
ar
X

iv
:1

90
7.

02
69

7v
2

 [
m

at
h.

N
A

]
 8

 J
ul

 2
01

9

Noname manuscript No.
(will be inserted by the editor)

A fast method for variable-order space-fractional

diffusion equations

Jinhong Jia · Xiangcheng Zheng · Hong
Wang

Received: date / Accepted: date

Abstract We develop a fast divided-and-conquer indirect collocation method
for the homogeneous Dirichlet boundary value problem of variable-order space-
fractional diffusion equations. Due to the impact of the space-dependent vari-
able order, the resulting stiffness matrix of the numerical approximation does
not have a Toeplitz-like structure. In this paper we derive a fast approximation
of the coefficient matrix by the means of a sum of Toeplitz matrices multiplied
by diagonal matrices. We show that the approximation is asymptotically con-
sistent with the original problem, which requires O(kN log2 N) memory and
O(kN log3 N) computational complexity with N and k being the numbers
of unknowns and the approximants, respectively. Numerical experiments are
presented to demonstrate the effectiveness and the efficiency of the proposed
method.

Keywords Variable-order space-fractional diffusion equation · Collocation
method · Divide-and-conquer algorithm · Toeplitz matrix

Mathematics Subject Classification (2010) 65F05 · 65M70 · 65R20

1 Introduction

Field tests showed that space-fractional diffusion equations (sFDEs) provide
more accurate descriptions of challenging phenomena of superdiffusive trans-
port and long range interaction, which occur in solute transport in heteroge-

Jinhong Jia
School of Mathematics and Staticstics, Shandong Normal University, Jinan, Shandong
250358, China
E-mail: jhjia@sdnu.edu.cn

Xiangcheng Zheng and Hong Wang
Dempartment of Mathematics, University of South Carolina, Columbia, South Carolina
29208, USA
E-mail: xz3@math.sc.edu and hwang@math.sc.edu

http://arxiv.org/abs/1907.02697v2

2 Jia, Zheng and Wang

neous porous media and other applications, than integer-order diffusion equa-
tions do [4,7,24,28]. In fact, integer-order diffusion equations were derived
if the underlying independent and identically distributed particle movements
have (i) a mean free path and (ii) a mean waiting time. In this case, the central
limit theorem concludes that the (normalized) partial sum of the independent
and identically distributed particle movements converges to Brownian motions.
The probability density distribution of finding a particle somewhere in space
is Gaussian, which satisfies the classical Fickian diffusion equation [23,24].

Note that assumptions (i) and (ii) hold for diffusive transport of solute in
homogeneous porous media, where solute plumes were observed to decay ex-
ponentially [2,3] and so can be described accurately by integer-order diffusion
equations. However, field tests showed that solute transport in heterogeneous
aquifers often exhibit highly skewed and power-law decaying behavior, while
sFDEs were derived under the assumption that the solutions have such behav-
ior [4,23,24]. This is why sFDEs can accurately describe the solute transport
in heterogeneous media more accurately than integer-order diffusion equations
do. Consequently, they have attracted extensive research activities in the last
few decades [12,17,18,22].

However, sFDEs present new mathematical and numerical issues that are
not common in the context of integer-order diffusion equations. Because of
their nonlocal nature, numerical discretizations of sFDEs usually yield dense
or full stiffness matrices [9,17,22,27]. A direct solver typically has O(N3) com-
putational complexity andO(N2) memory requirement. A conventional Krylov
subspace iterative method has O(N2) computational complexity per iteration,
but may diverge due to significant amount of round-off errors [31]. In any case,
the significantly increased computational complexity of numerical discretiza-
tions of sFDEs compared to their integer-order analogues is deemed compu-
tationally intractable for realistic simulations in multiple space dimensions,
especially when parameter learning or control of the systems is involved.

It was discovered that the stiffness matrices of the numerical discretizations
of constant-order sFDEs on a uniform partition typically possess a Toeplitz-like
structure [32], which reduces the memory requirement from O(N2) to O(N)
and computational complexity from O(N3) to O(N logN) per Krylov sub-
space iteration via the discrete fast Fourier transform. Furthermore, different
preconditioners were employed to futher improve the computational efficiency
and even convergence behavior [1,5,14,19,20,21,25,31,34].

However, Ervin et al. [11] proved that the one-dimensional constant-order
constant-coefficient linear sFDEs with smooth right-hand side generate solu-
tions with singularity at the end points of the spatial interval, which is in sharp
contrast to their integer-order analogues and makes the error estimates of their
numerical approximations derived under full regularity assumptions inappro-
priate. The singularity of the solutions to constant-order sFDEs seems to be
physically irrelevant to the diffusive process of the solute, and occurs due to
the incompatibility between the nonlocality of the power law decaying tails of
the sFDEs inside the domain and the locality of the imposed classical bound-
ary conditions. Intuitively, a physically relevant sFDE model should not only

Fast collocation method for FDEs 3

properly model the anomalous transport of solutes in heterogeneous porous
media, but also correct the non-physical behavior of solutions to the exist-
ing sFDEs and thus maintain the smoothing nature of the diffusive transport
process.

Recently, the wellposedness and smoothing properties of a variable-order
linear sFDE was analyzed in [35]: If the variable order has an integer limit
at the boundary then the solutions have the full regularity as their integer-
order analogues do; Otherwise, the solutions exhibit certain singularity at the
boundary as their constant-order sFDE analogues do. Thus, the variable-order
sFDE provides a feasible approach to resolve the non-physical singularity of
solutions to constant-order sFDEs near the boundary while retaining their
advantages. In fact, variable-order sFDEs have been used in many applications
[29,30], as the variable order is closely related to the fractal dimension of the
porous media via the Hurst index [10,23] and so can account for the changes
of the geometrical structure or properties of the media.

Some numerical studies of variable-order FDEs can be found in the lit-
erature in recent years. First-order convergence rates were proved for finite
difference methods for space-time-dependent variable-order space-fractional
advection-diffusion equations in one space dimension under (the artificially
assumed) full regularity assumptions of the true solutions without addressing
the singularity issue of the problem [36]. A spectral collocation method us-
ing weighted Jacobi polynomials was derived for variable-order sFDEs [33],
in which numerical experiments were presented to demonstrate the utility of
the proposed method. The stability and convergence of an implicit alternat-
ing direct method was proved in [6] under the assumptions of the smoothness
of the true solutions and (somewhat artificial) monotonicity of the diffusivity
coefficients. However, due to the impact of variable order of the FDEs, the
numerical discretizations of variable-order sFDEs no longer have Toeplitz-like
stiffness matrices, so the fast solvers developed for constant-order sFDEs do
not apply. Also, the spectral methods do not have diagonal stiffness matrices.

In this paper we develop a fast numerical solution technique for an indi-
rect collocation method to the homogeneous Dirichlet boundary-value problem
of a one-sided variable-order sFDE in one space dimension. We approximate
the stiffness matrix by a finite sum of Toeplitz-like matrices that is asymp-
totically convergent to the stiffness matrix. Then we develop a fast divided
and conquer (DAC) solver for the approximated system by employing the
Toeplitz-like structures of each summand to reduce the computational com-
plexity fromO(N2) to O(kN log3 N) and the memory requirement fromO(N2)
to O(kN log2 N).

The rest of the paper is organized as follows. In Section 2 we present the
model problem and its numerical discretization. In Section 3 we approximate
the coefficient matrix by a sum of Toeplitz-like matrices and analyze its asymp-
totic consistency. In Section 4 we develop a fast DAC method for the approx-
imated system. We perform numerical experiments to test the performance of
the method in the last section.

4 Jia, Zheng and Wang

2 A variable-order sFDE model and its indirect collocation method

2.1 Model problem

An sFDE of order 1 < α < 2 was proposed in [8] to model the anomalously
superdiffusive transport of solute in heterogeneous porous media

−u′′(x)− dC
0 D

α
xu(x) = f(x), x ∈ [0, 1];

u(0) = u(1) = 0,
(1)

where u′′ refers to the second-order derivative of u and the Caputo fractional
derivative C

0 D
α
xg is defined by [26]

C
0 D

α
xg(x) :=

1

Γ (2− α)

∫ x

0

g′′(s)

(x − s)α−1
ds.

Equation (1) is proposed based on the fact that a large amount of solute
particles may travel through high permeability zones in a superdiffusive man-
ner [4,23], which may deviate from the transport of the solute particles in
the bulk fluid phase that undergo a Fickian diffusive transport [3]. Therefore,
in model (1), the −u′′ term represents the 1/(1 + d) portion of the total so-
lute mass undergoing the Fickian diffusive while the −d C

0 D
α
xu term refers to

the d/(1 + d) portion of the total solute mass undergoing the superdiffusive
transport in high permeability zones.

Note that in realistic applications, the reservoir may consist of different
types of porous media that have different fractional dimensions. Hence, in this
paper we consider the homogeneous Dirichlet boundary-value problem of the
following one-sided variable-order linear sFDE as a variable extension of (1)

−u′′(x)− d(x) C
0 D

α(x)
x u(x) = f(x), x ∈ (0, 1);

u(0) = u(1) = 0,
(2)

where 1 ≤ αmin ≤ α(x) ≤ αmax < 2 (α(x) 6≡ αmin if αmin = 1) and d(x) ≥ 0
is the fractional diffusivity. The variable-order Caputo fractional derivative

0D
α(x)
x g is defined by [33,36]

0D
α(x)
x g(x) :=

1

Γ (2− α(x))

∫ x

0

g′′(s)

(x− s)α(x)−1
ds

where Γ (·) refers to the Gamma function.

2.2 An indirect collocation method

We rewrite (2) in terms of v(x) := u′′(x)

v(x) +
d(x)

Γ (2− α(x))

∫ x

0

v(s)

(x− s)α(x)−1
ds = −f(x). (3)

Fast collocation method for FDEs 5

Then the solution u to model (2) can be obtained by postprocessing

u(x) =

∫ x

0

v(s)(x − s)ds− x

∫ 1

0

v(s)(1 − s)ds. (4)

Let 0 = x0 < x1 < · · · < xN+1 = 1 be a uniform partition of [0, 1] with
xn = nh for n = 0, 1, · · · , N+1 and h = 1/(N+1). Let φn(x) be the piecewise-
linear basis functions with φn(xn) = 1 and φn(xm) = 0 for m 6= n. Each
element vh(x) in the space Sh of continuous and piecewise linear functions on
x ∈ [0, 1] can be represented by

vh(x) =

N+1
∑

n=0

vnφn(x), vn := vh(xn). (5)

Then an indirect collocation method for model (2) reads:

Step 1 Find vh(x) ∈ Sh such that for 0 ≤ n ≤ N + 1

vh(xn) +
d(xn)

Γ (2− α(xn))

∫ xn

0

vh(s)

(xn − s)α(xn)−1
ds = −f(xn); (6)

Step 2 Obtain an approximation uh(x) of u(x) by

uh(x) :=

∫ x

0

vh(s)(x − s)ds− x

∫ 1

0

vh(s)(1 − s)ds, x ∈ [0, 1]. (7)

The following error estimate of the method was proved [35] under the assump-
tions that d, f and α are second-order continuously differentiable on [0, 1], and
1 ≤ αmin ≤ α(x) ≤ αmax < 2 with α(x) 6≡ αmin if αmin = 1

‖u− uh‖ := max
1≤n≤N

|u(xn)− uh(xn)| ≤
{

QN−(3−αmax), α(0) > 1,

QN−2, α(0) = 1.
(8)

Instead, for u sufficiently smooth, we have ‖u− uh‖ ≤ QN−2.

2.3 Solution of the numerical scheme

For n = 0 we obtain from (6) that v0 = −f(0). We then plug (5) into (6) for
1 ≤ n ≤ N +1 and move the terms containing v0 to the right-hand side of the
resulting equation to get a linear system with the unknowns {vn}N+1

n=1

Av = f , (9)

where A = (Ai,j)
N+1
i,j=1 ∈ R

(N+1)×(N+1) is a lower triangular matrix of the form

Ai,j =































1 +
d(xi)h

2−α(xi)

Γ (4− α(xi))
, i = j,

d(xi)h
2−α(xi)

Γ (4− α(xi))
ti,j , 1 ≤ j ≤ i− 1,

0, otherwise,

(10)

6 Jia, Zheng and Wang

ti,j = (i − j − 1)3−α(xi) − 2(i− j)3−α(xi) + (i − j + 1)3−α(xi), (11)

v := [v1, v2, · · · , vN+1]
T and f := [f1, f2, · · · , fN+1]

T with fn given by

fn = −f(xn)− d(xn)v0

(x
2−α(xn)
n

Γ (3− α(xn))
+

(xn − x1)
3−α(xn) − x

3−α(xn)
n

hΓ (4− α(xn))

)

.

With vh(x) obtained from (9), we plug vh(x) into (7) to obtain the ap-
proximation uh(x) to u(x). In particular, the discrete approximation u =
[u1, u2, · · · , uN]T with un := uh(xn) can be evaluated inductively as follows.

Theorem 1 The {un}Nn=1 can be computed by

u1 =
h2(2v0 + v1)

6
− hI,

un+1 = un + hVn +
h2(2vn + vn+1)

6
− hI, 1 ≤ n ≤ N − 1,

(12)

where I =
∫ 1

0
vh(s)(1 − s)ds and {Vn}N−1

n=0 is inductively generated by

V0 =
h(v0 + v1)

2
, Vn = Vn−1 +

h(vn + vn+1)

2
, 1 ≤ n ≤ N − 1. (13)

Proof For (7) with x = x1, we obtain the first equation of (12) by a direct
calculation. For (7) with x = xn+1 and 1 ≤ n ≤ N − 1, we split the first
integral on (0, xn+1) to those on (0, xn) and (xn, xn+1) and split the kernel
(xn+1 − s) to (xn − s) + h in the first resulting integral to obtain

un+1 =

∫ xn+1

0

vh(s)(xn+1 − s)ds− xn+1

∫ 1

0

vh(s)(1 − s)ds

=

∫ xn

0

vh(s)(xn+1 − s)ds+

∫ xn+1

xn

vh(s)(xn+1 − s)ds− xn+1I

=

∫ xn

0

vh(s)(xn − s)ds+ h

∫ xn

0

vh(s)ds

+
h2(2vn + vn+1)

6
− xn+1I.

(14)

Note that as vh(x) is a piecewise linear function, Vn defined by (13) repre-
sents the integration of vh(x) over (0, xn). Therefore, the second term on the
right-hand side of (14) equals to hVn. From (7) with x = xn we have

un =

∫ xn

0

vh(s)(xn − s)ds− xnI.

We plug this into (14) to get

un+1 = un + xnI + hVn +
h2(2vn + vn+1)

6
− xn+1I

= un + hVn +
h2(2vn + vn+1)

6
− hI,

which finishes the proof.

Fast collocation method for FDEs 7

3 An approximated collocation scheme

As A is a lower triangular matrix, a direct solution of the numerical scheme
requires O(N2) storage and has O(N2) computational complexity. Once we
obtained v, only O(N) storage and O(N) operations are needed to compute u
by Theorem 1. That is, the main task lies in reducing the memory requirement
and the computational complexity of (9). To do so, we approximate A by a
finite sum of Toeplitz-like matrices.

Theorem 2 For 1 ≤ j ≤ i − 1, ti,j defined by (11) can be approximated by

ti,j ≈ 2(i− j)3−ᾱ
[

1 + (ᾱ − α(xi)) ln(i− j) +
(ᾱ− α(xi))

2

2!
ln2(i− j)

+ · · ·+
(

ᾱ− α(xi)
)s

s!
lns(i − j)

]

·
[(

3− α(xi)

2

)

1

(i− j)2

+

(

3− α(xi)

4

)

1

(i − j)4
+ · · ·+

(

3− α(xi)

2k

)

1

(i − j)2k

]

(15)

for some k, s ∈ N
+ with the residue Ri,j

s,k given by

Ri,j
s,k = (i− j)3−ᾱR̂i,j

s+1

[

(

1− 1

i − j

)3−α(xi)

− 2 +
(

1 +
1

i− j

)3−α(xi)
]

+(i− j)3−α(xi)Ri,j
2k+2 − (i− j)3−ᾱR̂i,j

s+1R
i,j
2k+2.

(16)

Proof We decouple the nonlinear dependence of i and j in ti,j (cf (11)) for
j ≤ i − 1 by applying the Taylor’s expansion of power functions to the first
and the third terms on the right-hand side of (11) as follows

(i− j ± 1)3−α(xi) = (i − j)3−α(xi)
(

1± 1

i − j

)3−α(xi)

= (i − j)3−α(xi)

[

1±
(

3− α(xi)

1

)

1

i− j
+

(

3− α(xi)

2

)

1

(i− j)2

±
(

3− α(xi)

3

)

1

(i− j)3
+ · · ·+

(

3− α(xi)

2k

)

1

(i− j)
2k

±
(

3− α(xi)

2k + 1

)

1

(i− j)
2k+1

+Ri,j,±
2k+2

]

,

(17)

where Ri,j,pm
2k+2 are the remainders of the Taylor’s expansion

Ri,j,±
2k+2 :=

(

3− α(xi)

2k + 2

)

(

1± θ±
i− j

)1−α(xi)−2k 1

(i − j)2k+2
, θ± ∈ (0, 1). (18)

Here θ± = θ±(i, j, k). We plug (17) into (11) to obtain

ti,j = (i− j)3−α(xi)

[(

3− α(xi)

2

)

2

(i− j)2
+

(

3− α(xi)

4

)

2

(i − j)4
+ · · ·

+

(

3− α(xi)

2k

)

2

(i− j)2k
+Ri,j

2k+2

]

,

(19)

8 Jia, Zheng and Wang

Ri,j
2k+2 := Ri,j,−

2k+2 +Ri,j,+
2k+2 =

(

3− α(xi)

2k + 2

)

1

(i − j)2k+2

×
[

(

1− θ−
i− j

)1−α(xi)−2k

+
(

1 +
θ+
i− j

)1−α(xi)−2k
]

.

(20)

Due to the impact of the variable order α(x), the matrix of entries (i −
j)3−α(xi) is not Toeplitz. The assumption on α(x) (preceding (8)) implies
ᾱ := (αmax + αmin)/2 > 1. We use the Taylor’s expansion of ax with a > 0
and 0 < x < 1 to obtain

(i− j)3−α(xi) = (i − j)ᾱ−α(xi)(i − j)3−ᾱ

=

[

1 +
(

ᾱ− α(xi)
)

ln(i − j) +

(

ᾱ− α(xi)
)2

2!
ln2(i− j)

+ · · ·+ (ᾱ − α(xi))
s

s!
lns(i− j) + R̂i,j

s+1

]

(i − j)3−ᾱ,

(21)

R̂i,j
s+1 =

(ᾱ− η)s+1 lns+1(i− j)

(s+ 1)!
, η ∈

{

(ᾱ, α(xi)), if ᾱ ≤ α(xi),

(α(xi), ᾱ), otherwise.
(22)

Substituting (21) into (19) yields

ti,j = 2(i− j)3−ᾱ

[

1 +
(

ᾱ− α(xi)
)

ln(i− j) +

(

ᾱ− α(xi)
)2

2!
ln2(i− j)

+ · · ·+
(

ᾱ− α(xi)
)s

s!
lns(i− j) + R̂i,j

s+1

][(

3− α(xi)

2

)

1

(i − j)2

+

(

3− α(xi)

4

)

1

(i− j)4
+ · · ·+

(

3− α(xi)

2k

)

1

(i− j)2k
+Ri,j

2k+2

]

= 2(i− j)3−ᾱ

[

1 + (ᾱ − α(xi)) ln(i− j) +
(ᾱ− α(xi))

2

2!
ln2(i− j)

+ · · ·+
(

ᾱ− α(xi)
)s

s!
lns(i− j)

][(

3− α(xi)

2

)

1

(i − j)2

+

(

3− α(xi)

4

)

1

(i− j)4
+ · · ·+

(

3− α(xi)

2k

)

1

(i− j)2k

]

+ Ri,j
s,k,

(23)

Ri,j
s,k = 2(i− j)3−ᾱ

[

R̂i,j
s+1

(

Ri,j
2k+2 +

k
∑

m=0

(

3− α(xi)

2m

)

1

(i− j)2m

)

+Ri,j
2k+2

(s
∑

m=0

(

ᾱ− α(xi)
)m

m!
lnm(i− j) + R̂s+1

)

−Ri,j
2k+2R̂

i,j
s+1

]

.

Then we replace the terms in the first and second brackets by (19) and (21),
respectively, to obtain (16). Dropping the truncation error Ri,j

s,k in (23), we get
the approximation (15) of ti,j for j ≤ i− 1.

Fast collocation method for FDEs 9

Replacing ti,j in the entries of A by the right-hand side of (15) leads to
the corresponding approximated system

Ãv = f , Ã := (Ãi,j)
N+1
i,j=1. (24)

Theorem 3 For j ≤ i − 1 and k, s ∈ N
+ with s > e lnN/2 − 1, the local

truncation error Ri,j
s,k can be bounded by

|Ri,j
s,k| ≤

Q√
s+ 1(i− j)ᾱ−1

+











1

(2k)4−α(xi)
, i− j = 1;

1

(2k)4−α(xi)(i − j − 1)2k+α(xi)−1
, i− j ≥ 2.

(25)

Consequently, we have for i− j ≥ 2

max
1≤i,j≤N+1

|Ãi,j −Ai,j | ≤ Ch2−αmax

(1√
s+ 1(i− j)ᾱ−1

+
1

(2k)4−αmax(i − j − 1)2k+αmax−1

)

.
(26)

That is, the approximation scheme (24) is asymptotically consistent with
the original problem (9) with respect to s and k.

Proof We bound Ri,j
2k+2 and R̂i,j

s+1 respectively. The binomial coefficients in
(20) can be represented in terms of the gamma functions as follows

(

3− α(xi)

2k + 2

)

=
(3− α(xi))(3 − α(xi)− 1) · · · (3− α(xi)− (2k + 1))

(2k + 2)!

=
(−1)2k+2(2k + 1− (3− α(xi)))(2k − (3− α(xi))) · · · (0 − (3− α(xi)))

(2k + 2)!

= (−1)2k+2 Γ (2k + 2− (3− α(xi)))

Γ (2k + 3)Γ (2− (3 − α(xi)))
(1− (3 − α(xi)))(0 − (3− α(xi)))

= (−1)2k+2(α(xi)− 2)(α(xi)− 3)
Γ (2k + α(xi)− 1)

Γ (2k + 3)Γ (α(xi)− 1)
.

We use the asymptotic expansions of Gamma functions ([16, Eq. 1.5.15])

Γ (z + a)

Γ (z + b)
= za−b

(

1 +O
(1

z

))

, z + a > 0, z → +∞,

to get
∣

∣

∣

(

3− α(xi)

2k + 2

)

∣

∣

∣
≤ Q

(2k)4−α(xi)
. (27)

We note that for i − j = 1 the left-hand side of (17) with the minus sign in
“±” vanishes, so Ri,j,−

2k+2, and thus the first term on the right-hand side of the

10 Jia, Zheng and Wang

equal sign“=” in (28), vanishes. We thus bound the remaining factors on the
right hand of (20) by

∣

∣

∣

∣

(

(

1− θ−
i− j

)1−α(xi)−2k

+
(

1 +
θ+
i− j

)1−α(xi)−2k) 1

(i− j)2k+2

∣

∣

∣

∣

=
1

(i − j)3−α(xi)

(

1

(i− j − θ−)2k+α(xi)−1
+

1

(i − j + θ+)2k+α(xi)−1

)

≤











1, i− j = 1;

2(i− j)α(xi)−3

(i− j − θ−)2k+α(xi)−1
, i− j ≥ 2, θ− ∈ (0, 1),

(28)

We incorporate the proceeding estimates to obtain the estimates of the local
truncation error Ri,j

2k+2

|Ri,j
2k+2| ≤



















Q

(2k)4−α(xi)
, i− j = 1;

Q(i− j)α(xi)−3

(2k)4−α(xi)(i− j − θ−)2k+α(xi)−1
, i− j ≥ 2, θ− ∈ (0, 1).

(29)

We note that η in (22) satisfies (ᾱ− η)s+1 ≤ 2−(s+1) and use the Stirling’s
formula for gamma functions to get

∣

∣

∣

lns+1(i − j)

(s+ 1)!

∣

∣

∣
≤ Q lns+1(i − j)

√

2π(s+ 1)
(

(s+ 1)/e
)s+1 ≤ Q√

s+ 1

(e ln(i− j)

s+ 1

)s+1

.

We thus bound R̂i,j
s+1 by

|R̂i,j
s+1| ≤

Q√
s+ 1

(e ln(i− j)

2(s+ 1)

)s+1

. (30)

We combine (29) and (30) to bound Ri,j
s,k in (16) by

|Ri,j
s,k| ≤ (i− j)3−ᾱ

∣

∣R̂i,j
s+1

∣

∣

∣

∣

∣

∣

(

1− 1

i− j

)3−α(xi)

− 2 +
(

1 +
1

i− j

)3−α(xi)
∣

∣

∣

∣

+(i− j)3−α(xi)
∣

∣Ri,j
2k+2

∣

∣+
∣

∣Ri,j
2k+2R̂

i,j
s+1

∣

∣

≤ Q|R̂i,j
s+1|

(i− j)ᾱ−1
+ (i − j)3−α(xi)|Ri,j

2k+2|+ |Ri,j
2k+2R

i,j
s+1|

≤ Q√
s+ 1(i − j)ᾱ−1

(e ln(i − j)

2(s+ 1)

)s+1

+















Q

(2k)4−α(xi)
, i− j = 1;

Q

(2k)4−α(xi)(i − j − θ−)2k+α(xi)−1
, i− j ≥ 2, θ− ∈ (0, 1),

(31)

Fast collocation method for FDEs 11

where in the first inequality we have used the Taylor’s expansion as in (17)
and the expression (18) for Ri,j,±

2k+2 with k = 0

∣

∣

∣

(

1− 1

i − j

)3−α(xi)

− 2 +
(

1 +
1

i− j

)3−α(xi)∣
∣

∣

=











23−α(xi) − 2 ≤ 2, i− j = 1;

|Ri,j,1
2 +Ri,j,2

2 | ≤ Q

(i− j)2
, i− j ≥ 2.

By setting s >
e lnN

2
− 1 in the first term on the right-hand side of (31) we

obtain (25) and (26).

4 A fast divided-and-conquer solver

We develop a fast DAC solver for the collocation system (24). Due to the
impact of the variable order in the sFDE (2), the stiffness matrix A in (9)
no longer has Toeplitz structure so the DAC algorithm [15,13] developed for
constant-order FDEs cannot apply. We develop a fast DAC method by ex-
pressing the stiffness matrix Ã in (24) as

Ã =

[

ÃN ′ 0

Γ̃N ′

ˆ̃AN ′

]

. (32)

By Theorem 3 the truncation errors Ri,j
s,k are not necessarily small when

Algorithm 1 The fast approximated DAC algorithm(denote c = ⌊ e
2 lnN⌋)

functionvN = FDAC(ÃN , fN)

if N ≤ c

vN = Ã
−1

N
fN

else

vN′ = FDAC(ÃN′ , fN′)

f̂N′ = f̂N′ − Γ̃N′vN′

v̂N′ = FDAC(ˆ̃AN′ , f̂N′)

end if

end function

i − j is small, so the approximations of the corresponding entries may lose
accuracy. To ensure the accuracy of the approximations, we evaluate entries

12 Jia, Zheng and Wang

on the right-up bands of ΓN ′ with width c = ⌈logN⌉ (i.e., colored entries in
the matrix below) exactly as follows

Γ̃N ′ = Γ̂N ′ +ΨN ′ ,

Γ̂N ′ =





































Γ̃1,1 · · · Γ̃1,N ′−c 0 0 · · · 0

Γ̃2,1 · · · Γ̃2,N ′−c Γ̃2,N ′−c+1 0 · · · 0

...
...

. . .
. . .

. . .
. . .

...

Γ̃c,1 · · · Γ̃c,N ′−c Γ̃c,N ′−c+1 Γ̃c,N ′−c+2 · · · 0

...
...

. . .
. . .

. . .
. . .

...

Γ̃N ′,1 · · · Γ̃N ′,N ′−c Γ̃N ′,N ′−c+1 Γ̃N ′,N ′−c+2 · · · Γ̃N ′,N ′





































,

ΨN ′ =



































0 · · · 0 Γ1,N ′−c+1 Γ1,N ′−c+2 · · · Γ1,N ′

0 · · · 0 0 Γ2,N ′−c+2 · · · Γ2,N ′

...
...

. . .
. . .

. . .
. . .

...

0 · · · 0 0 0 · · · Γc,N ′

...
...

. . .
. . .

. . .
. . .

...

0 0 0 0 · · · 0



































,

(33)

Thus, the matrix ΨN ′ has c(c+1)
2 (c = ⌊logN⌋) nonzero entries totally,

which indicates the matrix-vector multiplication ΨN ′vN ′ can be computed
exactly in 1

2 log
2 N of memory and 1

2 log
2 N of computational work.

Theorem 4 The sub-matrix Γ̃N ′ in (32) can be expressed as a sum of Toeplitz
matrices multipied by diagonal matrices, so the corresponding system can be
stored in O(kN log2 N) and can be solved in O(kN log3 N) operations by the
fast approximated DAC method (see Algorithm 2).

Proof We combine (33) with (15) to express Γ̂N ′ as

Γ̂N ′ = diag(K0,1)T0,1 + · · ·+ diag(Ks,1)Ts,1 + · · ·+ diag(Ks,k)Ts,k

where Kp,q := (Kp,q
i)N

′

i=1 and Tp,q for 0 ≤ p ≤ s, 1 ≤ q ≤ k are given by

Kp,q
j−N ′ =

2d(xj)h
2−α(xj)

Γ (4− α(xj))

(ᾱ− α(xj))
p−1

(p− 1)!

(

3− α(xj)

2q

)

, N ′ + 1 ≤ j ≤ N,

and
Tp,q = Toeplitz(tp,qc , tp,qr)

Fast collocation method for FDEs 13

with tp,qc := (tp,qci)N
′

i=1 and tp,qr := (tp,qri)
N ′

i=1 the first column and the first row of
Tp,q, respectively

tp,qci =
lnp−1(N ′ + i− 1)

(N ′ + i− 1)ᾱ+2q−3
, 1 ≤ i ≤ N ′,

tp,qri =











lnp−1(N ′ − i+ 1)

(N ′ − i+ 1)ᾱ+2q−3
, 1 ≤ i ≤ N ′ − c,

0, N ′ − c+ 1 ≤ i ≤ N ′.

It is well known that Tp,qvN ′ can be performed in O(N ′ logN ′) operations
via the discrete fast Fourier transform (FFT), which implies that Γ̂N ′vN ′

can be evaluated in O(ksN ′ logN ′) operations. To store Γ̂N ′ , we only need
to store tp,qc , tp,qr , and Kp,q that require O(ksN ′) memory. If we take s =
⌈ e
2 lnN − 1⌉ = O(logN) according to Theorem 3, the computational cost

and the memory requirement of Γ̂N ′vN ′ become O(kN ′ logN logN ′) and
O(kN ′ logN), respectively. Then the total number of computations Θ̃N and
the storage Φ̃N of the proposed fast method can be evaluated by

Θ̃N = O(kN ′ logN logN ′) + 2Θ̃N ′

= O
(

kN ′ logN logN ′
)

+ 2O
(

k
N ′

2
logN log

N ′

2

)

+ 4Θ̃N′

2

= · · · = O
(

kN ′ log2 N
(

1 + 2
1

2
+ · · ·+ 2J−1 1

2J−1

))

= O(kN log3 N),

Φ̃N = O(kN ′ logN) + 2Φ̃N ′ = O(kN ′ logN) + 2O
(

k
N ′

2
logN

)

+ 4Φ̃N′

2

= · · · = O
(

kN ′ logN
(

1 + 2
1

2
+ · · ·+ 2J−1 1

2J−1

))

= O
(

kJN ′ logN
)

= O
(

kN log2 N
)

.

By (33), the storage and the computational cost of ΨN ′vN ′ are both
1
2 log

2 N . Thus the total computational cost ǫθ and the storage ǫφ are

ǫθ =
1

2
log2 N + 2

1

2
log2 N + · · ·+ 2J−1 1

2
log2 N

=
1

2
log2 N

(

1 + 2 + · · ·+ 2J−1
)

=
2J − 1

2
log2 N ≤ N

2
log2 N,

ǫφ =
1

2
log2 N +

1

2
log2 N + · · ·+ 1

2
log2 N ≤ 1

2

N

⌊logN⌋ log
2 N ≤ N logN.

14 Jia, Zheng and Wang

Then totally flops ΘN and storage ΦN of the fast approximated algorithm
can be estimated by

ΘN = Θ̃N + ǫθ = O(N log3 N) +
N

2
log2 N = O(kN log3 N),

ΦN = Φ̃N + ǫφ = O(kN log2 N),

which finishes the proof.

Remark 1 It takes O(N2) computational works to generate the entries of the
original coefficient matrix A, while in the fast approximated DAC method
only O(ks logN) operations are needed to generate all the entries of the ap-
proximated coefficient matrix Ã.

5 Numerical experiments

We perform numerical experiments to investigate the performance of the fast
DAC method (FDAC) by comparing it with the Forward Substitution method
(FS). The approximated system (24) will be solved and the convergence rates of
the indirect collocation method, the CPU times (in seconds) of generating the
coefficient matrix (CPUM) and of solving the lower triangular linear system
(CPUS) will be recorded. We set the parameter k appeared in Theorem 2
equal to 2 throughout the experiments.

Experiment 1. We set d(x) = 1 and

α(x) = (α0 − α1)
(

1− x− sin(2π(1− x))

2π

)

+ α1

with α0 = 1.2, α1 = 1.6. The exact solution u(x) = x4(1 − x) and the corre-
sponding right hand term f(x) is given by

f(x) = −(12x2 − 20x3)−
(24

Γ (5− α(x))
x4−α(x) − 120

Γ (6− α(x))
x5−α(x)

)

.

The results are presented in Table 1 and Table 2, from which we notice that

– The CPU time consumed by FS increases at about a quadruple rate be-
tween two consecutive numbers of collocation grids while the increment of
the CPU time of the FDAC is almost liner;

– It is more efficient in the FDAC to generate the entries of the coefficient
matrix than that in the FS. For instance, when N = 215, the FS takes 352
seconds to compute the entries of A while the FDAC only requires 3.78
seconds;

– when N ≥ 211, the FDAC is more efficient than FS for solving the linear
systems. For instance, for the case of N = 215, the CPUS of FS is 99
seconds while in the FDAC it is 1.5 seconds;

Fast collocation method for FDEs 15

Table 1
Errors of FS and FDAC for Experiment 1

FS FDAC

N ‖u− uh‖ Order ‖u− uh‖ Order

28 4.36009e-06 4.25781e-06
29 1.08719e-06 2.00 1.05751e-06 2.01
210 2.71315e-07 2.00 2.65646e-07 1.99
211 6.77461e-08 2.00 6.62834e-08 2.00
212 1.69224e-08 2.00 1.70719e-08 1.96
213 4.22815e-09 2.00 4.38408e-09 1.96

Table 2
CPUs of FS and FDAC for Experiment 1

FS FS FDAC FDAC

N CPUM CPUS CPUM CPUS

28 0.027 0.002 0.037 0.007
29 0.084 0.005 0.040 0.012
210 0.315 0.027 0.087 0.031
211 1.27 0.179 0.185 0.058
212 5.03 0.801 0.385 0.190
213 19.76 3.56 0.889 0.297
214 85.22 21.12 1.87 0.642
215 352.54 98.9 3.78 1.51
216 - - 7.97 2.20
217 - - 17.26 5.16
218 - - 36.14 12.03
219 - - 75.53 27.88

– The FS is out of memory for N ≥ 216 while the FDAC still works even for
N ≥ 219;

– The FDAC has almost the same accuracy and convergence rates as FS for
relatively small N while for large N the convergence rate is affected by the
round-off errors.

From the observations mentioned above, the presented FDAC has shown
strong potentials for efficiently and effectively solving the variable-order space-
fractional diffusion equations by reducing the memory requirement and im-
proving the efficiency of generating entries of the coefficient matrix and solving
the linear systems. This implies that the proposed fast method is particularly
suitable for the large-scale simulations.

Experiment 2. Let d(x) = 1 and α(x) = (α1−α0)x+α0. We choose a solution
with a boundary layer at x = 0

u(x) =

∫ x

0

s2−α(s)(x− s)ds− x

∫ 1

0

s2−α(s)(1− s)ds.

The corresponding right-hand side is

f(x) = −x2−α(x) − d(x)

Γ (2− α(x))

∫ x

0

s2−α(s)(x − s)1−α(x)ds.

16 Jia, Zheng and Wang

Table 3
Errors of FS and FDAC for Experiment 2 with α0 = 1.2 and α1 = 1.6

FS FDAC

N ‖u− uh‖ Oder ‖u− uh‖ Order

28 9.00045e-08 9.14455e-08
29 3.47080e-08 1.37 3.61159e-08 1.34
210 1.24339e-08 1.48 1.29618e-08 1.48
211 4.44658e-09 1.48 4.82754e-09 1.42
212 1.75634e-09 1.34 1.93550e-09 1.32
213 9.95153e-10 0.82 1.00011e-09 0.95

Table 4
CPUs of FS and FDAC for Experiment 2 with α0 = 1.2 and α1 = 1.6

FS FS FDAC FDAC

N CPUM CPUS CPUS CPUM

28 0.028 0.002 0.092 0.010
29 0.093 0.005 0.041 0.014
210 0.324 0.024 0.087 0.029
211 1.28 0.164 0.183 0.064
212 5.59 0.810 0.400 0.139
213 22.52 3.58 0.855 0.320
214 91.46 18.8 1.85 0.693
215 367.38 98.94 4.12 1.55
216 − − 8.48 2.38
217 − − 17.88 5.52
218 − − 36.94 12.70

Table 5
CPUs of FS and FDAC for Experiment 2 with α0 = 1.0 and α1 = 1.5

FS FS FDAC FDAC

N CPUM CPUS CPUM CPUS

28 0.023 0.002 0.037 0.007
29 0.093 0.005 0.042 0.011
210 0.411 0.025 0.088 0.029
211 1.33 0.218 0.184 0.081
212 5.06 0.811 0.398 0.226
213 20.14 3.47 0.853 0.705
214 93.18 17.83 1.84 2.36
215 366.62 99.45 4.11 9.19

Numerical results are presented in Table 3–5, which is strongly consistent
with the observations in Experiment 1.

Acknowledgments

This work was funded by the OSD/ARO MURI Grant W911NF-15-1-0562, by
the National Science Foundation under grants DMS-1620194 and by Natural
Science Foundation of Shandong Province under grants ZR2019BA026.

Fast collocation method for FDEs 17

References

1. Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-
plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Lin. Al-
gebra Appl. 24, e2093(2017)

2. Bear, J.: Some experiments on dispersion. J. Geophys. Res. 66, 2455-2467(1961)
3. Bear, J.:Dynamics of Fluids in Porous Media. Elsevier, New York(1972)
4. Benson, D., Schumer, R., Meerschaert, M. M., Wheatcraft, S. W.: Fractional dispersion,
Lévy motions, and the MADE tracer tests. Transport in Porous Media. 42, 211-240(2001)

5. Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the
all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95,
92-97(2019)

6. Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable-
order fractional percolation equation in non-homogeneous porous media. Comput. Math.
Appl.68, 2133–2141(2014)

7. Del-Castillo-Negrete, D., Carreras, B. A., Lynch, V. E.: Fractional diffusion in plasma
turbulence. Phys. Plasmas.11, 3854(2004)

8. Del-Castillo-Negrete, D.: Front propagation in reaction-diffusion systems with anomalous
diffusion. Boletn de la Sociedad Matemtica Mexicana. 20, 87-105(2014)

9. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equa-
tion. SIAM J. Numer. Anal.. 47, 204–226(2008)

10. Embrechts, P., Maejima, M.: Selfsimilar Processes, Princeton Series in Applied Mathe-
matics. Princeton University Press, Princeton, NJ, 2002

11. Ervin, V. J., Heuer, N., Roop, J. P.: Regularity of the solution to 1-D fractional order
diffusion equations. Math. Comput. 87, 2273-2294(2018)

12. Ervin, V. J., Roop, J. P.: Variational formulation for the stationary fractional advection
dispersion equation. Numer. Meth. PDEs. 22, 558-576(2005)

13. Fu, H., Ng, M. K., Wang, H.: A divided-and-conquer fast finite difference method
for space-time fractional partial differential equation. Comput. Math. Appl..73(6),1233-
1242(2017)

14. Jin, X., Lin, F., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-
fractional diffusion equations. Commun. Comput. Phys.18, 469488(2015)

15. Ke, R., Ng, M. K., Sun, H.: A fast direct method for block triangular Toeplitz-like with
tri-diagonal block systems from time-fractional partial differential equations. J. Comput.
Phys.303(C), 203-211(2015)

16. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and applications of fractional differential
equations. 204. Elsevier B.V., 2006.

17. Li, C., Zhao, Z., Chen, Y. Q.: Numerical approximation of nonlinear fractional differ-
ential equations with subdiffusion and superdiffusion. Comput. Math. Appl.62, 855–875
(2011)

18. Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast
algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl.
Sci. DOI: 10.1002/mma.4367(2017)

19. Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion
equation. J. Comput. Phys.256 , 109117(2014)

20. Lin, X., Ng, M. K., Sun, H.: Efficient preconditioner of one-sided space fractional diffu-
sion equation[J]. BIT Numer. Math.(2018)

21. Lin, X., Ng, M. K., Sun, H.: A Splitting Preconditioner for Toeplitz-Like Linear Systems
Arising from Fractional Diffusion Equations. SIAMX, 38, 1580–1614(2017)

22. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck
equation. J. Comput. Appl. Math. 166, 209–219 (2004)

23. Meerschaert, M. M, Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter
Studies in Mathematics, 2011

24. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent develop-
ments in the description of anomalous transport by fractional dynamics. J. Phys. A Math.
Gen.,37, R161–R208(2004)

25. Pan, J., Ng, M. K., Wang, H.: Fast preconditioned iterative methods for finite volume
discretization of steady-state space-fractional diffusion equations. Numer. Algorithms,74,
153–173(2017)

18 Jia, Zheng and Wang

26. Podlubny, I.: Fractional Differential Equations.Academic Press, New York, 1999
27. Roop, J. P.: Computational aspects of FEM approximation of fractional advection dis-
persion equations on bounded domains in R2. J. Comput. Appl. Math.193, 243–268(2006)

28. Schumer, R., Benson, D. A, Meerschaert, M. M., Wheatcraft, S. W.: Eulerian deriva-
tion of the fractional advection-dispersion equation. J. Contaminant Hydrology.48, 69–
88(2001)

29. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional dif-
ferential equations: mathematical foundations, physical models, numerical methods and
applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)

30. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anoma-
lous diffusion modeling. Physica A: Stat. Mech. Appl.388 , 4586–4592(2009)

31. Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-
fractional diffusion equations. J. Comput. Phys.240, 49–57(2013)

32. Wang, H., Wang, K., Sircar, T.: A direct O(N log2 N) finite difference method for frac-
tional diffusion equations. J. Comput. Phys.229, 8095-8104(2010)

33. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with
tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comp. 37,
A2710–A2732(2015)

34. Zhao, Z, Jin, X., Lin, M.: Preconditioned iterative methods for space-time fractional
advection-diffusion equations. J. Comput. Phys.319, 266279(2016)

35. Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order
space-fractional diffusion equations on uniform or graded meshes. submitted.

36. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order frac-
tional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal.47,
1760–1781(2009)

	1 Introduction
	2 A variable-order sFDE model and its indirect collocation method
	3 An approximated collocation scheme
	4 A fast divided-and-conquer solver
	5 Numerical experiments

