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Abstract

Let {xk,n−1}n−1
k=1 and {xk,n}nk=1, n ∈ N, be two sets of real, distinct points satisfying the interlacing property

xi,n < xi,n−1 < xi+1,n, i = 1, 2, . . . , n− 1. In [10], Wendroff proved that if pn−1(x) =

n−1∏
k=1

(x− xk,n−1) and

pn(x) =

n∏
k=1

(x − xk,n) , then pn−1 and pn can be embedded in a non-unique monic orthogonal sequence

{pn}∞n=0. We investigate a question raised by Mourad Ismail at OPSFA 2015 as to the nature and properties
of orthogonal sequences generated by applying Wendroff’s Theorem to the interlacing zeros of Cλn−1(x) and
(x2−1)Cλn−2(x), where {Cλk (x)}∞k=0 is a sequence of monic ultraspherical polynomials and −3/2 < λ < −1/2,
λ 6= −1. We construct an algorithm for generating infinite monic orthogonal sequences {Dλ

k (x)}∞k=0 from
the two polynomials Dλ

n(x) := (x2 − 1)Cλn−2(x) and Dλ
n−1(x) := Cλn−1(x), which is applicable for each pair

of fixed parameters n, λ in the ranges n ∈ N, n ≥ 5 and λ > −3/2, λ 6= −1, 0, (2k − 1)/2, k = 0, 1, . . .. We
plot and compare the zeros of Dλ

m(x) and Cλm(x) for several choices of m ∈ N and a range of values of the
parameters λ and n. For −3/2 < λ < −1, the curves that the zeros of Dλ

m(x) and Cλm(x) approach are
substantially different for large values of m. When −1 < λ < −1/2, the two curves have a similar shape
while the curves are almost identical for λ > −1/2.

MSC: primary 33C50; secondary 42C05.
Keywords: Ultraspherical polynomials, Wendroff’s Theorem, interlacing of zeros, quasi-orthogonal poly-
nomials.

1 Introduction

The monic ultraspherical polynomial Cλn(x) is defined by the three term recurrence relation [8, eqn.(8.18)]

Cλn(x) = xCλn−1(x)− bλnCλn−2(x), λ 6= 0,−1, . . . ; n = 1, 2, . . . , (1)

where

Cλ−1(x) ≡ 0, Cλ0 (x) = 1, bλn =
(n− 1)(n− 2 + 2λ)

4(n− 2 + λ)(n− 1 + λ)
, λ 6= 0,−1, . . . ; n = 1, 2, . . . (2)

For each λ > − 1
2 , the sequence {Cλn(x)}∞n=0 is orthogonal on (−1, 1) with respect to the weight function

(1 − x2)λ−
1
2 and for each n ∈ N, n ≥ 1, the zeros of Cλn(x) are real, simple, symmetric, lie in (−1, 1) and the

zeros of Cλn−1(x) interlace with the zeros of Cλn(x), n ≥ 2, ( see [9, Theorem 3.3.2]) namely,

− 1 < x1,n < x1,n−1 < · · · < xn−1,n < xn−1,n−1 < xn,n < 1. (3)

where {xi,n}ni=1 are the zeros of Cλn(x) in increasing order.
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As λ decreases below −1/2, two (symmetric) zeros of Cλn(x) leave the interval (−1, 1) through the endpoints −1
and 1 ( see [5, p. 296] ) and remain real with absolute value> 1 for each n ∈ N, n ≥ 3, and− 3

2 < λ < − 1
2 , λ 6= −1.

For − 3
2 < λ < − 1

2 , λ 6= −1, the sequence {Cλn(x)}∞n=0 is quasi-orthogonal of order 2 with respect to the weight

function (1− x2)λ+
1
2 , (see [2, Theorem 6] and [3, p.144]) and, for any n ∈ N, n ≥ 4, ( see [6, Theorem 3.1]),

x1,n−1 < x1,n < −1 < x2,n < x2,n−1 < · · · < xn−2,n−1 < xn−1,n < 1 < xn,n < xn−1,n−1. (4)

It follows from (4) that the zeros of Cλn−1(x) and Cλn(x) are not interlacing for any n ∈ N, n ≥ 4 and − 3
2 < λ <

− 1
2 , λ 6= −1, but we see from (3) and (4) that the zeros of Cλn(x) interlace with the zeros of (x2 − 1)Cλn−1(x)

for each n ∈ N, n ≥ 4 and each λ with λ > − 3
2 , λ 6= −1.

In 1961, Wendroff [10, p. 554] proved that, for any fixed positive integer n, n ≥ 2, if {xi}ni=1 and {yi}n−1i=1 are
two sets of real, distinct points satisfying the interlacing property x1 < y1 < x2 < y2 < · · · < xn−1 < yn−1 < xn,

there exist infinitely many sequences {pk(x)}∞k=0 of monic orthogonal polynomials with pn(x) =

n∏
k=1

(x − xk)

and pn−1(x) =

n−1∏
k=1

(x − yk). His proof is constructive and for a given, fixed n ∈ N, n ≥ 2, each polynomial

pk(x) of degree k ≤ n − 2 is uniquely determined by pn(x) and pn−1(x). In contrast, the monic polynomials
of degree n+ 1, n+ 2, . . . in any orthogonal sequence that includes pn(x) and pn−1(x) are only constrained by
the requirement that any infinite sequence of (monic) orthogonal polynomials satisfies a three term recurrence
relation of the form

pn+k(x) = (x− ak)pn+k−1(x)− bkpn+k−2(x), ak ∈ R, bk > 0, k = 1, 2, . . . . (5)

Since there are infinitely many choices of the coefficients ak and bk with ak ∈ R and bk > 0 for k = 1, 2, . . . ,
there are infinitely many distinct monic orthogonal sequences {pk(x)}∞k=0 that include pn(x) and pn−1(x).

Here, we fix n ∈ N, n ≥ 5, fix λ, λ > −3/2, λ 6= −1, 0, (2k − 1)/2, k = 0, 1, . . ., and define

Dλ
n−1(x) := Cλn−1(x), Dλ

n(x) := (x2 − 1)Cλn−2(x). (6)

We investigate the properties of the zeros of polynomials in monic orthogonal sequences {Dλ
m}∞m=0 generated

by the Wendroff process. It is important to emphasize the dependence on the “starting value” of n ∈ N when
generating each monic orthogonal sequence {Dλ

m}∞m=0 that includes Dλ
n−1(x) and Dλ

n(x). If n ∈ N, n ≥ 5 is large,
the number of polynomials (namely, n − 2) that are uniquely determined in every monic orthogonal sequence
that includes Dλ

n−1(x) and Dλ
n(x) is correspondingly large whereas, for example, if n = 5 we have two degrees

of freedom when generating each of the monic polynomials of degree > 5 and exactly 4 of the polynomials of
lower degree are completely determined. The restriction n ≥ 5 arises from the fact that when − 3

2 < λ < −1,
the quadratic ultraspherical polynomial Cλ2 (x) has two pure imaginary zeros (see [3, p. 144]). If we restrict λ
to the range λ > −1, the results proved here apply for n ≥ 3.

2 Notation

For each m ∈ N, denote

Cλm(x) = xm +

m∑
j=1

αj,m x
m−j =

m∏
j=1

(x− xj,m), cm =

m∑
j=1

xj,m. (7)

Dλ
m(x) = xm +

m∑
j=1

βj,m x
m−j =

m∏
j=1

(x− yj,m), dm =

m∑
j=1

yj,m. (8)

The zeros {xj,m}mj=1 of Cλm(x) are distinct, real and symmetric with respect to the origin for m ≥ 3 so that

cm = 0 for all m ∈ N,m ≥ 3 while the zeros {yj,m}mj=1 of Dλ
m(x) are distinct, real and symmetric when m = n

or m = n− 1 so that dn = dn−1 = 0. Note that

y1,n = x1,n−2, y2,n = −1, y3,n = x2,n−2, . . . , yn−1,n = 1, yn,n = xn−2,n−2 (9)
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and
yk,n−1 = xk,n−1, k = 1, 2, .. . . . n− 1. (10)

3 Orthogonal sequences generated by Cλ
n−1(x) and (x2 − 1)Cλ

n−2(x), n ≥ 5

Our main result is the following theorem.

Theorem 3.1 Let {Cλm(x)}∞m=0 be the sequence of monic ultraspherical polynomials defined by (1) and (2). Fix
n ∈ N, n ≥ 5, fix λ ∈ (− 3

2 ,−
1
2 ), λ 6= −1, and suppose that ε > 0 is abitrary.

Define

an := xn−2,n−2 + ε (11)

where xn−2,n−2 > 1 is the largest zero of Cλn−2(x).

Let the sequence of monic polynomials {Dλ
m(x)}∞m=0 be defined by:

Dλ
n(x) = (x2 − 1)Cλn−2(x), Dλ

n−1(x) = Cλn−1(x), (12)

Dλ
n−j(x) = − 1

`n−j+2

[
Dλ
n−j+2(x)− xDλ

n−j+1(x)
]
, j = 2, 3, . . . , n (13)

Dλ
n+j(x) = xDλ

n+j−1(x)− `n+jDλ
n+j−2(x), j = 1, 2, . . . (14)

where

`n−j = β2,n−j−1 − β2,n−j > 0, j = 0, 1, . . . , n− 2, (15)

`n+j ∈

(
0,
anD

λ
n+j−1(an)

Dλ
n+j−2(an)

)
, j = 1, 2, . . . , (16)

and β2,m is the coefficient of xm−2 in Dλ
m(x), see (8). Then the sequence {Dλ

m(x)}∞m=0 is symmetric and
orthogonal with respect to a positive measure supported on the interval (−an, an).

Proof of Theorem 3.1

Fix n ∈ N, n ≥ 5. The monic polynomial Dλ
n−2(x) is uniquely determined by

Dλ
n(x)− xDλ

n−1(x) = −`nDλ
n−2(x) (17)

where Dλ
n(x) and Dλ

n−1(x) are defined by (12) and the coefficient `n is chosen so that Dλ
n−2(x) is monic. The

positivity of `n follows from the interlacing property of the zeros of Dλ
n(x) and Dλ

n−1(x). In the same way, for
each j = 3, 4, . . . , n, the polynomial Dλ

n−j(x) is constructed from the polynomials Dλ
n−j+1(x) and Dλ

n−j+2(x.)

The process is repeated until we obtain Dλ
0 (x) = 1. The polynomials Dλ

n+j(x), j = 1, 2, . . . are constructed
recursively using the three-term recurrence relation

Dn+j(x) = xDλ
n+j−1(x)− `n+jDn+j−2(x), j = 1, 2, . . . , (18)

choosing positive coefficients `n+j for j = 1, 2, . . . . This ensures (Favard’s Theorem) that the infinite sequence
{Dλ

m(x)}∞m=0 is orthogonal with respect to a positive measure. Wendroff mentions in his proof [10, p. 554]
that the coefficients `n+j can be chosen in such a way that all zeros of Dλ

n+j(x) lie in the interval (−an, an) for
each j ≥ 1 but does not indicate how to choose the coefficients to achieve this outcome. Here, we prove that
the choice of `n+1 given in (16) ensures that all the zeros of Dλ

n+1(x) lie in the interval (−an, an). Applying
the same argument iteratively, it can be shown that the choice of `n+j given in (16) ensures that the zeros of
Dλ
n+j(x) lie in the interval (−an, an) for each j ∈ N.

Suppose `n+1 ∈
(

0,
anD

λ
n(an)

Dλn−1(an)

)
. We show that the zeros of Dλ

n+1 lie in the interval (−an, an). From (4) with n

replaced by n − 1, it follows immediately that the zeros of Dλ
n(x) = (x2 − 1)Cλn−2(x) and Dλ

n−1(x) = Cλn−1(x)
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lie in the open interval (−an, an). In addition, Dλ
n(x) and Dλ

n−1(x) are monic polynomials with no zeros greater

than xn−2,n−2 so Dλ
n(an) > 0 and Dλ

n−1(an) > 0. Since an > 0, it follows that
anD

λ
n(an)

Dλn−1(an)
> 0. By construction,

the zeros of Dλ
n+1 and Dλ

n interlace and the zeros of Dλ
n lie in the interval (−an, an) so it follows that y1,n+1 <

y1,n < y2,n+1 < y2,n < · · · < yn,n+1 < yn,n < yn+1,n+1 and −an < y1,n < yn,n < an. We need to show that the
largest zero yn+1,n+1 of Dλ

n+1 satisfies yn+1,n+1 < an.

From (14) with j = 1, we have Dλ
n+1(x) = xDλ

n(x)− `n+1D
λ
n−1(x) so that

Dλ
n+1(yn,n) = −`n+1D

λ
n−1(yn,n) < 0. (19)

On the other hand, since we are assuming that `n+1 ∈
(

0,
anD

λ
n(an)

Dλn−1(an)

)
, we have

Dλ
n+1(an) = anD

λ
n(an)− `n+1D

λ
n−1(an) > anD

λ
n(an)− anD

λ
n(an)

Dλ
n−1(an)

Dλ
n−1(an) = 0. (20)

Therefore, Dλ
n+1(yn,n) < 0 and Dλ

n+1(an) > 0 so that yn+1,n+1 < an as required.

Remark 3.1. The sequences of polynomials {Dλ
m(x)}∞m=0 defined in Theorem 3.1 with Dλ

n−1(x) = Cλn−1(x) and

Dλ
n(x) = (x2−1)Cλn−2(x) are (by construction) orthogonal for each n ≥ 5 and λ > − 1

2 satisfying λ 6= 0, λ 6= 2k−1
2 ,

k = 1, 2 . . .. It is therefore natural to compare orthogonal sequences {Dλ
m(x)}∞m=0 generated by the Wendroff

process with the sequences {Cλm(x)}∞m=0 of ultraspherical polynomials orthogonal on (−1, 1). In this case, we
can choose an = 1 so the interval (−1, 1) contains the zeros of all the polynomials in the sequence {Dλ

m(x)}∞m=0

as well as the sequence {Cλm(x)}∞m=0.

Remark 3.2. For −3/2 < λ < −1/2, λ 6= −1, and n ≥ 5 fixed, the largest (real) zero xn−2,n−2 of Cλn−2(x) is

bounded above by
(

n−3
2λ+n−2

)1/2
, see [7, (4)]. An alternative upper bound for xn−2,n−2 is given by

1− 2λ+1
(n−2)(n+2λ−2) , see [7, (15)]. These bounds give estimates for the interval of orthogonality (−an, an) of the

sequences {Dλ
m(x)}∞m=0, where Dλ

n−1(x) = Cλn−1(x) and Dλ
n(x) = (x2 − 1)Cλn−2(x).

Remark 3.3. For −3/2 < λ < −1/2, λ 6= −1, and n ≥ 5 fixed, we can choose ε > 0 in Theorem 3.1 in such
a way that the interval (−an, an) contains all the zeros of the polynomials {Cλm(x)}∞m=3. To this end, we use

the estimates xm,m <
(
m−1
2λ+m

)1/2
and xm,m < 1 − 2λ+1

m(m+2λ) , m ≥ 3, see [7], where xm,m is the largest zero of

Cλm. Because max{
(
m−1
2λ+m

)1/2
: m ≥ 3, λ > −3/2} =

(
2

2λ+3

)1/2
and max{1 − 2λ+1

m(m+2λ) : m ≥ 3, λ > −3/2} =

4(2+λ)
3(3+2λ) , we may choose an := a independent of n ∈ N, namely

a = A1(λ) :=

(
2

2λ+ 3

)1/2

(21)

or

a = A2(λ) :=
4(2 + λ)

3(3 + 2λ)
. (22)

To choose the sharper of the two bounds A1(λ) and A2(λ), we use the following comparisons: A1(−5/4) =
A2(−5/4), A1(λ) < A2(λ) if λ ∈ (−3/2,−5/4) and A1(λ) > A2(λ) if λ ∈ (−5/4,−1/2). Note that A1(−1/2) =
A2(−1/2) and lim

λ→(−3/2)+
Ak(λ) = +∞ for k = 1, 2.

Remark 3.4. When developing an algorithm for generating orthogonal sequences, we can choose `n+j =
aDλn+j−1(a)

σDλn+j−2(a)
, j = 1, 2, . . ., where σ > 1. Using this expression for `n+j and putting x = a into (14), we obtain

`n+j+1 = (σ−1)
σ2 a2 for all j = 1, 2, . . .. The advantage of choosing `n+j =

aDλn+j−1(a)

σDλn+j−2(a)
, j = 1, 2, . . ., with σ > 1, is

that all coefficients `n+j+1, j = 1, 2, . . . are equal, namely, `n+j+1 = (σ−1)
σ2 a2 for j = 1, 2, . . .. This results in a

significant reduction in the computational complexity of the algorithm.
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4 Algorithm for construction of {Dλ
m(x)}n+k

m=0, n fixed, n ≥ 5, k ∈ N

Using Theorem 3.1 and Remarks 1,3,4, we present an algorithm for construction of the first n+ k + 1 terms of
orthogonal sequences {Dλ

m(x)}∞m=0.

1. Choose integers n ≥ 5 and k ≥ 1.

2. Choose λ ∈ (− 3
2 ,+∞) with λ 6= −1, 0, (2k − 1)/2, k = 0, 1, 2, . . . .

3. If −3/2 < λ < −5/4, define a = A1(λ) =
(

2
2λ+3

)1/2
. If −5/4 ≤ λ < −1/2, define a = A2(λ) = 4(2+λ)

3(3+2λ) . If

λ > − 1
2 , define a = 1.

4. Choose σ > 1.

5. Let Dλ
n(x) = (x2 − 1)Cλn−2(x), Dλ

n−1(x) = Cλn−1(x).

6. For j = 0, 1, let β2,n−j be the coefficient of xn−j−2 in Dλ
n−j(x).

7. For j = 2, 3, . . . , n,
let `n−j+2 = β2,n−j+1 − β2,n−j+2;
let Dλ

n−j(x) = − 1
`n−j+2

[
Dλ
n−j+2(x)− xDλ

n−j+1(x)
]
;

let β2,n−j be the coefficient of xn−j−2 in Dλ
n−j(x).

8. Let `n+1 =
aDλn(a)

σDλn−1(a)
and Dλ

n+1(x) = xDλ
n(x)− `n+1D

λ
n−1(x).

9. For j = 2, . . . , k, let Dλ
n+j(x) = xDλ

n+j−1(x)− (σ−1)
σ2 a2Dλ

n+j−2(x).

The above algorithm generates the first n+ k + 1 terms of a sequence of symmetric polynomials {Dλ
m(x)}∞m=0

orthogonal with respect to some positive measure supported on the interval (−a, a), which contains all the zeros
of the symmetric polynomials {Cλm(x)}∞m=0. If λ ∈ (−3/2,−1/2) and λ 6= −1, the sequence {Cλm(x)}∞m=0 is
quasi-orthogonal of order 2 on (−1, 1) with respect to the weight function (1−x2)λ+1/2; if λ ∈ (−1/2,+∞) and
λ 6= 0, λ 6= 2k−1

2 for k = 1, 2, . . ., the sequence {Cλm(x)}∞m=0 is orthogonal with respect to the weight function

(1− x2)λ−1/2 on the interval (−1, 1).

Example 4.1. In this example we present the first 11 terms of the sequence {Dλ
m}∞m=0 using our algorithm

with n = 5, k = 5, σ = 2, and a = 4(2+λ)
3(3+2λ) , where λ ∈ (− 3

2 ,+∞), λ 6= −1, 0 and λ 6= (2k − 1)/2, k = 0, 1, 2, . . .:

Dλ0 (x) = 1,

Dλ1 (x) = x,

Dλ2 (x) = x2 −
2λ2 + 7λ+ 9

2(2λ3 + 7λ2 + 9λ+ 6)
,

Dλ3 (x) = x3 −
3(2λ+ 5)

2(2λ2 + 7λ+ 9)
x,

Dλ4 (x) = x4 −
3

λ+ 3
x2 +

3

4(λ2 + 5λ+ 6)
,

Dλ5 (x) = x5 −
(2λ+ 7)

2λ+ 4
x3 +

3

2λ+ 4
x,

Dλ6 (x) = x6

+
−26624λ8 − 315136λ7 − 1452096λ6 − 3030464λ5 − 1350544λ4 + 6634848λ3 + 14325052λ2 + 11993936λ+ 3814971)

18(λ+ 2)(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x4

−
(−8192λ7 − 55552λ6 − 93408λ5 + 238480λ4 + 1249616λ3 + 2167224λ2 + 1773274λ+ 577325)

6(λ+ 2)(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x2

+
4(2λ+ 1)2(80λ3 + 426λ2 + 753λ+ 442)

3(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
,

Dλ7 (x) = x7
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+
(−10240λ8 − 121088λ7 − 561408λ6 − 1198624λ5 − 656672λ4 + 2255736λ3 + 5154212λ2 + 4387984λ+ 1408809)

6(λ+ 2)(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x5

+
4096λ8 + 78848λ7 + 458688λ6 + 1074016λ5 + 295376λ4 − 3734688λ3 − 8130836λ2 − 7213054λ− 2452023

18(λ+ 2)(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x3

−
2(512λ6 + 3328λ5 + 7048λ4 + 828λ3 − 19042λ2 − 28747λ− 13742)

3(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x,

Dλ8 (x) = x8

+
−34816λ8 − 411392λ7 − 1916352λ6 − 4161280λ5 − 2589488λ4 + 6899568λ3 + 16600220λ2 + 14333968λ+ 4637883

18(λ+ 2)(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x6

+
[253952λ10 + 4967424λ9 + 36636672λ8 + 134987136λ7 + 240904128λ6 + 28003872λ5 − 813980016λ4

162(λ+ 2)(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)

−
1823644104λ3 + 1962244068λ2 + 1102018370λ+ 259653399

162(λ+ 2)(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)

]
x4

−
8(6656λ8 + 61760λ7 + 214784λ6 + 252224λ5 − 437944λ4 − 1922704λ3 − 2812378λ2 − 1984129λ− 566938)

27(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x2

−
16(λ+ 2)3(2λ+ 1)2(80λ2 + 266λ+ 221)

27(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
,

Dλ9 (x) = x9

+
−38912λ8 − 459520λ7 − 2148480λ6 − 4726688λ5 − 3208960λ4 + 7031928λ3 + 17737804λ2 + 15503984λ+ 5049339

18(λ+ 2)(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x7

+
[376832λ10 + 6912000λ9 + 49677312λ8 + 182130432λ7 + 333265728λ6 + 89989248λ5 − 952585632λ4

162(λ+ 2)(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)

−
2231977416λ3 + 2437175184λ2 + 1380264434λ+ 327276231

162(λ+ 2)(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)

]
x5

−
2(4096λ9 + 166912λ8 + 1357504λ7 + 4568800λ6 + 5470096λ5 − 8399264λ4 − 38672660λ3 − 57223262λ2 − 40687679λ− 11707302)

81(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x3

+
8(λ+ 2)3(512λ5 + 1664λ4 − 328λ3 − 8108λ2 − 13238λ− 7313)

27(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x,

Dλ10(x) = x10

+
(−14336λ8 − 169216λ7 − 793536λ6 − 1764032λ5 − 1276144λ4 + 2388096λ3 + 6291796λ2 + 5558000λ+ 1820265)

6(λ+ 2)(2λ+ 3)2(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x8

+
[57344λ10 + 1012736λ9 + 7164672λ8 + 26224384λ7 + 48985088λ6 + 18933696λ5 − 120883088λ4

18(λ+ 2)(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)

−
296145544λ3 + 327852636λ2 + 187090450λ+ 44609151

18(λ+ 2)(2λ+ 3)4(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)

]
x6

−
[4(λ+ 2)(200704λ10 + 5561856λ9 + 45776256λ8 + 174881280λ7 + 305832480λ6 − 27524064λ5)

729(2λ+ 3)6(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)

−
1252067256λ4 + 2680180104λ3 + 2833083030λ2 + 1572495406λ+ 366899565

729(2λ+ 3)6(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)

]
x4

+
8(λ+ 2)3(45056λ7 + 308992λ6 + 680928λ5 − 126736λ4 − 3262160λ3 − 6273816λ2 − 5263402λ− 1726229)

243(2λ+ 3)6(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
x2

+
64(λ+ 2)5(2λ+ 1)2(80λ2 + 266λ+ 221)

243(2λ+ 3)6(512λ5 + 2944λ4 + 5208λ3 + 4λ2 − 8638λ− 6429)
.

5 The zeros of Dλ
m(x) and Cλ

m(x)

In this section, we plot and compare the zeros of Dλ
m(x) constructed using the algorithm in Section 4 with the

zeros of Cλm(x), where m = 3, 4, . . . , n+ k and n ≥ 5, k ≥ 1 are fixed integers.

Example 5.1. Let n = 5 and σ = 2. Choose k = 5, λ = −5/4 and a = 4(2+λ)
3(3+2λ) = 2. The polynomials

Dλ
m, 0 ≤ m ≤ 10, are listed below with the approximate values of their zeros in curly brackets {} :

Dλ
0 (x) = 1, {}

Dλ
1 (x) = x, {0},
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Dλ
2 (x) = x2 − 18

19
, {−0.973329, 0.973329},

Dλ
3 (x) = x3 − 10

9
x, {−1.05409, 0, 1.05409},

Dλ
4 (x) = x4 − 12

7
x2 +

4

7
, {−1.12303,−0.673114, 0.673114, 1.12303},

Dλ
5 (x) = x5 − 3x3 + 2x, {−1.41421,−1, 0, 1, 1.41421},

Dλ
6 (x) = x6 − 72

17
x4 +

70

17
x2 − 12

17
, {−1.7026,−1.05773,−0.466529, 0.466529, 1.05773, 1.7026},

Dλ
7 (x) = x7 − 89

17
x5 +

121

17
x3 − 46

17
x, {−1.83123,−1.10502,−0.812906, 0, 0.812906, 1.10502, 1.83123},

Dλ
8 (x) = x8 − 106

17
x6 +

193

17
x4 − 116

17
x2 +

12

17
, {−1.89282,−1.23417,−1,−0.359651, 0.359651, 1, 1.23417, 1.89282},

Dλ
9 (x) = x9 − 123

17
x7 +

282

17
x5 − 237

17
x3 +

58

17
x,

{−1.92625,−1.41421,−1.05407,−0.643268, 0, 0.643268, 1.05407, 1.41421, 1.92625},

Dλ
10(x) = x10 − 140

17
x8 +

388

17
x6 − 430

17
x4 +

174

17
x2 − 12

17
,

{−1.94625,−1.55305,−1.09439,−0.867151,−0.292897, 0.292897, 0.867151, 1.09439, 1.55305, 1.94625}.

Note that the zeros of D
−5/4
5 (x) are −

√
2;−1, 0, 1,

√
2. The largest and smallest zeros of D

−5/4
10 (x) are close to

the limits −2 and 2.

In Figures 1 through 4, the y-coordinates of the plotted points are the zeros of D
−5/4
m (x) (diamond, brown) and

C
−5/4
m (x) (round, blue) for m = 3, 4, 5, 10. The figures suggest that the greatest difference between the zeros of

D
−5/4
m (x) and C

−5/4
m (x) are at the extreme zeros.
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Figure 1: n = 5, λ = −5/4,m = 3. The polynomi-

als C
−5/4
3 and D

−5/4
3 have a common zero at the

origin.
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Figure 2: n = 5, λ = −5/4,m = 4. Since

D
−5/4
4 (x) = C

−5/4
4 (x), their zeros are equal.
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Figure 3: n = 5, λ = −5/4,m = 5. By con-

struction, the zeros of D
−5/4
5 (x) are the zeros of

C
−5/4
3 (x) together with the points −1 and 1.
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Figure 4: n = 5, λ = −5/4,m = 10.

Example 5.1 provides numerical confirmation that the relative ordering of the zeros of D
−5/4
n+1 , D

−5/4
n , and D

−5/4
n−1 ,

is consistent with [1, Theorem 4]. Replacing n by n − 1 and putting bn = 0 in (7) and (8) in [1, Theorem 4],

the negative zeros of D
−5/4
m , m ∈ {n− 1, n, n+ 1}, should satisfy

y1,n+1 < y1,n < y1,n−1 < y2,n+1 < y2,n < y2,n−1 . . .

while the positive zeros of D
−5/4
m , m ∈ {n− 1, n, n+ 1}, should satisfy

yn+1,n+1 > yn,n > yn−1,n−1 > yn,n+1 > yn−1,n . . .

From Example 5.1, we see that the zeros of D
−5/4
4 , D

−5/4
5 , and D

−5/4
6 satisfy

y1,6 < y1,5 < y1,4 < y2,6 < y2,5 < y2,4 < y3,6 < y3,5 = 0

and
y6,6 > y5,5 > y4,4 > y5,6 > y4,5 > y3,4 > y4,6 > y3,5 = 0.

as expected.

In the examples and figures that follow, we plot the zeros of Dλ
m(x) and Cλm(x) for selected values of n (the “start-

ing value” ), m and λ.

Example 5.2. Let n = 5, k = 5, and σ = 2, as in the previous example. In Figures 5 and 6, the y-coordinates
of the plotted points are the zeros of Dλ

10 (diamond, brown) and Cλ10 (round, blue) respectively for λ = −3/4,

a = 4(2+λ)
3(3+2λ) = 10

9 and λ = −1/4, a = 4(2+λ)
3(3+2λ) = 14

15 .
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Figure 5: n = 5,m = 10, λ = −3/4.

◆
◆

◆

◆

◆
◆

◆

◆
◆

◆

●
●

●

●

●

●

●

●

●
●

2 4 6 8 10

-1.0

-0.5

0.5

1.0

Figure 6: n = 5,m = 10, λ = −1/4.
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Example 5.3. Let n = 10, k = 58, σ = 2. Choose λ = −5/4 and a = 4(2+λ)
3(3+2λ) = 2. In Figures 7 through 14 the

y-coordinates of the plotted points are the zeros of Dλ
m (diamond, brown) and Cλm (round, blue) for selected

integer values of m between 3 and 68. The figures suggest that, as m increases, the curves that fit the zeros of

D
−5/4
m and C

−5/4
m are significantly different.
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Figure 7: n = 10, λ = −5/4,m = 3.
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Figure 8: n = 10, λ = −5/4,m = 8.
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Figure 9: n = 10, λ = −5/4,m = 9.
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Figure 10: n = 10, λ = −5/4,m = 10.
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Figure 11: n = 10, λ = −5/4,m = 12.
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Figure 12: n = 10, λ = −5/4,m = 16.
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Figure 13: n = 10, λ = −5/4,m = 32.
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Figure 14: n = 10, λ = −5/4,m = 68.

Example 5.4. Let n = 10, k = 58, σ = 2. Choose λ = −3/4 and a = 4(2+λ)
3(3+2λ) = 10

9 . In Figures 15 through 20

the y-coordinates of the plotted points are the zeros of Dλ
m and Cλm for selected integer values of m between 8

and 68.

◆
◆

◆

◆

◆

◆

◆
◆

●
●

●

●

●

●

●
●

2 4 6 8

-1.0

-0.5

0.5

1.0

Figure 15: n = 10, λ = −3/4,m = 8.
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Figure 16: n = 10, λ = −3/4,m = 9. Since

C
−3/4
9 (x) = D

−3/4
9 (x), their zeros are equal.
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Figure 17: n = 10, λ = −3/4,m = 10.
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Figure 18: n = 10, λ = −3/4,m = 11.
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Figure 19: n = 10, λ = −3/4,m = 35.
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Figure 20: n = 10, λ = −3/4,m = 68.

Example 5.5. Let n = 10, k = 58, σ = 2. Choose λ = −1/4 and a = 4(2+λ)
3(3+2λ) = 14

15 . In Figures 21 through 26

the y-coordinates of the plotted points are the zeros of Dλ
m and Cλm for several integer values of m between 8

and 68.
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Figure 21: n = 10, λ = −1/4,m = 8.
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Figure 22: n = 10, λ = −1/4,m = 9.
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Figure 23: n = 10, λ = −1/4,m = 10.
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Figure 24: n = 10, λ = −1/4,m = 11.
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Figure 25: n = 10, λ = −1/4,m = 34.
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Figure 26: n = 10, λ = −1/4,m = 67.

Remark 5.2. As m increases, the zeros of Dλ
m(x) and Cλm(x) appear to be asymptotically equal for λ = −1/4.

This is not unexpected since λ = −1/4 lies in the orthogonal range λ > −1/2 for ultraspherical polynomials.
Note that the interval of orthogonality is (−a, a), where a < 1.

Example 5.6. Let n = 5, k = 18, σ = 2. In Figures 27 through 34, the y-coordinates of the plotted points are
the zeros of Dλ

m and Cλm for a selection of values of λ ∈ (− 3
2 ,+∞) with λ 6= −1, 0, (2k − 1)/2, k = 0, 1, 2, . . .

where m = 23 is fixed. We choose a = 4(2+λ)
3(3+2λ) if λ < −1/2 and a = 1 if λ > −1/2; the zeros of Dλ

m and Cλm are

contained in (−a, a).
For −3/2 < λ < −1, the curves to which the zeros of Dλ

m(x) and Cλm(x) can be fitted are substantially different
for some values of m. As λ approaches −1/2 from the left, the two curves are very similar, and, as λ > increases
further, the curves are almost identical.

◆ ◆ ◆
◆

◆
◆

◆
◆ ◆

◆
◆

◆
◆

◆
◆ ◆

◆
◆

◆
◆

◆ ◆ ◆

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

-3

-2

-1

1

2

3

Figure 27: n = 5,m = 23, λ = −11/8, a = 10/3.
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Figure 28: n = 5,m = 23, λ = −9/8, a = 14/9.
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Figure 29: n = 5,m = 23, λ = −7/8, a = 6/5.
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Figure 30: n = 5,m = 23, λ = −5/8, a = 22/21.

◆ ◆ ◆ ◆
◆

◆
◆

◆
◆

◆

◆
◆

◆

◆

◆
◆

◆
◆

◆
◆ ◆ ◆ ◆

● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ●

5 10 15 20

-1.0

-0.5

0.5

1.0

Figure 31: n = 5,m = 23, λ = −3/8, a = 1.
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Figure 32: n = 5,m = 23, λ = 1/8, a = 1.
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Figure 33: n = 5,m = 23, λ = 3/8, a = 1.
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Figure 34: n = 5,m = 23, λ = 5/8, a = 1.
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