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Abstract

We extend the geometrical inverse approximation approach for solving linear least-squares prob-
lems. For that we focus on the minimization of 1− cos(X(ATA), I), where A is a given rectangular
coefficient matrix and X is the approximate inverse. In particular, we adapt the recently pub-
lished simplified gradient-type iterative scheme MinCos to the least-squares scenario. In addition,
we combine the generated convergent sequence of matrices with well-known acceleration strategies
based on recently developed matrix extrapolation methods, and also with some deterministic and
heuristic acceleration schemes which are based on affecting, in a convenient way, the steplength at
each iteration. A set of numerical experiments, including large-scale problems, are presented to
illustrate the performance of the different accelerations strategies.

Key words: Inverse approximation, cones of matrices, matrix acceleration techniques, gradient-
type methods.

1 Introduction

The development of inverse matrix approximation strategies for solving linear least-squares problems
is an active research area since they play a key role in a wide variety of science and engineering
applications involving ill-conditioned large matrices (sparse or dense); see e.g., [8, 9, 10, 13, 14, 15, 19,
24, 30, 32, 34, 35].

In this work, for a given real rectangular m × n (m ≥ n) matrix A, we will obtain inverse ap-
proximations based on minimizing the positive-scaling-invariant function F̂ (X) = 1− cos(X(ATA), I)
on a suitable closed and bounded subset of the cone of symmetric and positive semidefinite matrices
(PSD). Therefore, our inverse approximations will remain in the PSD cone, in sharp contrast with
the standard approach of minimizing the Frobenius norm of the residual (I −X(ATA)), for which a
symmetric and positive definite approximation cannot be guaranteed; see e.g., [16, 22].

For the minimization of F̂ (X) we will extend and adapt the simplified gradient-type scheme Min-
Cos, introduced in [12], to the linear least-squares scenario. Moreover, we will adapt and apply some
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well-known modern matrix acceleration strategies to the generated convergent sequences. In partic-
ular, we will focus our attention on the use of the simplified topological ε-algorithms [4, 5], and also
on the extension of randomly-chosen steplength acceleration strategies [31], as well as the extension
of some recent nonmonotone gradient-type choices of steplenghts [20, 36].

The rest of the document is organized as follows. In Section 2, we recall the MinCos method for
matrices in the PSD cone, and briefly describe its most important properties. In Section 3, we develop
the extended and adapted version of the MinCos method for solving linear least-squares problems.
In Section 4, we describe the different adapted acceleration strategies to hopefully observe a faster
convergence of the generated sequences. In Section 5, we present experimental numerical results to
illustrate the performance of the adapted algorithm for least-squares problems, and also to illustrate
the advantages of using acceleration techniques over a set of problems, including large-scale matrices.

2 The MinCos method

Let us recall the MinCos method for the minimization of F (X) = 1− cos(XA, I), when A is an n×n
real symmetric and positive definite matrix.

Algorithm 1 : MinCos (simplified gradient approach on F (X) = 1− cos(XA, I))

1: Given X(0) ∈ PSD (commuting with A)
2: for k = 0, 1, · · · until a stopping criterion is satisfied, do
3: Set wk = 〈X(k)A, I〉
4: Set D̂k = − 1

n
(wk
n X(k)A− I

)

5: Set αk =

∣∣∣∣
n 〈D̂kA, I〉 − wk〈X(k)A, D̂kA〉

〈D̂kA, I〉〈X(k)A, D̂kA〉 − wk‖D̂kA‖2F

∣∣∣∣
6: SetZ(k+1) = X(k) + αkD̂k

7: Set X(k+1) = s
√
n Z(k+1)

‖Z(k+1)A‖F
, where s = 1 if trace(Z(k+1)A) > 0, s = −1 else

8: end for

This method has been successfully introduced in [12], and can be seen as an improved version of the
Cauchy Method applied to the minimization of the merit function

F (X) = 1− cos(XA, I) = 1− 〈XA, I〉
‖XA‖F ‖I‖F

,

where I is the identity matrix, 〈A,B〉 = trace(ATB) is the Frobenius inner product in the space of
matrices and ‖ . ‖F is the associated Frobenius norm. In here PSD refers to the positive semi-definite
closed cone of square matrices which possesses a rich geometrical structure; see, e.g., [1, 11].

In Remark 2.1 we summarize the most important properties of Algorithm 2 (see [12]).

Remark 2.1 1. The minimum of F (X) is reached at X such that AX = αI. But if we impose
‖AX‖F = ‖I‖F =

√
n, we have α = ±1. If in addition we impose trace(XA) ≥ 0, we have

XA = I.
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2. By construction ‖X(k)A‖F =
√
n, for all k ≥ 1. If we choose X(0) such that trace(X(0)A) =

〈X(0)A, I〉 > 0 then by construction all the iterates remain in the PSD cone. Moreover, if in
addition X(0)A = AX(0), then X(k)A = AX(k) and Z(k)A = AZ(k), for all k ≥ 0.

3. Unless we are at the solution, the search direction D̂k is a descent direction for the function F
at X. The steplength αk > 0 is the optimal choice, i.e., the positive steplength that (exactly)
minimizes the function F (X) along the direction D̂k. Furthermore, Z(k), X(k), and X(k)A in
the MinCos Algorithm are symmetric matrices for all k, which are also uniformly bounded away
from zero, and so the algorithm is well-defined.

For completeness, we state the convergence result concerning the MinCos method (for the proof see
[12]).

Theorem 2.1 The sequence {X(k)} generated by the MinCos Algorithm converges to A−1.

3 The MinCos method for least-squares problems

Let us now consider linear systems involving the real rectangular m× n (m ≥ n) matrix A, for which
solutions do not exist. An interesting and always robust available option is to use the least-squares
approach, i.e., to solve instead the normal equations, which involve solving a linear system with the
square matrix ATA that belongs to the PSD cone. Let us assume that A is full column rank, i.e.,
that ATA is symmetric and positive definite. In that case, it is always an available (default) option,
although not recommendable, to apply Algorithm 1 directly on the matrix ATA. Nevertheless, to
avoid multiplications with the matrix AT (which is usually not available for practical applications),
and also to avoid unnecessary and numerically risky calculations, we will adapt each one of the steps
of the MinCos algorithm. For that we first need to recall that, using properties of the trace operator,
for any matrices W1, W2, and W3 with the proper sizes, it follows that

〈W1,W2W3〉F = 〈W T
2 W1,W3〉F = 〈W1W

T
3 ,W2〉F . (1)

For any given matrix Y for which Y T is available, using (1), we obtain that

〈Y ATA, I〉 = 〈(AY T )TA, I〉 = 〈A,AY T 〉 = 〈AY T , A〉. (2)

Hence, using (2) and the fact that D̂k is symmetric, it follows that 〈D̂kA
TA, I〉 = 〈AD̂k, A〉, and since

X(k) is symmetric, 〈X(k)ATA, I〉 = 〈AX(k), A〉. Moreover,

〈X(k)ATA, D̂kA
TA〉 = 〈(AX(k))TA, (AD̂k)

TA〉.

Similarly, we obtain that ‖Y ATA‖2F = ‖(AY T )TA‖2F . Summing up we obtain the following extended

version of the MinCos algorithm for minimizing F̂ (X) = 1 − cos(X(ATA), I), where A is a given
rectangular matrix.
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Algorithm 2 : MinCos for minimizing F̂ (X) = 1− cos(X(ATA), I)

1: Given X(0) ∈ PSD (commuting with ATA)
2: for k = 0, 1, · · · until a stopping criterion is satisfied, do
3: Set Ck = AX(k) and wk = 〈Ck, A〉
4: Set D̂k = − 1

n
(wk
n CT

k A− I
)
, Bk = AD̂k, and µk = 〈BT

k A,C
T
k A〉

5: Set βk = 〈Bk, A〉 and αk =

∣∣∣∣
n βk − wkµk

βkµk − wk‖BT
k A‖2F

∣∣∣∣
6: Set Ztemp = X(k) + αkD̂k and Z(k+1) = (Ztemp + ZT

temp)/2

7: Set X(k+1) = s

√
n Z(k+1)

‖(AZ(k+1))TA‖F
, where s = 1 if trace((AZ(k+1))TA) > 0,

s = −1 else
8: end for

We note that for taking advantage of the adapted formulas obtained above, which are based mainly
on (2), it is important to maintain the symmetry of all the iterates in Algorithm 2. For that, let us
observe that at Step 6, Z(k+1) is actually obtained as the closest symmetric matrix to the original one
given by Z(k+1) = X(k) + αkD̂k. This additional calculation represents an irrelevant computational
cost as compared to the rest of the steps in the algorithm, but at the same time it represents a
safety procedure to avoid the numerical loss of symmetry that might occur when A is large-scale and
ill-conditioned. We also note that for any matrix A, ATA is in the PSD cone, and so all the results
presented in Section 2 apply for algorithm 2, in particular since A is full column rank then by Theorem
2.1 the sequence {X(k)} converges to (ATA)−1.

4 Acceleration strategies

The sequence of matrices {X(k)} ⊂ IRn×n generated either by Algorithm 1 or by Algorithm 2 can be
viewed as simplified and improved versions of the CauchyCos algorithm developed in [12], which is a
specialized version of the Cauchy (steepest descent) method for minimizing F (X). Nevertheless, both
algorithm are gradient-type methods, and as a consequence they can be accelerated using some well-
known acceleration strategies which extend effective scalar and vector modern sequence acceleration
techniques; see, e.g., [2, 3]. We note that that the sequence {X(k)}, generated by Algorithm 1 or by
Algorithm 2, converges to the limit point A−1 or (ATA)−1, respectively.

For our first acceleration strategy, we will focus on the matrix version of the so-called simplified
topological ε-algorithms, which belongs to the general family of acceleration schemes that transform
the original sequence to produce a new one that hopefully will converge faster to the same limit point;
see e.g., [4, 7, 23, 25, 26, 27, 28]. For a full historical review on this topic as well as some other
related issues we recommend [6]. To use the simplified topological ε-algorithms, we take advantage
of the recently published Matlab package EPSfun1 [5], that effectively implements the most advanced
options of that family, including the matrix sequence versions. In particular, we focus on the matrix
versions of the specific simplified topological ε-algorithms 1 (STEA1) and the simplified topological
ε-algorithms 2 (STEA2) using the restarted option (RM), which have been implemented in the EPSfun

1The Matlab package EPSfun is freely available at http://www.netlib.org/numeralgo/
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package, including four possible variants. The details of all the options that can be used in the EPSfun
package are fully described in [5].

For our second acceleration strategy, we will adapt a procedure proposed and analyzed in [31] for
the minimization of convex quadratics, and that can be viewed as a member of the family for which
the acceleration is generated by the method itself, i.e., at once and dynamically only one accelerated
sequence is generated; see, e.g., [10]. This approach can take advantage of the intrinsic characteristics
of the method that generates the original sequence, which in some cases has proved to produce more
effective accelerations than the standard approach that transforms the original one to produce an
independent accelerated one [18]. For our specific algorithms, the second strategy is obtained by
relaxing the optimal descent parameter αk as

αk ← θkαk,

where θk is at each step randomly chosen in (a, b), preferably (a, b) = (1 − η, 1 + η) for 0 < η < 1,
following a uniform distribution. In order to study the interval in which F (X(k+1)) attains a value
less than or equal to F (X(k)) (see [31]), let us define

φk(t) = F (X(k) + tαkD̂k)− F (X(k))

where D̂k is the descent direction and αk the optimal parameter given in Algorithm 1. Notice that all
the results that follow for F and Algorithm 1 also applies automatically to F̂ and Algorithm 2.

Proposition 4.1 For all k, it holds that φk(0) = 0, φ′
k(0) < 0, and φk(1) < 0.

Proof. φk(0) = 0 by construction and φ′
k(0) < 0 since D̂k is a descent direction. Now φk(1) < 0

because αk minimizes F (X(k) + αD̂k).
Our next result is concerned with the right extreme value of the interval.

Proposition 4.2 If there exists t∗k > 1 such that φk(t
∗
k) = 0, then we have

t∗k =
2
(
〈X(k)A, D̂kA〉〈X(k)A, I〉2 − n〈D̂kA, I〉

)

αk

(
‖D̂kA‖2F 〈X(k)A, I〉2 − n〈D̂kA, I〉2

)

Proof. Forcing φk(t) = 0 implies that

‖X(k)A‖2F
(
〈X(k)A, I〉+ tαk〈D̂kA, I〉

)2

= 〈X(k)A, I〉2
(
‖X(k)A‖2F + 2αkt〈X(k)A, D̂kA〉+ α2

kt
2‖D̂kA‖2F

)
,

and we obtain

t2α2
k

(
‖X(k)A‖2F 〈D̂kA, I〉2 − 〈X(k)A, I〉2‖D̂kA‖2F

)
+

+ 2tαk

(
〈D̂kA, I〉‖X(k)A‖2F − 〈X(k)A, D̂kA〉〈X(k)A, I〉2

)
= 0.

Now, dividing by αkt 6= 0 and using ‖X(k)A‖F =
√
n, it follows that

tαk

(
n〈D̂kA, I〉2 − 〈X(k)A, I〉2‖D̂kA‖2F

)
= 2

(
〈D̂kA, I〉n − 〈X(k)A, D̂kA〉〈X(k)A, I〉2

)
,

and the result is established.
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Remark 4.1 At each iteration k we can compute t∗k when it exists and relax randomly αk with θk
uniformly randomly chosen in (0, t∗k). Notice that the computation of t∗k is obtained for free: all the
terms defining t∗k have been previously computed to obtain αk. Nevertheless, as we will discuss in our
next section, the uniformly random choice θk ≃ U([1/2, 3/2]) is an efficient practical option, which
clearly represents a heuristic proposal.

Since D̂k is a gradient-type descent direction, for our third acceleration strategy, we will adapt
the steplength associated with the recently developed ABBmin low-cost gradient method [20, 36],
which has proved to be very effective in the solution of general nonlinear unconstrained optimization
problems [20, 33]. It is worth mentioning that the ABBmin method is a nonmonotone scheme for
which convergence to local minimizers has been established [33]. As in the case of the randomly
relaxed acceleration, this approach can also be viewed as a member of the family for which the
acceleration is generated by the method itself. For our specific algorithms, the third strategy is
obtained by substituting the optimal steplength αk by

α̂k =





min{αBB2
j : j = max{1, k −M}, . . . , k}, if αBB2

k /αBB1
k < τ ;

αBB1
k , otherwise

(3)

where τ ∈ (0, 1) (in practice τ ≈ 0.8), M is a small nonnegative integer, and the involved parameters
are given by

αBB1
k =

‖S(k−1)‖2F
〈S(k−1), Y (k−1)〉 and αBB2

j =
〈S(j−1), Y (j−1)〉
‖Y (j−1)‖2F

for all 1 ≤ j ≤ k,

where S(j−1) = X(j) −X(j−1) and Y (j−1) = D̂j − D̂j−1, for all j.
A geometrical as well as an algebraic motivation for the choice α̂k in (3) can be found in [20, 33, 36].

In particular, they establish an interesting connection between αBB1
k , αBB1

k , and the ratio αBB2
k /αBB1

k ,
with the eigenvalues (and eigenvectors) of the underlying Hessian of the objective function. In general,
the relationship between the choice of steplength, in gradient-type methods, and the eigenvalues and
eigenvectors of the underlying Hessian of the objective function is well-known, and for nonmonotone
methods can be traced back to [21, pp. 117-118]; see also [17, 31].

5 Illustrative numerical examples

To give further insight into the behavior of the MinCos method for least-squares problems and the
three discussed acceleration strategies, we present the results of some numerical experiments. All
computations were performed in Matlab, using double precision, which has unit roundoff µ ≈ 1.1 ×
10−16. Our initial guess is chosen as X(0) = βI, where β > 0 is fixed to satisfy the scaling performed
at Step 7 in Algorithm Algorithm 1 and also in Algorithm 2, i.e., β =

√
n/‖A‖F for Algorithm 1 and

β =
√
n/‖A‖2F for Algorithm 2. In every experiment, we stop the process when the merit function

F (X(k)) (Algorithm 1) or F̂ (X(k)) (Algorithm 2) is less than or equal to ǫ, for some small ǫ > 0.
Concerning the package EPSfun, we use the STEA2 option which has proved to be more effective
than STEA1 for our experiments, with different choices of the key parameters NCYLCE and MCOL.
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We notice that when using the STEA2 strategy, the number of reported iterations is given by NCYLCE
times MCOL. Concerning the ABBmin method, we set τ = 0.8 and M = 10 in all cases. We consider
test matrices from the Matlab gallery (Poisson2D, Poisson3D, Wathen, Lehmer, and normal), and
also from the Matrix Market [29].

5.1 PSD matrices using Algorithm 1

For our first set of experiments we consider symmetric positive definite matrices that are not badly
conditioned as the ones obtained in a 2D or 3D discretization of Poisson equations with Dirichlet
boundary conditions. In Figures 1 and 2 we report the convergence behavior of the MinCos method
(Algorithm 1), the Random Mincos acceleration, and the STEA2 acceleration for different values of
NCYLCE and MCOL, when applied to the gallery matrices Poisson2D with n = 100 and Poisson3D
with n = 1000, respectively. We notice that in both cases the two acceleration schemes need sig-
nificantly less iterations than the MinCos method to achieve the requires accuracy. We also note,
in Figure 1, that STEA2 outperforms the Random Mincos acceleration. However, we can notice in
Figure 2 that when the size of the matrix increases, as well as the condition number, then the Random
Mincos acceleration outperforms the STEA2 scheme.

0 10 20 30 40 50 60 70 80

Iterations

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

100

Me
rit 

fun
cti

on

Mincos, Random Mincos, Mincos MR Restarted Method with STEA2 2

||f(Xori )||F Mincos Random Relaxed

||f(Xori )||F Mincos Method

||f(X||F Mincos MR Restarted

Figure 1: Convergence history of MinCos, Random Mincos and STEA2 for the 2D Poisson matrix for
n = 100, NCYLCE=8, and MCOL=8.

For the next experiments either the matrix is sparse and of large size or the matrix is dense. In these
cases, we will focus our attention on the Random Mincos and the ABBmin acceleration strategies,
which are well suited for large problems, since they only require the storage of the direction matrix Dk

and very low additional computational cost per iteration. These results are reported in Figure 3 (for
the Poisson 2D matrix with n = 900) and in Figure 4 (for for the Lehmer matrix with n = 20). We
note that the Lehmer matrices, from the Matlab Gallery, are dense. We can observe that the ABBmin
acceleration represents an aggressive option that sometimes outperforms the Random Mincos scheme
(for example in Figure 3), but it shows a highly nonmonotone behavior that can produce unstable
calculations. The highly nonmonotone performance of the ABBmin scheme can be noticed in Figure
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Figure 2: Convergence history of MinCos, Random Mincos and STEA2 for the 3D Poisson matrix for
n = 1000, NCYLCE=10, and MCOL=12.

4, in which the Random Mincos shows a better acceleration with a numerically trustable monotone
behavior.
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Figure 3: Convergence history of MinCos, Random Mincos and ABBmin for the 2D Poisson matrix
for n = 900 and ǫ = 10−14, and maxiter=400.

For our next experiments we use the Wathen matrix and the 2D Poisson matrix, both from the
Matlab gallery, with different large dimensions, and we compare the convergence history of the MinCos
method and the Random Mincos acceleration. In Figures 5 and 6 we can observe the significant ac-
celeration obtained by the Random Mincos for Wathen(30) of size n = 2821 (ǫ = 10−6, maxiter=900),
and Wathen(50) of size n = 7701 (ǫ = 10−8, maxiter=300), respectively. As a consequence we note
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Figure 4: Convergence history of MinCos, Random Mincos and ABBmin for the Lehmer matrix for
n = 20, ǫ = 10−6, and maxiter=450.

that the Random Mincos scheme exhibits in both cases a clear reduction in the required number of
iterations when compared with the MinCos method. Let us recall that since the inverse of these ma-
trices is dense, we are dealing with n2 unknowns for all the considered problems, hence in the specific
case of the wathen matrix (n = 7701) it is a very large number of variables. Similarly, in Figure
7 we can notice the clear acceleration and reduction in number of iterations of the Random Mincos
acceleration for large-scale problems, as compared to the MinCos method.
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Algo 2 Merit function=1-cos, MinCos, Randomly relax MinCos
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Figure 5: Convergence history of MinCos and the Random MinCos for the Whaten(30) matrix for
n = 2821 (3× 302 + 4× 30 + 1), ǫ = 10−6, and maxiter=1000.
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Figure 6: Convergence history of MinCos and the Random MinCos for the Whaten(50) matrix for
n = 7701 (3× 502 + 4× 50 + 1), ǫ = 10−8, and maxiter=300.
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Figure 7: Convergence history of MinCos and the Random MinCos for the 2D Poisson matrix for
n = 3969, ǫ = 10−7, and maxiter=300.

5.2 Rectangular matrices for Least-square problems using Algorithm 2

We will now consider rectangular matrices A from the Matlab gallery and also from the Matrixmarket
[29] (reported in Table 1), and apply Algorithm 2. We note that in all these experiments, the matrix
ATA is very ill-conditioned. In figures 8 and 9 we report the convergence behavior of the MinCos
method (Algorithm 2), the Random Mincos acceleration, and the STEA2 acceleration for different
values of NCYLCE and MCOL, when applied to the Matlab random normal matrices (seed=1) for
n = 100 (m = 80, MAXCOL=8, and NCYCLE=30) and n = 200 (m = 160, MAXCOL=10, and
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NCYCLE=25), respectively. We notice, in Figure 8 that the two acceleration schemes show a much
better performance as compared to the MinCos method, requiring significantly less iterations to achieve
the same accuracy. We can also notice in Figure 9 that when the size of the matrix increases, as well as
the condition number, then the Random Mincos acceleration clearly outperforms the STEA2 scheme.
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Figure 8: Convergence history of MinCos, Random Mincos and STEA2 for the random normal matrix
for n = 100, m = 80, NCYLCE=30, and MCOL=8.
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Figure 9: Convergence history of MinCos, Random Mincos and STEA2 for the random normal matrix
for n = 200, m = 160, NCYLCE=25, and MCOL=10.

Next we compare the performance of the MinCos method, the Random Mincos acceleration and
the ABBmin acceleration on the matrix well1850. In Figure 10 we notice that the ABBmin scheme
shows a similar nonmonotone acceleration as before, up to an accuracy of 10−2, and after that it
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becomes unstable and cannot reach the required precision. In sharp contrast, the Random Mincos
acceleration represents a trustable option that clearly outperforms the MinCos method.

Matrix Size (m,n) Cond(ATA)

illc1850 (1850,712) 1.4033e+07

Well1850 (1850,712) 1.2309e+05

Table 1: Rectangular Matrices form Matrix market
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Figure 10: Convergence history of MinCos, the RandomMinCos, and ABBmin for the matrix well1850,
with ǫ = 10−5 and maxiter=1000.

In Figure 11 we report the convergence history of the MinCos method and the random Mincos ac-
celeration for the harder illc1850 matrix. We note that the Random Mincos scheme shows a significant
acceleration, and so it needs less iterations than the MinCos method to achieve the same accuracy.
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Figure 11: Convergence history of MinCos and the Random MinCos for the matrix illc1850, with
ǫ = 10−3 and maxiter=4000.

6 Conclusions

We have extended the MinCos iterative method, originally developed in [12] for symmetric and posi-
tive definite matrices, to approximate the inverse of the matrices associated with linear least-squares
problems, and we have also described and adapted three different possible acceleration schemes to the
generated convergent matrix sequences.

Our experiments have shown that the geometrical MinCos scheme is also a robust option to
approximate the inverse of matrices of the form ATA, associated with least-squares problems, without
requiring the explicit knowledge of AT . They also show that both schemes (Algorithms 1 and 2) can
be significantly accelerated by the three discussed strategies. In particular, the STEA2 scheme, from
the simplified topological ε-algorithms family, and the Random MinCos scheme are clearly the most
effective and most stable options. Our conclusion is that for small to medium size problems which are
not ill-conditioned, the STEA2 scheme represents a good option with a strong mathematical support.
For large-scale and ill-conditioned problems, our conclusion is that the inexpensive and numerically
trustable Random MinCos acceleration is the method of choice.

An interesting application of inverse approximation techniques is the development of precondition-
ing strategies, for which in many real problems a sparse approximation is required. In that case, a
suitable dropping or filtering strategy can be adapted, as it was done and extensively discussed in [12].
Therefore, the MinCos method has been already combined with dropping strategies showing a con-
venient performance to obtain sparse inverse approximations. Finally, we note that in our results we
have compared the different schemes using F̂ (X) = 1− cos(X(ATA), I) as the merit function. Similar
results can also be obtained using as the merit function the norm of the residual, i.e., ‖(I−X(ATA))‖F ,
as it was already reported for the MinCos method for symmetric and positive definite matrices in [12].
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