
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/181373

Kumar, A.; Gupta, DK.; Martínez Molada, E.; Hueso, JL. (2021). Convergence and dynamics
of improved Chebyshev-Secant-type methods for non differentiable operators. Numerical
Algorithms. 86(3):1051-1070. https://doi.org/10.1007/s11075-020-00922-9

https://doi.org/10.1007/s11075-020-00922-9

Springer-Verlag



Noname manuscript No.
(will be inserted by the editor)

Convergence and dynamics of improved Chebyshev-Secant-type methods for

non differentiable operators

Abhimanyu Kumar · D.K. Gupta · Eulalia Mart́ınez ·
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Abstract In this paper, the convergence and dynamics of improved Chebyshev-Secant-type iterative methods

are studied for solving nonlinear equations in Banach space settings. their semilocal convergence is established

using recurrence relations under weaker continuity conditions on first order divided differences. Convergence

theorems are established for the existence-uniqueness of the solutions. Next, center-Lipschitz condition is defined

on the first order divided differences and its influence on the domain of starting iterates is compared with those

corresponding to the domain of Lipschitz conditions. Several numerical examples including Automotive Steering

problems and nonlinear mixed Hammerstein type integral equations are analyzed and the output results are

compared with those obtained by some of similar existing iterative methods. It is found that improved results

are obtained for all the numerical examples. Further, the dynamical analysis of the iterative method is carried

out. It confirms that the proposed iterative method has better stability properties than its competitors.

keywords Nonlinear equations; Divided differences; Semilocal convergence; Domain of parameters; Dynam-

ical analysis
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1 Introduction

Consider approximating a locally unique solution ρ∗ of

F(x) = 0, (1.1)

where F is a continuous nonlinear operator defined on a non-empty open convex subset D of

a Banach space X with values in another Banach space Y. This is one of the most important

problems in applied mathematics and engineering. The second order Fréchet derivative free family
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of Chebyshev-type methods described in [1] is given for k ≥ 0 by

yk = xk − F′(xk)
−1F(xk),

zk = xk + α(yk − xk),

xk+1 = xk − 1

α2
F′(xk)

−1((α2 + α− 1)F(xk) + F(zk)), (1.2)

where x0 ∈ D is the starting iterate, the parameter α ∈ R−{0} and F′(xk)−1 ∈ L(Y,X), where L(Y,X)

denotes the set of bounded linear operators from Y to X. These methods can not be applied for

problems involving non-differentiable operators.

Replacing the first derivative F′(xk) of (1.2) by [xk−1, xk; F], we get

yk = xk − [xk−1, xk; F]
−1F(xk),

zk = xk + α(yk − xk),

xk+1 = xk − [xk−1, xk; F]
−1(βF(xk) + γF(zk)), (1.3)

where x−1, x0 ∈ D are two starting iterates and [x, y; F] ∈ L(X,Y) satisfies [x, y; F](x− y) = F(x)−F(y)

for x, y ∈ D and x �= y, for x = y, [x, y; F] = F′(x). Here, α, β and γ are nonnegative real parameters

carefully chosen so that the sequence {xk} converges to ρ∗. This family of iterative methods used

for the solution of (1.1) is known as the Chebyshev-Secant-type methods (CSTM). For α = 0, β =

γ = 1/2 and yk = xk+1, it becomes Secant method. Another quadratically convergent one point

iterative method for α = β = γ = 1 is described in [2]. The local and semilocal convergence of (1.3)

is established in [3] and [4]. Another variant of (1.3) is given for k ≥ 0 by

yk = xk − [2xk − xk−1, xk; F]
−1F(xk),

zk = xk + α(yk − xk),

xk+1 = xk − [2xk − xk−1, xk; F]
−1(βF(xk) + γF(zk)), (1.4)

where x−1, x0 ∈ D are two starting iterates and α, β and γ are nonnegative real parameters. It

can be known as the Chebyshev-Kurchatov-type method (CKTM). The semilocal convergence of

(1.4) is discussed in [5]. The improved Chebyshev-Secant-type method (ICSTM) proposed by us

is given for k ≥ 0 by

xk+1 = xk − B−1
k F(xk), Bk = [xk, yk; F],

zk = xk + α(xk+1 − xk),

yk+1 = xk − B−1
k (βF(xk) + γF(zk)), (1.5)

where x0, y0 ∈ D are two starting iterates and α, β and γ are nonnegative real parameters. Consid-

ering α = β = γ = 1 we obtain the double step Secant method [6], and [7], with order of convergence

1 +
√
2. It can be easily seen that the number of functions evaluations and the corresponding di-

vided differences used in CSTM and ICSTM are the same. The importance of the ICSTM lies in

the fact that for α = β = γ = 1, its convergence order is 1 +
√
2, while the convergence order of the

CSTM is 2.

Remark 11 The convergence order of CKTM in [8] given as 1+
√
17

2 is close to the convergence order

of ICSTM for α = β = γ = 1. However, it requires very specific starting iterates.

The following example demonstrates that ICSTM performs better than CKTM and CSTM.
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Example 11 Consider the nonlinear non-differentiable system

u3/2 − v − 3

4
+

1

9
|u− 1| = 0,

v3/2 +
2

9
u− 3

8
+

1

9
|v| = 0

for x = (u, v) ∈ R
2. The unique solution of this system is given by ρ∗ = (1, 0.25). Starting with

(x0, y0) = (x−1, x0) = ((2, 2), (1, 0)), the Table 1 compares the error approximations ‖xk+1 − xk‖∞ of

ICSTM with ‖yk − xk‖∞ of CSTM and CKTM for α = β = 1/2, γ = 1, where tolerance ‖F(xk)‖∞ is

less than 10−15.

Table 1: Comparison of errors

k ICSTM CSTM CKTM

0 1.83512 1.83512 1.81228

1 7.73059× 10−02 0.49249 0.50231

2 7.82988× 10−03 6.31812× 10−02 6.92736× 10−02

3 1.60152× 10−05 5.09870× 10−03 2.13478× 10−03

4 2.20401× 10−10 1.23059× 10−04 1.08211× 10−04

5 4.53173× 10−06 2.78909× 10−06

6 4.96587× 10−11 1.29562× 10−07

7 3.60821× 10−13 6.01912× 10−09

8 2.26963× 10−14 3.16729× 10−10

9 1.14641× 10−11

We run these algorithms with Matlab 2018 in a PC with windows 10 and processor intel(R)

Core(TM) i7 − 4790 CPU 3.60GHz, the average CPU time in seconds taken by ICSTM, CSTM and

CKTM are 0.482991, 0.991029 and 1.423315, respectively, which shows the competitiveness of the

ICSTM algorithm.

The rest of the paper is structured as follows. In Section (2), the improved Chebyshev-Secant-

type method (ICSTM) and it’s semilocal convergence analysis is given. In Section (3), the domain

of parameters for the guaranteed convergence of ICSTM is established. In section (4), the dynamic

behaviour of the methods is analyzed. In Section (5), some numerical examples are given to

show the efficiency of ICSTM and justify the theoretical results obtained in this study. Finally,

conclusions are given in Section 6.

2 Semilocal convergence of ICSTM

In this section, the semilocal convergence of ICSTM for solving (1.1) is established. Let B(x, r)
and B(x, r) denote open and closed balls with center at x and radius r, respectively. For suitably

chosen initial approximations x0 and y0, we define a class S(Θ, δ, η, σ), where Θ > 0, δ > 0, η > 0 are

some positive real numbers and σ is to be defined. The triplet (F, x0, y0) ∈ S(Θ, δ, η, σ) if

[C1] ‖x0 − y0‖ ≤ Θ for x0, y0 ∈ D.

[C2] B
−1
0 ∈ L(Y,X) such that ‖B−1

0 ‖ ≤ δ.

[C3] ‖B−1
0 F(x0)‖ ≤ η.

[C4] ‖([x, y; F] − [u, v; F])‖ ≤ σ(‖x − u‖, ‖y − v‖), where σ : R+ × R+ → R+ is a continuous and non

decreasing function in its both arguments for x, y, u, v ∈ D.

[C5] (1− β) = (1− α)γ and α ∈ (0, 1].
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[C6] The equation

(1− g(t))t− η = 0

where, g(t) =
M

1− δσ(t, t+Θ)
,

and M = max(αγδσ(η,Θ), αδσ(η,Θ), δσ(η,Θ), αγδσ(η, (1 + p)η)), where p = αγδσ(η,Θ), has at least

one positive root. The smallest positive root is denoted by R and verifies:

[C7] B(x0, R) ⊆ D.

[C8] δσ(R,R+Θ) < 1.

Lemma 21 For the improved Chebyshev-Secant-type method (ICSTM) proposed in (1.5) it is

verified for all k ≥ 0:

(i) F(zk) = α([zk, xk; F]− Bk)(xk+1 − xk) + (1− α)F(xk).

(ii) F(xk+1) = ([xk+1, xk; F]− [xk, yk; F]) (xk+1 − xk).

Proof The proof follows obviously by (1.5) and the application of the usual property of the

divided difference operator, [x, y,F](x− y) = F(x)− F(y), hence omitted here.

Lemma 22

For method ICSTM proposed in (1.5) under conditions [C1]− [C8] and for (F, x0, y0) ∈ S(Θ, δ, η, σ),

we obtain the following bounds for all k ≥ 0:

(i) There exists B−1
k satisfying ‖B−1

k ‖ ≤ δ
1−δσ(R,R+Θ)

,

(ii) ‖xk+1 − xk‖ ≤ g(R)‖xk − xk−1‖,
(iii) ‖yk+1 − xk+1‖ ≤ g(R)‖xk+1 − xk‖.

Proof The above inequalities can be proved by using mathematical induction. Using Lemma 21

and the definition of class S(Θ, δ, η, σ), we get ‖x1−x0‖ ≤ η < R, ‖z0−x0‖ ≤ η < R, for being R a root

of (2.1). Now, by definition of the method (1.5) it holds:

‖y1 − x1‖ = ‖y1 − x0 + x0 − x1‖ = ‖ − αγB−1
0 ([x0, z0, F ]− B0)(x1 − x0)‖ ≤ αγδσ(η,Θ))‖x1 − x0‖ < g(R)η < R,

where in the last inequality we have used that g(R) < 1 what follows from definition of R and from

the fact of η > 0. Moreover,

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖ = (1 + g(R))η <
η

1− g(R)
= R,

where we have bounded two adds of a geometrical progression with ratio less than one. Thus,

lemma holds for n = 0. Suppose that it holds for every n ≤ k − 1. Notice that by using the

induction hypothesis it can be obviously deduced that:

‖xk − xk−1‖ ≤ g(R)‖xk−1 − xk−2‖,
‖yk − xk‖ ≤ g(R)‖xk − xk−1‖,

‖yk − xk−1‖ ≤ (1 + g(R))‖xk − xk−1‖,

and so it follows

‖yk − x0‖ ≤
k∑

j=0

g(R)jη < R.
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Now, in order to obtain the assertion for n = k, we use previous bounds and [C8], so it holds:

‖I − B−1
0 Bk‖ ≤ δσ(‖xk − x0‖, ‖yk − x0‖+ ‖y0 − x0‖) ≤ δσ(R,R+Θ) < 1.

So, by Banach’s lemma on invertible operators [9] it is verified

‖B−1
k ‖ ≤ δ

1− δσ(R,R+Θ)
.

Using these staments and Lemma 21 once more, we get

‖xk+1 − xk‖ ≤ ‖B−1
k ‖‖F(xk)‖

≤ δσ(‖xk − xk−1‖, ‖xk−1 − yk−1‖)
1− δσ(R,R+Θ)

‖xk − xk−1‖
≤ g(R)‖xk − xk−1‖.

In consequence we have:

‖xk+1 − x0‖ ≤
k∑

j=0

g(R)jη < R,

‖zk − x0‖ ≤
k∑

j=0

g(R)jη < R.

Now,

‖yk+1 − xk+1‖ ≤ ‖αγB−1
k σ(‖zk − xk‖, ‖xk − yk‖)(xk+1 − xk)‖ ≤ g(R)‖xk+1 − xk‖,

which proves the lemma.

Theorem 21 Let F : D ⊆ X → Y be a continuous nonlinear operator, and consider the triplet

(F, x0, y0) ∈ S(Θ, δ, η, σ) defined in section 2, with x0, y0 ∈ D verifiying conditions [C1]− [C8]. Then, by

taking x0, y0 as starting points, the sequences {xk}, {yk} and {zk} generated by (1.5) for k ≥ 0 are

well defined and belong to B(x0, R) ⊆ D. Also, the iterate xk, yk and zk converge to ρ∗ ∈ B(x0, R),

where ρ∗ is the unique solution of (1.1) in B(x0, R) ∩D.

Proof Using Lemma 21 and Lemma 22, we see that the iterates xk and yk are well defined and

belong to B(x0, R) ⊆ D. It is sufficient to show that {xk} is a Cauchy sequence. For fixed k and

m ≥ 1, we get

‖xk+m − xk‖ ≤ ‖xk+m − xk+m−1‖+ . . .+ ‖xk+1 − xk‖
≤
(
g(R)m−1 + g(R)m−2 + . . .+ g(R) + 1

)
‖xk+1 − xk‖

≤
(
1− g(R)m

1− g(R)

)
g(R)k‖x1 − x0‖.

Therefore the sequence {xk} is a Cauchy sequence in a Banach space and so it is convergent, Let

ρ∗ the limit. Now, we show that ρ∗ is a solution of (1.1). From Lemma 21, we get

‖F(xk+1)‖ ≤ ‖[xk+1, xk; F]− [xk, yk; F]‖‖xk+1 − xk‖ → 0 as k →∞.

From the continuity of F, it is assured that F(ρ∗) = 0. Analogously we can obtain the thesis for

sequences {yk} and {zk}. To show the uniqueness of ρ∗, let ρ̂ be another solution of (1.1) in B(x0, R)

such that F(ρ̂) = 0. For B∗ = [ρ∗, ρ̂; F], we get

‖I − B−1
0 B∗‖ ≤ δσ(‖ρ∗ − x0‖, ‖ρ̂− x0‖+ ‖y0 − x0‖) ≤ δσ(R,R+Θ) < 1.

This shows that B∗ is invertible and from the identity [ρ∗, ρ̂; F](ρ∗− ρ̂) = F(ρ∗)−F(ρ̂), taking norms

on both sides, we get ρ∗ = ρ̂. This implies the uniqueness of ρ∗.
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3 Domain of parameters of ICSTM

In this section, after the semilocal convergence analysis has been established, the domain of

parameters associated to Theorem 21 for ICSTM is discussed. It is defined as the region of a

plane whose points allow us to guarantee the convergence of ICSTM from the conditions imposed

on Theorem 21. For this purpose, we will use a special case of [C4] for non differentiable operators.

We define F between Bananch spaces X = Y = R
n by

F(t) = t− g −W (ξ1vt + ξ2wt) = 0

where g is a nonlinear vector function of size n×1, W is a matrix of size n×n, t = (t1, t2, . . . , tn)
T , vt =

(t21, t
2
2, . . . , t

2
n)

T , wt = (|t1|, |t2|, . . . , |tn|)T and ξ1, ξ2 ∈ R− {0}. We have used the following definition of

first order divided difference.

For x, y ∈ R
n and F ∈ L(Rn,Rn), we define

[x, y,F]j,k =
Fj(x1, . . . , xk, yk+1, . . . , yn)− Fj(x1, . . . , xk−1, yk, . . . , yn)

xk − yk
,

j, k = 1, . . . , n.

If xk = yk then [x, y,F]jk = 0. Then, for the nonlinear operator (3.1) we have [x, y;F ] = I− (ξ1wij(xj +

yj) + ξ2wij
|xj |−|yj |
xj−yj

), as consequence

‖[x, y; F]− [u, v; F]‖ ≤ K1 +K2(‖x− u‖+ ‖y − v‖), x, y, u, v ∈ R
n (3.1)

where, K1 = 2|ξ2|‖W‖ and K2 = |ξ1|‖W‖. Notice that if K1 = 0, we obtain the condition for differen-

tial operators. Since (1.3) involves the parameters α, β and γ, we must express it in terms of one

of them, α. For this, we take σ(‖x− u‖, ‖y − v‖) = K1 +K2(‖x− u‖+ ‖y − v‖) as a special case of [C4]

of class S(Θ, δ, η, σ). Taking αγ = 1 and using (1.5), class S(Θ, δ, η, σ) and [C5], ICSTM becomes

xk+1 = xk − B−1
k F(xk)

zk = xk + α(xk+1 − xk)

yk+1 = xk − B−1
k

(
(2− 1

α
)F(xk) +

1

α
F(zk)

)
. (3.2)

where, α ∈ (0, 1]. For each value of α, we get different methods. Now, we discuss the semilocal

convergence of (3.2) satisfying (3.1).

Theorem 31 Let F : D ⊆ X→ Y and R be the smallest positive real number satisfying

(1 + L2 − L3 − L4(R))η −R(1− L1 − L4(R)) = 0, (3.3)

where L1 = δ(K1+K2(α+1)η), L2 = δ(K1+K2(η+Θ)), L3 = δ(K1+2K2η) and L4(R) = δ(K1+K2(2R+Θ)).

If L1 + L4(R) < 1, L2 + L4(R) < 1 and L3 + L4(R) < 1. Then starting with x0, y0 ∈ D, the sequences

{xk}, {yk} and {zk} given in (3.2) are well defined, remain in B(x0, R) and converge to the unique

solution ρ∗ ∈ B(x0, R) of (1.1).

Proof The proof is similar to Theorem 21 and hence omitted here.

The condition (3.1) can further be weakened by introducing the center-Lipschitz condition

‖[x, y; F]− [x0, y0; F]‖ ≤ K1 +K0(‖x− x0‖+ ‖y − y0‖), x, y ∈ X. (3.4)

If we take K1 = 0, then it holds for the differentiable operators and many researchers have estab-

lished the semilocal and local convergence analysis for different methods using this condition.
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Theorem 32 Let F : D ⊆ X→ Y and R be the smallest positive real number satisfying

(1 + T1 − T2 − T3(R))η −R(1− T2 − T3(R)) = 0, (3.5)

where T1 = δ(K1 + K0(η + Θ)), T2 = δ(K1 + 2K2η) and T3(R) = δ(K1 + K0(2R + Θ)). If T1 + T3(R) <

1, T2 + T3(R) < 1, then, sequences {xk}, {yk} and {zk} given by (3.2) are well defined, remain in

B(x0, R) and converge to the unique solution ρ∗ ∈ B(x0, R) ⊆ D of (1.1).

Proof The proof is similar to Theorem 21 and hence omitted here.

Now, we study the domain of parameters corresponding to Theorem 31 and Theorem 32. This

establishes a relationship among the different constants involved in class S(Θ, δ, η, σ) that ensure

the guaranteed convergence of (3.2). Using Theorem 32, (3.5) can be transformed to a quadratic

equation

b0t
2 + b1t+ b2 = 0, (3.6)

b0 = 2K0δ,

b1 = δ(2K1 + 2K2η +K0Θ − 2K0η)− 1 and

b2 = η(δ(K0η −K1 − 2K2η) + 1)

Now, we study when (3.6) has two positive real roots, in the following lemma.

Lemma 31 If b2 > 0 and b1 +
√
4b0b2 < 0 then (3.6) are transformed to the conditions

η(δ(K0η −K1 − 2K2η) + 1) > 0 (3.7)

and

δ(2K1 + 2K2η +K0Θ − 2K0η) +
√

8K0ηδ(δ(K0η −K1 − 2K2η) + 1) < 1. (3.8)

Also, the smallest root denoted by R1 is given by

R1 =
1

4K0δ

(
1− δ(2K1 + 2K2η +K0Θ − 2K0η)−

√
Δ

)
,

where Δ =
√

(δ(2K1 + 2K2η +K0Θ − 2K0η))2 − 8K0ηδ(1 + δ(K0η −K1 − 2K2η)).

Proof The proof is simple and hence omitted here.

Now, we compare Theorem 31 and Theorem 32 and observe the enlargement of the domain of

the parameters. Since, K0 ≤ K2, we take λ = K0
K2

∈ (0, 1]. For different values of λ, the domain of

the parameters vary. If λ = 1, the domain of the parameters match with the domain obtained

with Theorem 31. Otherwise, it gives these corresponding to the Theorem 32. Now, we take

x = K2δ, y = η and N1 = K1
K2

. Using conditions imposed in Theorem 31, Theorem 32 and Lemma

31, we define the domain of parameters for (3.2) as the region of x-y plane whose points satisfy

b2 > 0, b1 +
√
4b0b2 < 0, T1 + T3(R1) < 1 and T2 + T3(R1) < 1. It is to be noted that we can choose

different combinations of K2δ and η for a given value of Θ.The number of suitable starting iterates

increases for a larger size of the domain of parameters. We observe that the domain of parameters

of (3.2) depends on the following three cases.

1 K1 = 0 implying differentiability of F,

2 K1 �= 0 implying non-differentiability of F.

3 Θ representing the distance between x0 and y0.
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Fig. 1: Domain of parameters corresponding to Theorem 31 ( Left), a comparison between Theorem 31 and

Theorem 32 for domain of parameters represented by orange, red, yellow, green, blue and black colour, respectively

for Θ = 0.6 and λ = 0.1, 0.2, 0.4, 0.6, 0.8, 1 ( Right).

Fig. 2: The domain of parameters for fixed λ = 1 and Θ = 0, 0.2, 0.4, 0.6, 0.8, 1 represented by orange, red,

yellow, green, blue and black colour, respectively (Left), The domain of parameters for fixed λ = 1/2 and

Θ = 0, 0.2, 0.4, 0.6, 0.8, 1 represented by orange, red, yellow, green, blue and black colour, respectively ( Right).

The domain of parameters associated to Theorem 31 for case 1 for fixed Θ = 0.6 and N1 = 0 is given

in Figure 1(Left). Now, we use Theorem 32 and see the difference in the domain of parameters

for the different values of λ in Figure 1 (Right). We take a fixed value of Θ and denote the domain

of starting points for a particular value of λ by Dλ. In particular, the following relation can be

established between λ and Dλ,

Dλ0
⊂ Dλ1

⊂ . . . ⊂ Dλk
for λk ≥ λk−1 ≥ . . . ≥ λ0 = 1. (3.9)

It can be seen that the domain of starting points decreases by increasing the value of λ. It remains

to see the effect of the distance between the starting points (Θ) on the domain of parameters.

For this, we fix the value of λ = 1 and then observe the variation in the domain of parameters for

different values of Θ in Figure 2 (Left). It is found that the domain of parameter decreases with

the enlargement of Θ. However, for a smaller value of λ, the domain for starting points increases,

as shown in Figure 2 (Right). We must note that the influence on the domain of the parameters of

the values of Θ is less remarkable compared with the solutions obtained with the different values

of λ. In particular, the following relation can be established between Θ and DΘ for a fixed value
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Fig. 3: The domain of parameters from Theorem 31 for λ = 1 and N1 = 0.5(Left), The domain of parameters

from Theorem 31 for λ = 1 Θ = 0 and N1 = 0, 0.2, 0.4, 0.6, 0.8, 1 represented by orange, red, yellow, green,blue

and black colour, respectively (Middle), The domain of parameters for non differentiable case, N1 = 0.4, Θ = 0

and λ = 0.1, 0.2, 0.4, 0.6, 0.8, 1 represented by orange, red, yellow, green, blue and black colour, respectively (

Right).

of λ, where DΘ stands for the domain for a particular value of Θ.

DΘ0
⊂ DΘ1

⊂ . . . ⊂ DΘk
for 0 = Θk ≤ Θk−1 ≤ . . . ≤ Θ0.

Now, we consider K1 �= 0. In this case, the domain of the parameters depends on these three

factors, λ, Θ and K1. The domain of the parameter associated to Theorem 31 for fixed λ = 1 and

N1 = 0.5 is given in Figure 3(Left). We can observe that the domain of the parameter is enlarged

for decreasing values of N1. When it maximizes, it leads to the differentiable case. If λ and Θ are

fixed and DN1
denotes the domain of parameters for some N1, then the following relation can be

established between N1 and the domain DN1
as illustrated in Figure 3 (Middle).

DN1k
⊂ DN1k−1

⊂ . . . ⊂ DN10
for 0 = N10 ≤ . . . N1k−1 ≤ N1k .

The domain of the parameters is quite similar for the different values of Θ taken. However, for

Θ = 0, it gives the largest domain of parameters. To see the effect of λ on the most suitable domain

of parameters, we fix Θ = 0 and N1 = 0.4 and take different values of λ. The relation (3.9) also

hold in this case. This situation can be seen in Figure 3(Right). From the above discussion, we

conclude that the domain of the parameter is mainly affected by the value of λ and not much

influenced by K1 and Θ. The most optimal situation arises when all of the factors are taken as

small as possible. This is true for both differential and non differentiable cases.

4 Dynamics of a method with memory

The behaviour of iterative methods has been examined from a global point of view by using ideas

of dynamical systems. Complex dynamics is the most common tool used for the study of iterative

methods without memory, not only because the analytic functions have better properties in the

complex domain, but also because they provide good pictorial representations, (see [10], [11], [12],

[13]).

Let us recall some basic concepts of discrete dynamics, in order to fix the notation. Consider a

function G : C −→ C. The set of successive images of a point p by G: p,G(p),G(G(p)), . . . , is the orbit

of p. A point q ∈ C is called a fixed point of G, if G(q) = q. A fixed point q is attracting if the orbits
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Fig. 4: Dynamics of CSTM(Left), CKTM(Middle) and ICSTM(Right) for x2 − 1 = 0.

of all the points in a neighborhood of q tend to q. The set of all the points whose orbit converges

to a fixed point q is called the attraction basin of q.

The attraction basins of the fixed points form the so called Fatou set. Its complement, the

Julia set, establishes the borders between the basins of attraction.

The basins of attraction of the different fixed points of G are graphically represented by colour-

ing each basin in a different colour, forming the so called dynamical plane. If G is the iteration

function of a numerical method for solving equations, the attraction basins of G give an idea of

the behaviour of the method and its sensitivity to the initial guess.

We are going to compare the dynamic properties of methods (1.3), (1.4) and (1.5) by applying

them to scalar functions of a complex variable in order to analyze the sensitivity of the iterative

method to the initial estimates of the root. The parameters of the methods are set to α = β = γ = 1,

which simplifies their application.

For the comparison of the dynamics of these methods, instead of taking two initial estimates,

x−1 and x0 or x0 and y0, it is more useful to consider only one starting point x0, and an initial

value of the divided difference B0.

Accordingly, (1.3) can be expressed, for k > 0, as

yk = xk −B−1
k F(xk)

xk+1 = yk −B−1
k F(yk)

Bk+1 = [xk, xk+1; F]. (4.1)

In the same way, (1.4) becomes

yk = xk −B−1
k F(xk)

xk+1 = yk −B−1
k F(yk))

Bk+1 = [2xk+1 − xk, xk+1; F]. (4.2)

And, finally, (1.5) becomes

xk+1 = xk −B−1
k F(xk)

yk+1 = xk+1 −B−1
k F(xk+1))

Bk+1 = [xk+1, yk+1; F]. (4.3)

We apply these iterative methods to polynomial equations Fn(x) = xn− 1 = 0, for n = 2, 3, 4, and

compare the behaviour of these methods. Starting from an arbitrary point x0 ∈ C and an initial

estimation of the divided difference B0 ∈ C, we check whether the sequence xk converges to a root

of the polynomial, diverges to infinity, or has periodic or a more complex behaviour.
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Fig. 5: Dynamics of CSTM(Left), CKTM(Middle) and ICSTM(Right) for x3 − 1 = 0.

The dynamical plane is obtained by colouring the point x0 of in the complex plane accordingly

to the root to which the sequence converges. This colour is darkened according to the number of

iterations required to fulfill a given tolerance. Let us set B0 = 1 and take as starting points x0 ∈ C

the nodes of a regular mesh on a rectangle of side 4 centered at the origin. We run the iterations

until a tolerance |xk+1 − xk| < 10−12 is fulfilled or a maximum of 100 iterations is reached.

Figures 4 to 6 show that the complexity of the basins increases with the degree of the poly-

nomial. The roots are marked in red for the second and third degree polynomials and in white

in the case of the fourth degree one. The basins of the roots of the polynomial are successively

coloured in yellow, blue, green and red, according to its degree, and they are darkened to repre-

sent the number of iterations needed for fulfilling the convergence conditions. Methods CKTM

and ICSTM have better behaviour in terms of convergence to the roots than CSTM, whose dy-

namical planes present more zones depicted in cyan or black, corresponding to starting points for

which the iterations diverge to infinity or do not converge after the allowed number of iterations,

respectively.

For the second degree equation x2 − 1 = 0, the three methods show a similar behaviour. Inde-

pendently from the starting point, the iterations always converge to a root for methods CSTM

and ICSTM, and almost always for CSTM. See Figure 4, where the roots are marked with an

asterisk. The attraction basins of the roots are relatively simple. The basins are wider about the

root 1 but this is due to the election of B0. Taking the opposite value of B0, the figure changes by

a symmetry about the imaginary axis.

The third degree polynomial x3−1 = 0 allows us to observe more differences among the methods.

CSTM presents small cyan zones where the method does not converge and even bigger black zones

of divergence to infinity. The divergence zones are inappreciable for CKTM and do not exist in

the case of ICSTM. Moreover, the basins are more fractionated for CKTM than for ICSTM. (See

Figure 5)

The differences among methods are more evident for the fourth degree equation, x4 − 1 = 0.

CSTM presents more zones of divergence to infinity and not convergence after 100 iterations, as

shown in Figure 6. The divergence zones are more evident for ICSTM than for CKTM, but the

basins of CKTM have more branches (Figure 6).

5 Numerical Examples

In this section, the numerical experiments are carried out to show the efficacy of ICSTM. We have

used the first order divided difference defined in (3.1). Now, We have tested the performance of

ICSTM with CSTM and CKTM by working out a number of numerical examples. The performance
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Fig. 6: Dynamics of CSTM(Left), CKTM(Middle) and ICSTM(Right) for x4 − 1 = 0.

measures taken are the number of iterations and CPU time. All calculations are carried out in

Matlab 2018 in a PC with windows 10 and processor intel(R) Core(TM) i7− 4790 CPU 3.60GHz.

Example 51 [5] Consider X = Y = R
2 and F : X→ Y given by

F(x) = (x31 − 0.75, x32 − 0.75). (5.1)

The solution of F(x) = 0 is given by ρ∗ = (0.908560296, 0.908560296). Starting with (x−1, x0) =

((0.999, 0.999), (1, 1)) for (1.3) and (1.4) and (x0, y0) = ((0.999, 0.999), (1, 1)) for (1.5), the error ap-

proximation is given in Table 2.

Table 2: Absolute error between two last iterates, ‖xk+1 − xk‖∞ obtained by (1.3), (1.4) and (1.5) for

α = β = 1/2 and γ = 1

k ICSTM CSTM CKTM

0 8.24167× 10−02 8.24167× 10−02 8.23333× 10−02

1 7.96787× 10−03 9.08442× 10−02 9.13769× 10−02

2 5.51107× 10−05 6.34526× 10−03 6.39438× 10−03

3 3.35609× 10−04 4.28183× 10−05

4 1.20551× 10−06

Example 52 Consider

Fj(x) = xj

(
n∑

k=1

Ljkxk − 1

)
, where

Lj,j = 4(j − 1) + 1, j = 1, . . . , n

Lj,k = Lj,j + 1, j = 1, . . . , n− 1 k = j + 1, . . . , n

Lj,k = Lj,j + 1, k = 1, . . . , n− 1 j = k + 1, . . . , n.

Starting with (x−1, x0) =
(
(0.1, . . .︸︷︷︸

n−2

, 0.1)T , (0.2, . . .︸︷︷︸
n−2

, 0.2)T
)
for (1.3) and (1.4) and (x0, y0) =

(
(0.1, . . .︸︷︷︸

n−2

, 0.1)T ,

(0.2, . . .︸︷︷︸
n−2

, 0.2)T
)
for (1.5), the solution of F(x) = 0 is given by ρ∗ = (0, . . . , 0)T . In Table 3, the total

number of iterations are used by (1.3), (1.4) and (1.5) for α = β = 1/2 and γ = 1 to converge with

tolerance ‖F(xk)‖∞ < 10−15. ’-’ denotes if these methods do not converge within 100 iterations.

Example 53 [14] Consider the nonlinear system

Fk =

{
x2kxk+1 − 1 = 0, if 1 ≤ k ≤ n− 1,

x2nx1 − 1 = 0, if k = n,

.
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Table 3: Number of iterations by (1.3), (1.4) and (1.5) for α = β = 1/2 and γ = 1

n 5 10 15 20

CSTM 18 30 24 28

CKTM 62 32 25 −
ICSTM 13 11 11 17

Table 4: Different values of α, β and γ

Trials α β γ

1 1/2 1/2 1

2 1/4 1/4 1/2

3 1 1 1

4 1/4 1 1/2

5 1/4 5/8 1/2

Fig. 7: Comparison of time for Example 53

Starting with (x−1, x0) =
(
(0.1, . . .︸︷︷︸

n−2

, 0.1)T , (0.2, . . .︸︷︷︸
n−2

, 0.2)T
)
for (1.3) and (1.4) and (x0, y0) =

(
(0.1, . . .︸︷︷︸

n−2

, 0.1)T ,

(0.2, . . .︸︷︷︸
n−2

, 0.2)T
)
for (1.5), the solution of F(x) = 0 is given by ρ∗ = (1, . . . , 1)T . With different values

of α, β and γ, we have compared the total number of iteration taken by these methods for n=10,

20, 30, 40, 50. The values taken by these parameters are given in Table 4. In Table 5, the total

number of iterations are given by different methods to converge with tolerance ‖F(xk)‖∞ < 10−15.

’-’ denotes that the method does not converge within 100 iterations. However, a comparison of

CPU time taken by these methods is shown in Figure 7 for α = β = 1/2 and γ = 1.

Table 5: A comparison to number of iteration in Example 53

Method↓ No. of trials→ 1 2 3 4 5

CSTM 34 91 − 48 30

CKTM 25 57 25 45 20

ICSTM 13 16 12 13 13
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Example 54 Consider the Automotive Steering problem described in [15]. It is given in the form of a system

of nonlinear equations for i=0,1,2,3 by

Fi(ψi, φi) = (Ei(x2 sinψi − x3)−Gi(x2 sin(φi)− x3))
2 +

(
Gi(1 + x2 cosφi)

− Ei(x2 cosψi − 1)
)2 − ((1 + x2 cos(φi))(x2 sin(ψi − x3))x1

− (x2 sin(φi)− x3)(x2 cos(ψi)− x3)x1
)2
, where

Ei = x2(cosφi − cosφ0)− x2x3(sinφi − sinφ0)− (x2 sinφi − x3)x1

Gi = −x2 cosψi − x2x3 sinψi + x2 cosψ0 + x1x3 + (x3 − x1)x2 sinψ0.

Table 6: The values of ψi and φi in Example 54

i ψi φi

0 1.3954170041 1.7461756494

1 1.7444828545 2.0364691127

2 2.0656234051 2.2390977868

3 2.4600678478 2.4600678409

Table 7: Different values of α, β and γ

Trials α β γ Initial Guess

1 1/2 1/2 1 ((0.7, 0.7, 0.7), (0.6, 0.6, 0.6))

2 1/2 1/2 1 ((0.7, 0.6, 0.5), (0.6, 0.5, 0.4))

3 1/4 1/2 1 ((0.7, 0.6, 0.5), (0.6, 0.5, 0.4))

4 1/4 1/4 1/2 ((0.7, 0.6, 0.5), (0.6, 0.5, 0.4))

5 1 1 1 ((0.7, 0.6, 0.5), (0.6, 0.5, 0.4))

Table 8: A comparison to number of iteration in Example 54

Method↓ No. of trials→ 1 2 3 4 5

CSTM 63 5 5 10 5

CKTM − 4 4 6 4

ICSTM 21 3 3 6 3

ψi and φi for i=0,1,2,3 are given in Table 6. There are many solutions to this problem. A small

change in the initial approximation leads to different solutions. However, with different values of

the parameters α, β, γ and starting initial approximations given in Table 7, we checked the perfor-

mance of these different methods using tolerance ‖F(xk)‖2 < 10−3. We assume the solution is ob-

tained once the tolerance is reached by the method. However, starting with x0 = (0.7, 0.6, 0.5), y0 =

(0.6, 0.5, 0.4) and for α = β = 1/2 and γ = 1, we obtained the solution (0.16359404..., 0.21418068..., 0.1419589...)

for this problem. A comparison of the number of iterations accomplished by the different methods

is given in Table 8.

In most of the cases, it is found that ICSTM performs better than CSTM and CKTM.
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Example 55 [2] Consider the nonlinear integral equation of mixed Hammerstein type

x(s) = g(s) +

∫ b

a

(G(s, t)
(
λ1(x(t)− f(t))2

)
+ μ1|x(t)− f(t)|)dt, s ∈ [a, b], (5.2)

where x, f ∈ C[a, b] and λ1, μ1 ∈ R. G(s, t) is the green function, given by

G(s, t) =

{
(b− s)(t− a)/(b− a) if t ≤ s,

(s− a)(b− t)/(b− a) if s ≤ t,

We consider a = 0, b = 1, g(s) = 1, f(t) = 0 and λ1 = μ1 = 1/2. In order to find a numerical solution of (5.2),

we approximate the integral by the Gauss-Legendre formula with eight nodes

∫ 1

0

h(t)dt =

8∑
k=1

wkh(tk)

where wk and tk are weight and nodes, respectively. Denote the approximation of x(tk) by xk, k = 1, . . . , 8. We

obtain the following nonlinear system of equations:

xj = 1 +
1

2

8∑
k=1

ajk(|xk|+ x2k), j = 1, . . . , 8, (5.3)

where

ajk =

{
wktk(1− tj) if k ≤ j,

wktj(1− tk) if j ≤ k.

Now, (5.3) can be written as a system of nonlinear equations, by

F(x) ≡ x− 1− 1

2
A(x+ x̂),

where F : R
8 → R

8, x = (x1, . . . , x8)
T , 1 = (1, . . . , 1)T , A = (ajk)

8
j,k=1, x = (x21, . . . , x

2
8)

T and x̂ =

(|x1|, . . . , |x8|)T . Using (3.1), we obtain for u, v ∈ R
8, [u,v; F] = I − 1

2 (L + M), where L = (Ljk)
8
j,k=1 with

Ljk = ajk(uk + vk) and M = (Mjk)
8
j,k=1 with Mjk = ajk

|uk|−|vk|
uk−vk

.

Taking α = β = 1/2 and γ = 1, we take starting points x0 and y0 as x0 = (1, . . . , 1)T and y0 =

(0.9, . . . , 0.9)T . Using sup-norm, we get η = 0.145981421473560, δ = 1.211673061136663, Θ = 0.1, σ(u, v) =
1
2 (0.123558992073184)(u + v + 2). In addition, we get M = 0.086202128806093 and R = 0.160243447853229.

We see that g(R) = 0.089002243590837 ∈ (0, 0.618034). Hence, all conditions of Theorem 21 are satisfied

and hence the solution exists in B(x0, 0.16024...) and is unique in B(x0, 0.16024...). Now, we use the toler-

ance ‖F(xk)‖∞ < 10−15 and the approximated solution is given in Table 9. It can be visualized in Figure 8.

Table 9: Approximate Numerical solution of (5.3)

k ρ∗k k ρ∗k k ρ∗k k ρ∗k
1 1.01150108... 3 1.10989250... 5 1.14814397... 7 1.05467811...

2 1.05467811... 4 1.14814397... 6 1.10989251... 8 1.01150109...
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Fig. 8: Approximate solution of (5.3)

6 Conclusions

An improvement of the Chebyshev-Secant-type iterative methods requiring an equal number of

functions evaluations used in Chebyshev-Secant-type iterative methods is described for solving

nonlinear equations in a Banach space setting. Using recurrence relations, its semilocal conver-

gence is discussed under weaker continuity conditions on first order divided differences. Conver-

gence theorems are established for the existence-uniqueness of the solutions. Next, center-Lipschitz

condition is defined on the first order divided differences and its influence on the domain of start-

ing iterates is compared with the corresponding domain for Lipschitz conditions. A number of

numerical examples including Automotive Steering problems and nonlinear mixed Hammerstein

type integral equations are worked out and results obtained are compared with some of the exist-

ing similar iterative methods. It is observed that better results are obtained for all the numerical

examples. This demonstrates the novelty and applicability of our study.
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