integral while
retaining the exact expression of the integral for subsequent symbolic computa-
tion. The ability to do this is a feature of one of our algorithms that alternative
approaches, particularly those based on partial fraction decomposition, do not
share.

Besides intelligibility and retention of exact results, one might be concerned
with numerical stability, or perhaps efficiency of evaluation. We consider stabil-
ity issues in Sections 4 and 6. We remark that the algorithm we present here has
quite superior numerical stability in many cases, and has good structured back-
ward error and highly accurate answers, while providing the more intelligible
answers we desire.

We emphasize that the goal of this algorithm is not to produce numerical
values of definite integrals of rational functions, although it can be used for
such. The goal is to produce an intelligible formula for the antiderivative which
is correct in an approximate sense: the derivative of the answer produced will
be another rational function near to the input, and, importantly, of the same
form in that the denominator will have the correct degrees of its factors in its
squarefree factorization and the residues in its partial fraction decomposition
will also have the same multiplicity.1

1.1 Symbolic-Numeric integration of Rational Functions

As indicated above, the combination of symbolic and numerical methods in the
integration of rational functions is not new. Noda and Miyahiro [8,9] developed a
symbolic-numeric, or hybrid, method to integrate rational functions based on the

1 Note that strict preservation of the form of the integrand is not quite achieved for
the PFD method described below, since the derivative cannot be simplified into this
form without using approximate gcd. Thus, with exact computation, the degree of
the numerator and denominator is larger in general than the exact integrand.
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use of the approximate symbolic algorithms for noisy data, numerical rootfinding
and exact symbolic integration methods. Fateman [5] advocates a simpler hybrid
approach, largely to produce a fast method that makes symbolic results more
useful and more palatable, avoiding the “surd” or “RootOf” notation in the
results of symbolic integrations. Both approaches work with the assumption
that the input rational function has floating point coefficients.

For the extant symbolic-numeric algorithms for rational function integration,
the approach is to be as sparing as possible in the use of symbolic algorithms to
minimize their expense, in particular given that floating point input is assumed
to be imprecise. In contrast, given that our working assumption is that the input
rational function is exact, the present paper is dealing with a somewhat different
problem, viz., the approach involves the injection of numerical methods into
an otherwise purely symbolic context. As was pointed out above, the reasons
such an approach is desirable include intelligibility, retention of exact results
and stable or efficient evaluation.Since it is accuracy, speed and stability that
matter in the context of scientific computing, a symbolic package that provides a
suitable balance of these desiderata in a way that can be merged seamlessly with
other scientific computations, as our implementation provides, has considerable
advantages over CAS style symbolic computation with exact roots.

The usual approach to symbolic integration here begins with a rational func-
tion f(x) = A(x)/B(x) ∈ Q(x), with deg(A) < deg(B) (ignoring any polynomial
part, which can be integrated trivially) and computes an integral in two stages:
• rational part: computes a rational function C/D such that∫

f(x) dx =
C(x)

D(x)
+

∫
G(x)

H(x)
dx, (1)

where the integral on the right hand side evaluates to a transcendental
function (log and arctan terms);

• transcendental part: computes the second (integral) term of the expression
(1) above yielding, after post-processing,∫

f(x)dx =
C(x)

D(x)
+
∑

vi log(Vi(x)) +
∑

wj arctan(Wj(x)), (2)

Vi,Wj ∈ K[x], with K being some algebraic extension of Q.
In symbolic-numeric algorithms for this process some steps are replaced

by numeric or quasi-symbolic methods. Noda and Miyahiro use an approxi-
mate Horowitz method (involving approximate squarefree factorization) to com-
pute the rational part and either the Rothstein-Trager (RT) algorithm or (lin-
ear/quadratic) partial fraction decomposition (PFD) for the transcendental part
(see Section 2 for a brief review of these algorithms). The algorithm considered
by Fateman avoids the two stage process and proceeds by numerical rootfinding
of the denominator B(x) (with multiplicities) and PFD to compute both ratio-
nal and transcendental parts. In both cases, the working assumption is that the
input uses floating point numbers that are subject to uncertainty or noise and
the numerical algorithms use double precision.
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Part of the power of symbolic algorithms is their ability to preserve struc-
tural features of a problem that may be very difficult to preserve numerically.
Particularly given our focus on exact input, then, we are interested in preserving
as much structure of the problem as possible if we are to resort to the use of nu-
merical methods for rootfinding. Our implementation relies on the sophisticated
rootfinding package MPSolve, which provides a posteriori guaranteed bounds
on the relative error of all the roots for a user-specified tolerance ε. To bal-
ance efficiency of computation and structure-preservation, we use more efficient
symbolic algorithms where possible, such as the Hermite method for the ratio-
nal part, and consider two methods of computing the transcendental part, one
that computes the exact integral using the Lazard-Rioboo-Trager (LRT) method
followed by numerical approximation, and the other that uses a multiprecision
PFD method to compute a nearby integrand that splits over Q and then per-
forms a structured integration. For more details on the symbolic algorithms, see
Section 2. Our symbolic-numeric algorithms are discussed in Section 3.

The advantage of combining multiprecision numerical software with symbolic
algorithms is that it allows for the user to specify a tolerance on the error of
the symbolic-numeric computation. This, together with structured backward and
forward error analysis of the algorithm, then allows the result to be interpreted in
a manner familiar to users of numerical software but with additional guarantees
on structure-preservation. We provide such an analysis of the structured error
of our algorithm in Section 4.

An interesting feature of the backward stability of the algorithm is that it
follows that the computed integral can be regarded as the exact integral of a
slightly perturbed input integral, and, as stated previously, of the correct form
(modulo the need for approximate gcd). Insofar as the input rational function
is the result of model construction or an application of approximation theory it
is subject to error. Thus, the input, though formally exact, is nevertheless still
an approximation of a system it represents. Assuming the model approximation
error is small, this means that the “true” rational function the input represents
is some nearby rational function in a small neighbourhood of f(x), for example
in the sense of the space determined by variation of the coefficients of f . The
backward stability therefore shows that the integral actually computed is also a
nearby rational function within another small neighbourhood, for which we have
some control over its size. In a manner similar to numerical analysis, then, by
an appropriate choice of tolerance, we can ensure that the latter neighbourhood
is smaller than the former, so that the numerical perturbation of the problem
is smaller than the model approximation error. The upshot of this is that the
use of backward error analysis shows how a symbolic-numeric algorithm can be
compatible with the spirit of uncertain input, even if the input is assumed to
be exact. That is, we are assuming that the modeling procedure got the “right
kind” of rational function to give as input, even if its data is uncertain in other
ways.

This shows how a backward error analysis can be useful even in the context
of exact integration. In the general case of exact input, however, a backward
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error analysis alone is not enough. This is why we also provide a forward error
analysis, to provide a posteriori assurance of a small forward error sufficiently
far away from singularities in the integrand. We also provide such an analysis in
Section 4.

Our algorithm may be adapted to take truly uncertain input by using addi-
tional symbolic-numeric routines, such as approximate GCD and approximate
squarefree factorization, in order to detect nearby problems with increased struc-
ture. Such an approach would shift the problem onto the pejorative manifold
(nearest most singular problem, see [6]), which protects against ill-conditioning
of the problem. The symbolic-numeric structured PFD integration we propose
already takes this approach. Moreover, the structured error analysis of our al-
gorithm then entails that the problem stays on the pejorative manifold after
the computation of the integral. Since there have been considerable advances in
algorithms for approximate polynomial algebra since the time of writing of [9],
such as the ApaTools package of Zeng [12], the combination of error control
and singular problem detection could yield a considerable advance over the early
approach of Noda and Miyahiro.

2 Methods for Exact Integration of Rational Functions

We begin by reviewing symbolic methods for integrating rational functions.2

Let f ∈ R(x) be a rational function over R not belonging to R[x]. There exist
polynomials P,A,B ∈ R[x] such that we have f = P +A/B with gcd(A,B) = 1
and deg(A) < deg(B). Since P is integrated trivially, we ignore the general
case and assume that f = A/B with deg(A) < deg(B). Furthermore, thanks
to Hermite reduction, one can extract the rational part of the integral, leaving
a rational function G/H, with deg(G) < deg(H) and H squarefree, remaining
to integrate. For the remainder of this section, then, we will assume that the
function to integrate is given in the form G/H, with deg(G) < deg(H) and H
squarefree.

Partial-fraction decomposition (PFD) algorithm. The partial fraction decom-
position algorithm for rational functions in R(x) can be presented in different
ways, depending on whether one admits complex numbers in expressions. We
present a method based upon a complete factorization of the denominator over
C, followed by its conversion into an expression containing only constants from R.

Consider the splitting of H expressed in the form

H = p

n∏
i=1

(x− αi)
n+m∏
j=n+1

[(x− (αj + i βj))(x− (αj − i βj))] ,

2 The following review is based in part on the ISSAC 1998 tutorial [3] and the landmark
text book [2] of M. Bronstein.
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separating real roots from complex conjugate pairs, where p, αk, βk ∈ R. Then
there exist ak and bk such that

G

H
=

n∑
i=1

ai
x− αi

+

n+m∑
j=n+1

[
aj + i bj

(x− (αj + i βj))
+

aj − i bj
(x− (αj − i βj))

]
. (3)

The numerator quantities ck = ak+i bk corresponding to the roots γk = αk+i βk
we call residues by analogy to complex analysis. Note that in the case here where
H is squarefree, the residues can be computed by the formula ck = c(γk) =
G(γk)/H ′(γk).

The real root terms are easily integrated to yield terms of the form ai log(x−
αi). Extracting terms of the form aj

[
(x− (αj + i βj))

−1 + (x− (αj − i βj))−1
]

from (3) we obtain pairs of complex log terms that can be combined to form a
single real log term of the form aj log(x2 − 2αjx + α2

j + β2
j ). Extracting terms

of the form i bj
[
(x− (αj + i βj))

−1 − (x− (αj − i βj))−1
]

from (3) and making

use of the observation of Rioboo that d
dx i log

(
X+iY
X−iY

)
= d

dx2 arctan(X/Y ), for

X,Y ∈ R[x] (see [2], pp. 59ff.), we obtain a term in the integral of the form

2bj arctan
(
αj−x
βj

)
.

Where there are repeated residues in the PFD it is possible to combine terms
of the integral together. The combination of logarithms with common ak simply
requires computing the product of their arguments. For the arctangent terms
the combination of terms with common bk can be accomplished by recursive
application of the rule

arctan

(
X

Y

)
+ arctan

(
α− x
β

)
→ arctan

(
X(α− x)− βY
Y (α− x) + βX

)
, (4)

which is based on the fact that log(X + i Y ) + log((α− x) + i β) = log((X(α−
x)− βY ) + i (Y (α− x) + βX)) and Rioboo’s observation noted above.

A major computational bottleneck of the symbolic algorithms based on a
PFD is the necessity of factoring polynomials into irreducibles over R or C (and
not just over Q) thereby introducing algebraic numbers even if the integrand
and its integral are both in Q(x). Unfortunately, introducing algebraic numbers
may be necessary: any field containing an integral of 1/(x2 + 2) contains

√
2 as

well. A result of modern research are so-called rational algorithms that compute
as much of the integral as can be kept within Q(x), and compute the minimal
algebraic extension of K necessary to express the integral.

The Rothstein-Trager theorem.

It follows from the PFD of G/H, i.e., G/H =
∑n
i=1 ci/(x− γi), ci, γi ∈ C,

that ∫
G

H
dx =

deg(H)∑
i=1

ci log(x− γi) (5)

where the γi are the zeros of H in C and the ci are the residues of G/H at
the γi. Computing those residues without splitting H into irreducible factors is
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achieved by the Rothstein-Trager theorem, as follows. Since we seek roots of H
and their corresponding residues given by evaluating c = G/H ′ at the roots,
it follows that the ci are exactly the zeros of the Rothstein-Trager resultant
R := resultantx(H,G− cH ′), where c here is an indeterminate. Moreover, the
splitting field of R over Q is the minimal algebraic extension of Q necessary to
express

∫
f in the form given by Liouville’s theorem, i.e., as a sum of logarithms,

and we have ∫
G

H
dx =

m∑
i=1

∑
c|Ui(c)=0

c log(gcd(H,G− cH ′)) (6)

where R =
∏i=m
i=1 Ueii is the irreducible factorization of R over Q.

The Lazard-Rioboo-Trager algorithm. Consider the subresultant pseudo-rem-
ainder sequence Ri, where R0 = R is the resultant (see p. 115 in [4]) of H
and G − cH ′ w.r.t. x. Observe that the resultant R is a polynomial in c of
degree deg(H), the roots of which are the residues of G/H. Let U1U

2
2 · · ·Umm be

a square-free factorization of R. Then, we have∫
G

H
dx =

m∑
i=1

∑
c|Ui(c)=0

c log(gcd(H,G− cH ′)), (7)

which groups together terms of the PFD with common residue, as determined
by the multiplicity of Ui in the squarefree factorization. We compute the sum∑
c|Ui(c)=0 c log(gcd(H,G−cH ′)) as follows. If all residues of H are equal, there is

a single nontrivial squarefree factor with i = deg(H) yielding
∑
c|Ui(c)=0 c log(H),

otherwise, that is, if i < deg(H), the sum is
∑
c|Ui(c)=0 c log(Si), where Si =

ppx(Rk), where degx(Rk) = i and ppx stands for primitive part w.r.t. x. Conse-
quently, this approach requires isolating only the complex roots of the square-free
factors U1, U2, . . . , Um, whereas methods based on the PFD requires isolating the
real or complex roots of the polynomial H, where deg(H) ≥

∑
i deg(Ui). How-

ever, the coefficients of R (and possibly those of U1, U2, . . . , Um) are likely to
be larger than those of H. Overall, depending on the example, the computa-
tional cost of root isolation may put at advantage any of those approaches in
comparison to the others.

3 The Algorithms

We consider two symbolic-numeric algorithms, both based on Hermite reduction
for the rational part and using two distinct methods for the transcendental part,
one based on partial fraction decomposition and the other the Lazard-Rioboo-
Trager algorithm, both reviewed in Section 2. Following the notation used in
equation (1), we assume the rational part C/D has been computed and we
consider how the transcendental part is computed by the two methods. Both
algorithms use MPSolve to control the precision on the root isolation step.
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Following the notations used in equation (7), the LRT-based method pro-
ceeds by computing the sub-resultant chain (R0, R1, . . .) and deciding how to
evaluate each sum

∑
c|Ui(c)=0 c log(Rk),deg(Rk) = i, by applying the strategy

of Lazard, Rioboo and Trager. However, we compute the complex roots of the
polynomials U1, U2, . . . , Um numerically instead of representing them symboli-
cally as in [11,10]. Then, we evaluate each sum

∑
c|Ui(c)=0 c log(Rk) by an al-

gorithm adapted to this numerical representation of the roots. This method is
presented as Algorithm 1.

The PFD-based method begins by computing numerically the roots γi of
the denominator H(x) and then computes exactly the resulting residues ci =
c(γi) = G(γi)/H

′(γi). The numerical rootfinding can break the structure of
repeated residues, which we restore by detecting residues that differ by less than
ε, the user-supplied tolerance. The resulting partial fraction decomposition can
then be integrated using the structure-preserving strategy presented in section
2 above. This strategy allows to algorithm to replicate the structure of the final
output from the LRT algorithm as a sum of real logarithms and arctangents.
This method is presented as Algorithm 2.

We remark that there can be an issue here in principle as a result of roots
of H that are closer than ε. Given the properties of MPSolve, however, this is
not an issue in practice, given the ability to compute residues exactly or with
sufficiently high precision, because MPSolve isolates roots within regions where
Newton’s method converges quadratically. In the unlikely event of residues that
are distinct but within ε of each other, the algorithm still results in a small error
and is advantageous in terms of numerical stability. This is because identifying
nearby roots shifts the problem onto the nearest most singular problem, the
space of which Kahan [6] calls the pejorative manifold, which protects against
ill-conditioning.

Both methods take as input a univariate rational function f(x) = A(x)/B(x)
over Q with deg(B) > deg(A), and a tolerance ε > 0. Both A(x) and B(x) are
expressed in the monomial basis. They yield as output an expression∫

f̂ dx =
C

D
+
∑

vi log(Vi) +
∑

wj arctan(Wj), (8)

Vi,Wj ∈ Q[x], along with a linear estimate of the forward and backward error.
The backward error on an interval [a, b] is measured in terms of ‖δ(x)‖∞ =

maxa≤x≤b |δ(x)|, where δ(x) = f(x) − d
dx

∫
f̂(x) dx, and the forward error on

[a, b] is measured in terms of
∥∥∥∫ (f − f̂) dx

∥∥∥
∞

=
∥∥∫ δ(x)dx

∥∥
∞, where f and

f ′ are assumed to have the same constant of integration. Where f has no real
singularities, we provide bounds over R, and where f has real singularities the
bounds will be used to determine how close to the singularity the error exceeds
the tolerance.

The main steps of Algorithm 1 and Algorithm 2 are listed below, where
the numbers between parentheses refer to lines of the pseudo-code below. Both
algorithms begin with:
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(1-4:) decompose
∫
f dx into C

D (rational part) and
∫
G
H dx (transcendental part)

using Hermite reduction;

Algorithm 1 then proceeds with:

(5-6:) compute symbolically the transcendental part
∫
G
H dx =

∑
i

∑
c|Ui(c)=0 c ·

log(Si(t, x)) using Lazard-Rioboo-Trager algorithm; in the pseudo-code U
is a vector holding the square-free factors of the resultant while S holds the
primitive part of elements of the sub-resultant pseudo-remainder sequence
corresponding to elements of U , viz., such that corresponding to Ui is Si =
ppx(Rk), where degx(Rk) = i;

(7:) compute the roots ck of Ui(c) numerically using MPSolve to precision ε.
(8-9:) symbolic post-processing in bpas: computation of the log and arctan terms.

After Hermite reduction, Algorithm 2 continues with:

(5-6:) compute the roots γk of H(x) numerically using MPSolve to precision ε.
(7:) compute the residues ck of G(x)/H(x) corresponding to the approximate

roots of H(x) and detect their identity within ε.
(8:) compute identical residues within ε and then compute a correspondence ϕ

(one-many relation) between a representative residue and its corresponding
roots. ϕ correlates indices of selected elements of c and indices of elements
of γ.

(9-10:) compute symbolically the transcendental part
∫
Ĝ
Ĥ
dx =

∑
vi log(Vi)+∑

wj arctan(Wj) from the PFD of Ĝ(x)/Ĥ(x).

Both algorithms complete the integration by processing the arctangent terms,
which can be written as arctan

(
X
Y

)
or arctan(X,Y ), for polynomials X and Y ,

after the integration is complete, using Rioboo’s method (described in [2]) to
remove spurious singularities. The result is the conversion of the arctangent of
a rational function or two-argument arctangent into a sum of arctangents of
polynomials.

Algorithm 1 symbolicNumericIntegrateLRT(f ,ε)
f ∈ Q(x), ε > 0

1: (g, h)← hermiteReduce(num(f), den(f)) // Note: g, h ∈ Q(x)
2: (Quo,Rem)← euclideanDivide(num(h), den(h)) // Note: Quo,Rem ∈ Q[x]
3: if Quo 6= 0 then
4: P ← integrate(Quo)

5: if Rem 6= 0 then
6: (U ,S) ← integrateLogPart(Rem, den(h)) // Note: U = (Ui, 1 ≤ i ≤ m) and S = (Si) are

vectors with coefficients in Q[t] and Q[t, x] respectively

7: c← rootsMP(U , ε) // Note: c = (ck) are the roots of Ui, as returned by MPSolve
8: (L,A2) ← logToReal(c,S) // Note: L and A2 are, respectively, vectors of logs and two-

argument arctangent terms
9: A← atan2ToAtan(A2)
10: return (P, g,L,A)
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Algorithm 2 symbolicNumericIntegratePFD(f ,ε)
f ∈ Q(x), ε > 0

1: (g, h)← hermiteReduce(num(f), den(f)) // Note: g, h ∈ Q(x)
2: (Quo,Rem)← euclideanDivide(num(h), den(h)) // Note: Quo,Rem ∈ Q[x]
3: if Quo 6= 0 then
4: P ← integrate(Quo)

5: if Rem 6= 0 then
6: γ ← rootsMP(den(h), ε) // Note: γ = (γk) are the roots of den(h), as returned by MPSolve
7: c← residues(Rem, den(h),γ) // Note: c = (ck) are the residues corresponding to the γi
8: ϕ← residueRootCorrespondence(c,γ, ε) // Note: ϕ ⊆ N× N
9: (L,A2) ← integrateStructuredPFD(c,γ, ϕ) // Note: L and A2 are, respectively, vectors

of logs and two-argument arctangent terms
10: A← atan2ToAtan(A2)

11: return (P, g,L,A)

4 Analysis of the Algorithm

We now consider the error analysis of the symbolic-numeric integration using
LRT and PFD. We present a linear forward and backward error analysis for
both methods.3

Theorem 1 (Backward Stability) Given a rational function f = A/B sat-
isfying deg(A) < deg(B), gcd(A,B) = 1 and input tolerance ε, Algorithm 1 and

Algorithm 2 yield an integral of a rational function f̂ such that for ∆f = f − f̂ ,

‖∆f‖∞ = maxx

∣∣∣∣∣∑
k

Re (Ξ(x, rk))

∣∣∣∣∣+O(ε2),

where the principal term is O(ε), rk ranges over the evaluated roots and the
function Ξ defined below is computable. This expression for the backward error
is finite on any closed, bounded interval not containing a root of B(x).

The advantage of exact computation on an approximate result is that the
symbolic computation commutes with the approximation, i.e., we obtain the
same result from issuing a given approximation and then computing symbol-
ically as we do with computing symbolically first and then issuing the same
approximation.4 Thus, we will conduct the error analysis throughout this sec-
tion by assuming that we have exact information and then approximate at the
end.
3 Note that throughout this section we assume that the error for the numerical

rootfinding for a polynomial P (x) satisfies the relation |∆r| ≤ ε|r|, where r is the
value of the computed root and ∆r is the distance in the complex plane to the
exact root. This is accomplished using MPSolve by specifying an error tolerance
of ε/deg(P). Given the way that MPSolve isolates roots, the bound is generally
satisfied by several orders of magnitude.

4 Although this comment is meant to explain the proof strategy, computing the sym-
bolic result and then approximating also describes an alternative algorithm. Since
this method requires lengthy computation of algebraic numbers that we would then
approximate numerically anyway, we do not consider it.
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Proof. [PFD-based backward stability] The PFD method begins by using Her-

mite reduction to obtain∫
f(x) dx =

C(x)

D(x)
+

∫
G(x)

H(x)
dx, (9)

where H(x) is squarefree. Given the roots γi of H(x) we may obtain the PFD
of G(x)/H(x), yielding

G(x)

H(x)
=

deg(H)∑
i=1

ci
x− γi

, (10)

where ci = c(γi) with c(x) = G(x)/H ′(x). Taking account of identical residues,
the expression (10) can then be integrated using the structured PFD algorithm
described in Section 2. Since we approximate the roots of H, we replace the exact
roots γi with the approximations γ̂i. This breaks the symmetry of the exactly
repeated residues, thus the (exact) ci are modified in two ways: by evaluating
c(x) at γ̂i; and restoring symmetry by adjusting the list of computed residues
so that residues within ε of each other are identified. This strategy requires
some method of selecting a single representative for the list of nearby residues;
the error analysis then estimates the error on the basis of the error of this
representative.5 We then represent this adjusted computed list of residues by ĉi.
Since the Hermite reduction and PFD are equivalent to a rewriting of the input
function f(x) as

f(x) =
C ′(x)

D(x)
− C(x)D′(x)

D(x)2
+

deg(H)∑
i=1

ci
x− γi

,

the modified input f̂(x) that Algorithm 2 integrates exactly is obtained from
the above expression by replacing ci and γi with ĉi and γ̂i.

To compute the backward error we first must compute the sensitivity of the
residues to changes in the roots. Letting ∆γi = γi − γ̂i, then to first order we
find that

ci = c(γi) = c(γ̂i) + c′(γ̂i)∆γi +O(∆γ2
i ),

where c′ = G′

H′ − GH′′

H′2 . So the backward error for a given term of the PFD is

ci
x− γi

− ĉi
x− γ̂i

=
(ci − ĉi)(x− γ̂i) + ĉi∆γi

(x− γi)(x− γ̂i)
+O(∆γ2

i ) (11)

=
c′(γ̂i)∆γi

(x− γ̂i −∆γi)
+

ĉi∆γi
(x− γ̂i)(x− γ̂i −∆γi)

+O(∆γ2
i ) (12)

=
c′(γ̂i)∆γi
(x− γ̂i)

+
ĉi∆γi

(x− γ̂i)(x− γ̂i)
+O(∆γ2

i ). (13)

5 Note that we assume that ε is sufficiently small to avoid spurious identification of
residues in this analysis. Even with spurious identification, however, the backward
error analysis would only change slightly, viz., to use the maximum error among the
nearby residues, rather than the error of the selected representative residue.
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Since any identified residues all approximate the same exact residue ck, we use
the error c′(γk) for the residue ĉk selected to represent the identical residues.

Now, because the rational part of the integral is computed exactly, only the
PFD contributes to the backward error. Given that γi is an exact root of H(x)

H(γi) = 0 = H(γ̂i) +H ′(γ̂i)∆γi +O(∆γ2
i ),

where H(γ̂i) 6= 0 unless the exact root is computed, and H ′(γi) 6= 0 (and hence
H ′(γ̂i) 6= 0) because H is squarefree. Thus, we have that ∆γi = −H(γ̂i)/H

′(γ̂i)
to first order, where |∆γi| ≤ ε|γ̂i|. We therefore find that

∆f = f − f̂ = −
deg(H)∑
i=1

(
c′(γ̂i)

x− γ̂i
+

ĉi
(x− γ̂i)2

)
H(γ̂i)

H ′(γ̂i)
+O(ε2). (14)

Since the summand is a rational function depending only on x and γ̂i, for fixed
x, the imaginary parts resulting from complex conjugate roots will cancel, so
that only the real parts of the summand contribute to the backward error. We
therefore find a first order expression of the backward error in the form of the
theorem statement with

Ξ(x, rk) =

(
c′(rk)

x− rk
+

c(rk)

(x− rk)2

)
H(rk)

H ′(rk)
,

which is O(ε) because H(rk)
H′(rk) is O(ε). �

Note that, to properly account for the adjusted residue, applying the formula
for Ξ in the PFD case requires taking rk to be the γk used to evaluate the
representative residue.

Proof. [LRT-based backward stability]The LRT algorithm produces an exact
integral of the input rational function in the form∫

f(x) dx =
C(x)

D(x)
+

n∑
i=1

∑
c |Ui(t) = 0

c · log(Si(c, x)). (15)

Given a list cij ∈ C, 1 ≤ j ≤ deg(Ui) of roots of Ui(t), we can express the
integral in the form∫

f(x) dx =
C(x)

D(x)
+

n∑
i=1

deg(Ui)∑
j=1

cij · log(Si(cij , x)),

where n is the number of nontrivial squarefree factors of resultantx(H,G−cH ′).
Taking the derivative of this expression we obtain an equivalent expression of
the input rational function as

f(x) =
C ′(x)

D(x)
− C(x)D′(x)

D(x)2
+

n∑
i=1

deg(Ui)∑
j=1

cij
S′i(cij , x)

Si(cij , x)
. (16)
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The modified input f̂(x) that Algorithm 1 integrates exactly is obtained from
this expression by replacing the exact roots cij with their approximate counter-
parts ĉij .

To compute the backward error, we must compute the sensitivity of (16)
to changes of the roots. Considering f as a function of the parameters cij , and
letting ∆cij = cij − ĉij , the difference between the exact root and the computed
root, we find by taking partial derivatives with respect to the cij that

f(x, c11, . . . , cn deg(Un)) = f(x, ĉ11, . . . , ĉn deg(Un))+

n∑
i=1

deg(Ui)∑
j=1

[
∂Si(c,x)
∂x

Si(c, x)
+ c

(
∂2Si(c,x)
∂x∂c

Si(c, x)
−

∂Si(c,x)
∂x

∂Si(c,x)
∂c

Si(c, x)2

)]∣∣∣∣∣
c=ĉij

∆cij+O(∆c2ij).

(17)

Since f(x, ĉ11, . . . , ĉn deg(Un)) = f̂(x), letting the rational function in square
brackets be denoted by ξi(c, x), we have that

∆f = f − f̂ =

n∑
i=1

deg(Ui)∑
j=1

ξi(ĉij , x)∆cij +O(∆ĉ2ij).

Given that Ui(cij) = 0 = Ui(ĉij) + U ′i(ĉij)∆cij +O(∆c2ij), we have that ∆cij =
−Ui(ĉij)/U ′i(ĉij) to first order, where |∆cij | ≤ ε|ĉij |. Since, as for the PFD case,
the imaginary terms from complex roots cancel, we therefore find a first order
expression for the backward error in the form required by the theorem with

Ξ(x, rk) =

[
∂Si(r,x)
∂x

Si(r, x)
+ r

(
∂2Si(r,x)
∂x∂r

Si(r, x)
−

∂Si(r,x)
∂x

∂Si(r,x)
∂r

Si(r, x)2

)]∣∣∣∣∣
r=rk

Ui(rk)

U ′i(rk)
,

where rk runs over the roots ĉij . This expression is O(ε) because Ui(rk)
U ′

i(rk) is O(ε).

�

Note that the backward error is structured, because the manner in which the
integral is computed preserves structure in the integrand for both the LRT-based
Algorithm 1 and the PFD-based Algorithm 2. The use of Hermite reduction guar-
antees that the roots of the denominator of f̂(x) have the same multiplicity as

the roots of f̂ . Then the identification of nearby computed residues in Algo-
rithm 2, and the use of the Rothstein-Trager resultant in Algorithm 1, ensures
that the multiplicity of residues in the PFD of G/H is also preserved, so that

the PFD of f and f̂ have the same structure. This translates into higher degree
arguments in the log and arctan terms of the integral than would be obtained
by a standard PFD algorithm, leading to structured forward error as well.

It is important to reflect on the behaviour of these error terms Ξ(x, rk)
near singularities of the integrand, which correspond to real roots of H(x). For
both algorithms, Ξ contains a particular polynomial in the denominator that
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evaluates to zero at the real roots, specifically x − γi and Si(cij , x). In both
cases, the expression of Ξ has a term with the particular polynomial squared,
which therefore asymptotically dominates the value of the error term near the
singularity. This fact is important for efficient computation of the size of the
error term near a singularity, since the scaling behaviour can be used to quickly
locate the boundary around the singularity where the error starts to exceed
the tolerance. Our implementation discussed in Section 5 uses this scaling to
compute such boundaries.

We turn now to the consideration of forward stability of the algorithms. We
note that a full forward error analysis on this problem has subtleties on account
of the numerical sensitivities of the log function. This does not affect the validity
of the above analysis because near singularities the log term is dwarfed by the
pole in the error term, so can be safely ignored in the computation of singularity
boundaries. It is a concern when it comes to evaluation of the expressions of the
integral. This issue is reflected in the mastery that went into Kahan’s “atypically
modest” expression in [7], which is written to optimize numerical stability of
evaluation. We can, however, sidestep such concerns through the careful use of
multiprecision numerics where the value is needed.

Theorem 2 (Forward Stability) Given a rational function f = A/B and
tolerance ε, Algorithm 1 and Algorithm 2 yield an integral of a rational function
f̂ in the form (2) such that

‖∆
∫
f dx‖∞ = maxx

∣∣∣∣∣∑
k

(Ξ(rk, sk, x) +Θ(rk, sk, x))

∣∣∣∣∣+O(ε2),

where the leading term is O(ε), rk and sk range over the real and imaginary
parts of evaluated roots, and the functions Ξ and Θ defined below, corresponding
to log and arctangent terms, respectively, are computable. This expression for
the forward error is finite on any closed, bounded interval not containing a root
of B(x).

Proof. [LRT-based forward stability]We assume that we have computed the ex-
act roots cj` of the Uj(c) so that we can express the integral of the input rational
function in the form∫

f(x) dx =
C(x)

D(x)
+

n∑
j=1

deg(Uj)∑
`=1

cj` · log(Sj(cj`, x)).

Since the roots cj` ∈ C, to get a real expression for the integral we can convert
the transcendental part into a sum of logarithms and arctangents using the real
and imaginary parts of the cj`.

For the remainder of the proof we will assume that ck is a subsequence of the
roots cj` of the squarefree factors of the Rothstein-Trager resultant such that
each complex conjugate pair is only included once, and that ϕ is a mapping
defined by k 7→ j so that Sϕ(k)(ck, x) is the term of the integral corresponding
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to the residue ck. For each ck we let ak and bk be its real and imaginary parts,
respectively. This allows us to express the integral in terms of logarithms and
arctangent terms such that∫

f dx =
C

D
+

m∑
k=1

[ak log(Vk) + 2bk arctan(W1k,W2k)] , (18)

where Vk, W1k and W2k are functions of ak, bk and x, and m =
∑n
i=1 deg(Ui).

Once again, since the rational part of the integral is computed exactly, it
does not contribute to the forward error. The forward error is the result of the
evaluation of the above expression at approximate values for the ak and bk.
Therefore, considering the variation of equation (18) with respect to changes in
the ak and bk we obtain

∆
∫
f dx =

∫
(f − f̂)(x) dx =
m∑
k=1

{[(
∂Vk
∂ak

∆ak +
∂Vk
∂bk

∆bk

)
ak
Vk

+ log(Vk)∆ak

]
+[(

W2k
∂W1k

∂ak
−W1k

∂W2k

∂ak

)
∆ak+(

W2k
∂W1k

∂bk
−W1k

∂W2k

∂bk

)
∆bk

]
2bk

W 2
1k +W 2

2k

+

2arctan(W1k,W2k)∆bk}+ h.o.t. (19)

We now consider how to determine the values of Vk, W1k, W2k and their
partials from information in the computed integral. To simplify notation we let
j = ϕ(k). If ck is real, then we obtain a term of the form ak log(Sj(ak, x)). In the
complex case, each ck stands for a complex conjugate pair. As such, we obtain
terms of the form

(ak + i bk) log(Sj(ak + i bk, x)) + (ak − i bk) log(Sj(ak − i bk, x).

Expressing Sj(ak + i bk, x) in terms of real and imaginary parts as W1k(x) +
iW2k(x) ≡W1k(ak, bk, x) + iW2k(ak, bk, x), so that Sj(ak − i bk, x) = W1k(x)−
iW2k(x), the expression of the term in the integral becomes or

ak log
(
W1k(x)2 +W2k(x)2

)
+ i bk log

(
W1k(x) + iW2k(x)

W1k(x)− iW2k(x)

)
.

The observation that i log
(
X+iY
X−iY

)
has the same derivative as 2 arctan(X,Y )

allows the term of the integral to be converted into the form of the summand in
(18) with Vk(x) = W1k(x)2 +W2k(x)2.

We can express Vk, W1k and W2k and their partials in terms of Sj(c, x) and
∂Sj(c, x)/∂c as follows. First of all we have that

W1k(x) = Re(Sj(ck, x)), W2k(x) = Im(Sj(ck, x)). (20)
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Then, because c is an indeterminate in Sj(c, x),
∂Sj(c,x)

∂c

∣∣∣
c=ck

=
∂Sj(ck,x)
∂ak

with

∂Sj(ck,x)
∂ak

= ∂W1k(ck,x)
∂ak

+ i ∂W2k(ck,x)
∂ak

, so that

∂W1k

∂ak
= Re

(
∂Sj(c, x)

∂c

∣∣∣∣
c=ck

)
,

∂W2k

∂ak
= Im

(
∂Sj(c, x)

∂c

∣∣∣∣
c=ck

)
. (21)

In a similar way, and because the derivative w.r.t. bk picks up a factor of i,
∂W1k

∂bk
= −∂W2k

∂ak
and ∂W2k

∂bk
= ∂W1k

∂ak
. It follows, then, that ∂Vk

∂ak
= 2

(
W1k

∂W1k

∂ak
+W2k

∂W2k

∂ak

)
and ∂Vk

∂bk
= 2

(
W2k

∂W1k

∂ak
−W1k

∂W2k

∂ak

)
.

For the complex root case, given the error bound |∆c| ≤ ε|ĉ| on the complex
roots, we have the same bound on the real and imaginary parts, viz., |∆a| ≤ ε|â|,
|∆b| ≤ ε|b̂|. Since ∆ck = −Uj(ĉk)/U ′j(ĉk) to first order, and ∆ck = ∆ak + i∆bk,
from (19) we therefore obtain an expression for the linear forward error in the
form required by the theorem with

Ξ(âk, b̂k, x) =
(
2akΓ + log

(
W 2

1k +W 2
2k

))
Re

(
Uj
U ′j

)
+ 2akΛ Im

(
Uj
U ′j

)

when bk 6= 0, otherwise Ξ(âk, b̂k, x) ≡ 0, and with

Θ(âk, b̂k, x) = 2bkΛRe

(
Uj
U ′j

)
+ 2 (artcan (W1k,W2k)− bkΓ ) Im

(
Uj
U ′j

)
,

where Γ =
W1k

∂W1k
∂ak

+W2k
∂W2k
∂ak

W 2
1k+W 2

2k
, Λ =

W2k
∂W1k
∂ak

−W1k
∂W2k
∂ak

W 2
1k+W 2

2k
, W1k and W2k are given

by (20), ∂W1k

∂ak
and ∂W2k

∂ak
are given by (21), and Uj and U ′j are evaluated at

ĉk = âk + i b̂k. These terms are O(ε) because
Uj(ĉk)
U ′

j(ĉk) is O(ε).

For the real root case we have a much simpler expression, since Θ(âk, b̂k, x) ≡
0 and since ĉk = âk,

Ξ(âk, b̂k, x) =

âk ∂Sj

∂c

∣∣∣
c=âk

Sj(âk, x)
+ log(Sj(âk, x))

 Uj(α̂k)

U ′j(α̂k)
,

which is also O(ε). �

Proof. [PFD-based forward stability]Proceeding as we did for the LRT method,
if we assume that the roots of the denominator of the polynomial H(x) are
computed exactly, then we obtain an exact expression of the integral of f in the
form ∫

f(x) dx =
C(x)

D(x)
+

deg(H)∑
i=1

ci(γi) log(x− γi). (22)
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As in the LRT-based proof, we assume γk is a subsequence of the γi that includes
only one conjugate of each complex root. Then the same techniques for convert-
ing this to a sum of logarithms and arctangents can be applied here. Since H(x)
is squarefree, all of the γk = αk + i βk are simple roots, which entails that the
integral can be expressed in the form (18) where the Vj(x) are equal to x − αk
for a real root and x2 − 2αk + α2

k + β2
k for a complex root with ak = Re (c(γk)),

with c(x) = G(x)/H ′(x), and using Rioboo’s trick the W1k(x) = αk − x and
W2k = βk and bk = Im (c(γk)). Even though the structured integral is not ex-
pressed in this form, it is still an exact integral that we approximate, where all
subsequent computation we perform is exact. Analyzing the error in this form
has the advantage of using information available after the completion of the
rootfinding task. Thus, we will analyze the forward error in this form.

Because the residues are now obtained by computation, and we find the roots
of H(x), we obtain a modified version of the first order forward error formula
(19), viz.,

∆
∫
f dx =

∫
(f − f̂)(x) dx =

m∑
k=1

{[(
∂Vk
∂αk

∆αk +
∂Vk
∂βk

∆βk

)
ak
Vk

+

(
∂ak
∂αk

∆αk +
∂ak
∂βk

∆βk

)
log(Vk)

]
+

2βkbk(∆αk +∆βk)

(αk − x)2 + β2
k

+ 2

(
∂bk
∂αk

∆αk +
∂bk
∂βk

∆βk

)
arctan(αk − x, βk)

}
+ h.o.t.

(23)

Since c(x) = G(x)/H ′(x), c′(x) = G′(x)
H′(x) −

G(x)H′′(x)
H′(x)2 , and so it follows that

∂ak
∂αk

= Re(c′(γk)) and ∂bk
∂αk

= Im(c′(γk)). Similarly, ∂ak∂βk
= −Im(c′(γk)) and ∂bk

∂βk
=

Re(c′(γk)). For the complex root case, then, since ∆γj = −H(γ̂j)/H
′(γ̂j) to first

order, we obtain from equation (23) an expression for the linear forward error

in the form required by the theorem with Ξ(α̂k, β̂k, x) = Ξa +Ξb, where

Ξa =

(
2âk(α̂k − 1)

(α̂k − x)2 + β̂2
k

+ Re (c′(γ̂k)) log
(

(α̂k − x)2 + β̂2
k

))
Re

(
H

H ′

)

and

Ξb =

(
2âkβ̂k

(α̂k − x)2 + β̂2
k

+ Im (c′(γ̂k)) log
(

(α̂k − x)2 + β̂2
k

))
Im

(
H

H ′

)

when bk 6= 0, otherwise Ξ(α̂k, β̂k, x) ≡ 0, and with Θ(α̂k, β̂k, x) = Θa + Θb,
where

Θa =

(
2β̂k b̂k

(α̂k − x)2 + β̂2
k

− Im (c′(γ̂k)) arctan(α̂k − x, β̂k)

)
Re

(
H

H ′

)
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and

Θb =

(
2β̂k b̂k

(α̂k − x)2 + β̂2
k

+ Re (c′(γ̂k)) arctan(α̂k − x, β̂k)

)
Im

(
H

H ′

)
,

with H and H ′ being evaluated in all cases at γ̂k. All of these terms are O(ε)
because H

H′ is.
In the case of real roots,

Ξ(α̂k, β̂k, x) =

(
c′(α̂k) log (x− α̂k)− âk

x− α̂k

)
H(α̂k)

H ′(α̂k)
,

which is also O(ε). �

We note again that the forward error is structured for both algorithms. In
the LRT-based case, the exact integral is computed and the approximation only
perturbs the values of coefficients of polynomials in the integral, with all sym-
metries in the computed integral being preserved. In the PFD-based case this
comes out in the identification of the residues that are with ε of each other. This
means that for whichever k̃ is chosen for the representative residue, then âk̃, b̂k̃,
and c′(γk̃) must be used to evaluate the error terms corresponding to each of the
roots that have the same residue.

Once again, note that the scaling behaviour for the error term for real roots
can be used to efficiently compute the boundaries around the singularities in the
integral. In this case, the error scales as (x − α)−1 and Sj(ak, x)−1, since the
quadratic terms appearing the backward error have been integrated. As a result,
the forward error grows much more slowly as we approach a singularity and we
get much smaller bounds before the error exceed the tolerance.

5 Implementation

We have implemented the algorithms presented in Section 3. In our code, the
symbolic computations are realized with the Basic Polynomial Algebra Subpro-
grams (bpas) publicly available in source at http://bpaslib.org. The bpas
library offers polynomial arithmetic operations (multiplication, division, root
isolation, etc.) for univariate and multivariate polynomials with integer, rational
or complex rational number coefficients; it is written in C++ with CilkPlus ex-
tension for optimization on multicore architectures and built on top of the GMP
library.

The numerical portion of our computation relies on MPSolve, publicly avail-
able in source at http://numpi.dm.unipi.it/mpsolve. The MPSolve library,
which is written in C and built upon the GMP library, offers arbitrary precision
solvers for polynomials and secular equations, a posteriori guaranteed inclusion
radii, even on restricted domains; for requested output precision of 2−w, it pro-
vides w correct digits in the returned roots (see [1] for more details).
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The implementation of both Algorithm 1 and Algorithm 2 are integrated
into the bpas library; Algorithms 1 and 2 can be called, respectively, through
the realSymbolicNumericIntegrate and realSymbolicNumericIntegratePFD

methods of the UnivariateRationalFunction template class. We abbreviate
the realSymbolicNumericIntegrate method to snIntLRT and the realSym-

bolicNumericIntegratePFD method as snIntPFD in the sequel. The following
output formats are available in the UnivariateRationalFunction class: ap-
proximate (floating point number) or symbolic (rational number) expressions
(in either Maple or Matlab syntax); see Figure 2 for a combination of floating
point and Maple output formats.

Fig. 2: Sample output of snInt.

For the integral
∫ (x2−1)dx
x4+5x2+7 , Maple provides the expression appearing in

Figure 1. For the same integral, the bpas/MPSolve routines snIntLRT and
snIntPFD both return the output shown in Figure 2 in the default floating point
output format. In the data structures, however, the coefficients are stored as
multiprecision rational numbers, which can be displayed by changing the output
format.

It must be noted that there are differences between Algorithms 1 and 2
and their implementations in bpas. The key difference is that snIntPFD and
snIntLRT do additional post-processing. As such, the forward error analysis
detailed in section 4 assumes a different output expression than is produced
finally in the implementations. Both snIntPFD and snIntLRT do compute the
integral in the form assumed in the forward error analysis, however. There are
therefore several reasons why the additional post-processing will not significantly
affect the conclusions drawn from the error analysis.

First of all, after the integral is computed in the form of equation (18), all
further computation in bpas is done using exact computation. As such, the
final expression, which uses Rioboo’s method to remove spurious singularities
from the arctangents, is mathematically equivalent to the integral in the form of
(18) from the perspective of the integration problem, viz., they have the same
derivative and hence differ only by a constant.

Another reason why the additional post-processing will not affect the forward
error evaluation is that converting two-argument arctangent functions of poly-
nomials (or one-argument arctangents of rational functions) to one-arguments
arctangents of polynomials increases their numerical stability. This is because
the derivative of arctan(x) is 1/(1 +x2), which can never be zero, or even small,
for real integrals, whereas the derivative of arctan(x1, x2) and arctan(x1/x2) is
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(x′1x2 − x1x
′
2)/(x2

1 + x2
2), which can approach zero for nearly real roots of the

denominator of the integrand. This changes the denominators of the expressions
for Θ(rk, sk, x) appearing in the proof of theorem 2. Thus, the application of
Rioboo’s method improves the stability of the integral. As such, the worst that
can happen in this situation is that the forward error looks to become large
when it is not. Though this issue will need to be resolved in refinements of the
implementation, it is very unlikely to be a significant issue on account of the fact
that the error is dominated by the error in the roots, and in practice this error
is many orders of magnitude less than the tolerance.

Since the forward error analysis is reliable, modulo the issue just stated, even
though we could compute the forward error on the final output, it is a design
decision not to do so. This is because a design goal of the algorithm is to hide
the error analysis in the main computation of the integral by performing the
error analysis in parallel. This is only possible if the error analysis can proceed
on information available before the integral computation is completed.

6 Experimentation

We now consider the performance of Algorithms 1 and 2 based on their imple-
mentations in bpas.6 For the purposes of comparing their runtime performance
we will consider integration of the following functions:

1. f1(x) = 1
xn−2 ;

2. f2(x) = 1
xn+x−2 ;

3. f3(x) = [n, n]ex/x(x),

where [m,n]f (x) denotes the Padé approximant of order [m/n] of f . Since∫
ex

x dx = Ei(x), the non-elementary exponential integral, integrating f3 pro-
vides a way of approximating Ei(x). These three problems test different features
of the integrator on account of the fact that f1(x) has a high degree of symmetry,
while f2(x) breaks this symmetry, and f3(x) contains very large integer coeffi-
cients for moderate size n. Note that unless otherwise stated, we are running
snIntPFD and snIntLRT with the error analysis computation turned on.

Comparing snIntPFD and snIntLRT on functions f1 and f2 for Fibonacci
values of n, from n = 3 to n = 377, we find the results shown in Figure 3. We see
from Figure 3a that the performance of the two algorithms is nearly identical
on function f1(x). Figure 3b shows, however, that on function f2(x), snIntPFD
performs considerably poorer than snIntLRT. The reason for this is that the
size of the coefficients in the Rothstein-Trager resultant grows exponentially for
f2(x). This causes no significant issues for the subresultant computation, but it
significantly slows the rootfinding algorithm, leading to large rational number
roots, which slows the post-processing algorithms. In contrast, the difference in
runtime for snIntPFD on functions f1(x) and f2(x) is negligible. This is because
the speed of snIntPFD is determined by the degree of the denominator (after

6 The data for this section was collected in December of 2017.
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the squarefree part has been extracted by Hermite reduction) and the height of
the coefficients. Since the denominators of f1 and f2 have the same degree and
height bound, we expect the performance to be similar.

If we run the same computation with the error analysis turned off, we see
that snIntLRT actually performs better than snIntPFD on problem 1. With the
performance improvement of snIntLRT relative to snIntPFD being similar to
the performance of snIntPFD relative to snIntLRT on problem 2 with the error
analysis turned on. Thus, there are some problems on which snIntLRT performs
better than snIntPFD. The performance of snIntPFD is easier to predict from
the degree and height bound of the input polynomials.

That there is a difference in performance in snIntLRT when the error anal-
ysis computation is turned off shows that the current implementation can only
partially hide the error analysis computation for snIntLRT on some problems.
The error analysis computation is successfully completely hidden for problem
2 with snIntLRT, which is to be expected. For snIntPFD, however, there is a
negligible difference in the runtime with the error analysis turned on and off.
Thus, once again, snIntPFD has the more reliable and desirable behaviour.

snIntPFD also performs better on problem 3, which leads to coefficients with
height bound that grows exponentially with n. For n = 8, snIntLRT computes
the integral in about 0.04 s, whereas snIntPFD computes it in about 0.01 s.
For n = 13, the respective runtimes increase to 0.18 s and 0.02 s, and by n =
21, around 2.5 s and 0.04 s. This shows that snIntLRT is considerably slowed
down by large input coefficients, since this leads to even larger coefficients in the
subresultants. This is reflected in the subresultant computation taking 0.6 s for
n = 21 and slowing down the exact integration to 2.4 s. Thus, when it comes to
runtime performance, snIntPFD is the clear winner.

Turning to the error analysis, we now consider the behaviour of the error
under variation of the input tolerance ε. For integrands without real singularities,
we can compute a global forward and backward error bound over the entire real
line. For the non-singular problem

∫
dx

x128+2 , a variant of problem 1, we see from
table 1 that both snIntLRT and snIntPFD exhibit tolerance proportionality as
the tolerance is reduced. Here snIntLRT generally outperforms snIntPFD for
a given input tolerance by several orders of magnitude, but both algorithms
perform strongly.

On problems that do have real singularities, we obtain boundaries around
the singularities past which the error exceeds the input tolerance. On problem
3 for n = 8, there is a real singularity at x

·
= 10.949. For this singularity, we see

from table 2 that both snIntLRT and snIntPFD exhibit tolerance proportionality
of the singularity boundaries as the tolerance is reduced. Thus, we can get as
close to the singularity as desired by decreasing the input tolerance. With the
exception of ε = 2−34, snIntLRT outperforms snIntPFD, but the difference in
performance between the two algorithms is not as extreme as with the non-
singular case. For the default precision of ε = 2−53 and above, both algorithms
get extremely close to the singularity before the error exceeds the tolerance.
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(a)

(b)

Fig. 3: Runtime comparison of snIntPFD and snIntLRT on problems (a) f1(x) and (b)
f2(x).
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snIntLRT snIntPFD

ε forward error backward error forward error backward error

6 · 10−11 (2−34) 8 · 10−16 1 · 10−15 2 · 10−15 2 · 10−12

3 · 10−17 (2−55) 3 · 10−55 2 · 10−53 1 · 10−39 1 · 10−38

2 · 10−27 (2−89) 1 · 10−75 2 · 10−73 9 · 10−59 8 · 10−58

4 · 10−44 (2−144) 6 · 10−95 7 · 10−93 3 · 10−77 2 · 10−76

Table 1: Tolerance proportionality of the global forward and backward error bounds
for snIntLRT and snIntPFD on

∫
dx

x128+2
.

snIntLRT snIntPFD

ε forward error ∂ backward error ∂ forward error ∂ backward error ∂

2−34 4 · 10−3 6 · 10−2 1 · 10−14 6 · 10−7

2−55 7 · 10−23 9 · 10−12 8 · 10−20 3 · 10−10

2−89 4 · 10−32 2 · 10−16 2 · 10−28 1 · 10−14

2−144 2 · 10−34 1 · 10−17 3 · 10−31 6 · 10−16

Table 2: Tolerance proportionality of the singularity boundary widths for snIntLRT

and snIntPFD on problem 3 with n = 8 for the singularity at x
·
= 10.949. The symbol

∂ is used to abbreviate “boundary width”.

For testing the numerical stability, we will consider two additional problems,
along with problem 3 above:

4. f(x) = 2x
x2−(1+ε)2 , ε→ 0 (singular just outside [−1, 1]);;

5. f(x) = 2x
x2+ε2 , ε→ 0 (nearly real singularities on the imaginary axis).

Note that the small parameter ε in problems 4 and 5 is conceptually distinct
from the input tolerance ε. These problems are useful for testing the stability of
the integration algorithms near singularities.

On problems 4 and 5, snIntLRT computes the exact integral, because the
integral contains only rational numbers, so there is no need to do any rootfinding.
Thus, the forward and backward error are exactly zero, and the evaluation of
the integral is insensitive to how close the singularities are to the boundary of
the interval of integration, provided a numerically stable method of evaluating
the logarithm is used.

On the same problems snIntPFD computes very nearly the exact integral.
On problem 4, with ε = 2−53, it is possible to get to within about 1.6 · 10−23

of the singularities at ±1± ε before the error exceeds the tolerance. Thus, even
with ε = ε, the error does not affect the evaluation of the integral on the interval
[−1, 1]. snIntPFD also performs exceedingly well on problem 5. With the same
input tolerance, the forward error bound is 1.9 · 10−57 for ε = 0.1 and increases
only to 1.7·10−42 for ε = 10−16. Indeed, the difference between the a in log(x2+a)
computed by snIntLRT and snIntPFD is about 1.7 · 10−74.
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Since problem 3 requires rootfinding for both algorithms, it provides a more
fair comparison. snIntLRT fares slightly better than snIntPFD on this problem,
but only slightly and not in a way that significantly affects numerical evaluation.
We make the comparison for ε = 2−53. With n = 8, for snIntLRT the backward
and forward error bounds away from the real singularities are about 2.1 · 10−38

and 1.8 · 10−36, respectively. For snIntPFD the backward error bound increases
only to 2.6 · 10−35 and the forward error bound decreases slightly to 1.2 · 10−36.
As for evaluation near the real singularities, snIntLRT can get within about
1.8 · 10−23 of the singularity at around x = 10.949 before the forward error
exceeds the tolerance. snIntPFD can get within about 2 · 10−20. Of course, this
is not a true concern anyway, because the Padé approximant ceases to be a good
approximation of ex/x before reaching the real root.

We see, therefore, that snIntPFD performs strongly against snIntLRT even
when snIntLRT gets the exact answer and snIntPFD does not. Indeed, the differ-
ences in numerical stability between the two methods are relatively small. Given
the performance benefits of snIntPFD, the PFD-based algorithm is the clear
overall winner between the two algorithms. snIntPFD is therefore the preferred
choice, except in cases where the exact integral needs to be retained.

7 Conclusion

We have identified two methods for the hybrid symbolic-numeric integration of
rational functions on exact input that adjust the forward and backward error
the integration according to a user-specified tolerance, determining the inter-
vals of integration on which the integration is numerically stable. The PFD-
based method is overall the better algorithm, being better overall in terms of
runtime performance while maintaining excellent numerical stability. The LRT-
based method is still advantagous in contexts where the exact integral needs to
be retained for further symbolic computation. We believe these algorithms, and
the extension of this approach to wider classes of integrands, has potential to
increase the utility of symbolic computation in scientific computing.
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