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Abstract

In our work, we consider the linear least squares problem for m× n-systems of linear
equations Ax = b, m ≥ n, such that the matrix A and right-hand side vector b can vary
within an interval m× n-matrix A and an interval m-vector b, respectively. We have to
compute, as sharp as possible, an interval enclosure of the set of all least squares solutions
to Ax = b for A ∈ A and b ∈ b. Our article is devoted to the development of the so-called
PPS-methods (based on partitioning of the parameter set) to solve the above problem.

We reduce the normal equation system, associated with the linear lest squares problem,
to a special extended matrix form and produce a symmetric interval system of linear
equations that is equivalent to the interval least squares problem under solution. To solve
such symmetric system, we propose a new construction of PPS-methods, called ILSQ-PPS,
which estimates the enclosure of the solution set with practical efficiency. To demonstrate
the capabilities of the ILSQ-PPS method, we present a number of numerical tests and
compare their results with those obtained by other methods.

Key words. Interval systems of linear equations, least squares problems, outer estimation
of solution set, PPS-method.

MSC[2010]. 65F20, 65G40, 65H10, 93E24

1 Introduction

The subject of our paper is the traditional linear least squares problem in which the input data
are not precise and have interval uncertainty. We need to evaluate the variation in the solution
of the linear least squares problem when its data changes in the prescribed intervals.
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Let us be given an m× n-system of linear algebraic equations of the form
a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,
...

...
. . .

...
...

am1x1 + am2x2 + . . . + amnxn = bm,

(1)

or, briefly,
Ax = b (2)

with an m× n-matrix A = (aij), m ≥ n, and a right-hand side m-vector b = (bi). This system
of equations may or may not have the usual solution, but in our paper we will look for its least
squares pseudo-solution that minimizes the Euclidean norm of its residual, that is,

‖Ax− b‖2 =

(
m∑
i=1

(
(Ax)i − bi

)2)1/2

(see e. g. [6]). In practice, the matrix A and vector b are often imprecise, and we only know
interval bounds aij and bi for the respective coefficients and right-hand side components, such
that aij ∈ aij and bi ∈ bi. Therefore, instead of the above systems of linear equations, we get
an interval linear system of the form

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,
...

...
. . .

...
...

am1x1 + am2x2 + . . . + amnxn = bm,

(3)

or, briefly,
Ax = b (4)

with interval m × n-matrix A = (aij) and interval m-vector b = (bi) in the right-hand side.
Boldface letters in the above formulas and throughout this article denote intervals.

How do the least squares solutions for system (3)–(4) change when its coefficients and the
right-hand sides vary within the intervals aij and bi respectively? In other words, what will be
the set of all such pseudo-solutions to system (1)–(2) for A ∈ A and b ∈ b?

Formally, all such points that deliver the minimum to ‖Ax− b‖2 constitute the set

Ξlsq(A, b) =
{
x̃ ∈ Rn | (∃A ∈ A)(∃b ∈ b)(x̃ minimizes ‖Ax− b‖2)

}
, (5)

which will be called least squares solution set to the interval linear system (3)–(4). Usually,
this set can have a complex configuration, it can be bounded by curved surfaces, etc. As a rule,
in practice we do not need to describe it completely and precisely, since this is difficult and not
very convenient. Instead, it makes sense to find some approximate descriptions of the solution
set Ξlsq(A, b), that is, some its estimates.

In the rest of our article, we are going to consider outer interval estimation of the least
squares solution set Ξlsq(A, b), i. e., we solve the problem

given an interval linear equation system Ax = b, we have

to compute, as narrow as possible, an interval box

that contains the least squares solution set Ξlsq(A, b).

(6)

2



One should bear in mind that the other ways of estimating the solution set Ξlsq(A, b) are
possible. For example, an inner interval box contained in the least squares solution set may be
of interest in some practical problems. These may be the subject of further study, and we do
not consider them in our article.

The problem (6) has, in fact, quite a long history. It was first formulated in explicit interval
form by D.M. Gay in the paper [9], but its appearance should be dated back to the articles
[5, 7, 12] and others.

1.1 Preliminaries and auxiliary results

In our work, intervals are bounded closed and connected subsets of the real axis R, i. e. sets of
the form x = {x ∈ R | a ≤ x ≤ b }. The numbers a and b are called endpoints or bounds of
the interval x, lower (left) and upper (right) respectively. Throughout the text, we adhere to
the informal notation standard [15] and, as a consequence, denote intervals and other interval
objects by boldface letters (A, B, C, . . . , x, y, z), while non-interval (point) objects are not
specifically marked. IR stands for the set of all real intervals, and

IRn = { (x1,x2, . . . ,xn)> | xi ∈ IR, 1 ≤ i ≤ n }

is the set of n-dimensional interval vectors, also called boxes. The interval matrix is a rectangular
table of intervals, which is designated by A = (aij), meaning that the intersection of the i-th
row and j-th column contains the element aij. The set of all interval m×n-matrices is denoted
as IRm×n.

Also, we need the following notation:

x , x — lower and upper bound of the interval x, respectively,

mid x = 1
2

(x + x) — midpoint of the interval x,

rad = 1
2

(x− x) — radius of the interval x,

wid x = x− x — width of the interval x,

|x| = max{|x|, |x|} — absolute value (magnitude) of the interval x.

The above operations are applied to interval vectors and matrices componentwise and elemen-
twise. For matrices A = (aij) and A = (aij) of identical dimensions, the relation A ∈ A means
that aij ∈ aij for all matrix elements, and the same is understood for vectors. Also, “int a”
means interior of the interval a, i. e., the interval without its endpoints.

The interval hull of a set S ⊂ Rn is defined as the least inclusive interval vector (box) that
contains the set S. The interval hull is usually denoted as �S.

In this paper, we consider only interval linear systems of equations having full-rank matrices.
Let us remind what this means.

An interval square matrix A is called a nonsingular (regular) matrix if all point matrices
A ∈ A are nonsingular (regular) [13, 16]. An interval square matrix A is called a singular
matrix if it is not nonsingular, which is equivalent to the fact that A contains at least one
singular point matrix. A generalization of the concept of non-singularity to rectangular (not
necessarily square) matrices is the notion of a full rank matrix. The rank of the matrix is the
maximum of its linearly independent rows or columns [13, 16]. A real m × n-matrix is called
a full-rank matrix (or, has full rank) if its rank is equal to the minimum number among m
and n (it cannot be greater). An interval matrix is called a full-rank matrix if it contains only
full-rank point matrices. Otherwise, we say that this matrix has incomplete rank.
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In the interval linear least squares problem (6), we require that the interval system under
study should have a full rank to ensure that its least squares solution set is bounded. Several
necessary and sufficient criteria of the full-rank matrices are presented in [24, 29], and further
we will need some of them.

The first criterion is based on the concept of pseudo-inverse matrix (see [6, 33]). We remind
that a pseudoinverse matrix (or Moore-Penrose inverse matrix) for a real m × n-matrix A is
a real n × m-matrix A+ such that AA+ and A+A are symmetric matrices and AA+A = A,
A+AA+ = A+. If A is a full-rank matrix and m ≥ n, then A+ = (A>A)−1A>:

Theorem 1 [24, 29] Let an interval m×n-matrix A be such that m ≥ n, the midpoint matrix
midA be full-rank, and

ρ
(
|mid A|+ · rad A

)
< 1, (7)

where ρ(·) means taking the spectral radius of the square matrix. Then A has full rank.

Note that the smaller the left-hand side of inequality (7) compared to 1, the larger the
“full-rankness” of the matrix.

Theorem 2 [29] Let σmax(A) and σmin(A) denote the greatest and smallest singular values of
the matrix A. If the inequality

σmax(rad A) < σmin(mid A) (8)

is satisfied for the interval m× n matrix A, then it has full-rank.

In inequality (8), the difference between the right-hand side and left-hand side or ratio of
these values may serve as a measure of the ”full-rankness reserve” of the matrix, that is, how
far the matrix is from the boundary of the set of full-rank matrices. The larger this difference
or the ratio, the larger the reserve, the “better” the matrix is.

1.2 Interval least squares problems

Let Ax = b be an interval m× n-system of linear equations. The interval linear least squares
problem (6) is an interval extension of the traditional linear least squares problem that was first
solved by C.F. Gauss at the beginning of the XIX century. This solution is well-known, being
a part of the standard university linear algebra courses. Given a system of linear equations
Ax = b, the minimization of ‖Ax−b‖2 reduces to the solution of the so-called normal equations
system A>Ax = A>b (see e. g. [6, 31]).

Following this way in the interval context, when the matrix A and right-hand side b vary
within the respective interval matrix A and interval vector b, we will have to “solve the interval
normal system”

A>Ax = A>b, (9)

i. e., to enclose the solution set

Ξlsq(A, b) =
{
x̃ ∈ Rn | (∃A ∈ A)(∃b ∈ b)(A>Ax̃ = A>b)

}
. (10)

But the formally written system (9), which arises in connection with the interval linear least-
squares problem, is not an ordinary interval system of equations with the matrix A>A and the
right-hand side A>b, as it is usually understood in interval analysis (see e.g. [1, 11, 18, 19, 20,
30]). The interval system (9) is a system of equations in which interval parameters are highly
“dependent on each other” in the sense that we define below.
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We notice that the interval itself describes only the boundaries of possible values of a
particular variable. Finer analysis often requires an indication of which variable can run through
this interval, since the same interval can represent the values of completely different variables.

Definition 1 [27, 30] Let us say that interval quantity (interval parameter) is specified if there
is a variable that can take values within a certain interval.

In formal mathematical language, an interval quantity is an ordered pair, which we will
denote with special brackets ba,ae, where a is a variable and a is an interval of its possible
values, so that a ∈ a.

Definition 2 [27, 30]1 The interval quantities bz1, z1e, bz2, z2e, . . . , bzn, zne will be called
independent (untied), if the n-tuple of the corresponding variables (z1, z2, . . . , zn) takes any
values from the direct Cartesian product of the intervals of their changes z1, z2, . . . , zn, i. e.
from the interval box (z1, z2, . . . ,zn). Otherwise, the interval quantities are called dependent
or tied.

For example, turning to the interval system (9), we can see that, in the interval matrix
C = A>A obtained by interval matrix multiplication, the elements are dependent (tied). The
reason is that the set of all products “by representatives”, i. e. C = {A>A | A ∈ A}, does not
cover the interval box C, although the projections of the set C onto the coordinate axes coincide
with the elements of C. In addition, the interval right-hand side in system (9) is dependent on
the matrix, which also gives extra specificity to the problem.

The mutual ties and dependencies of variables is a very common phenomenon in the world
around us, but the classical interval arithmetic and some other elementary tools of interval
analysis are adapted to process only independent variables. The majority of interval methods
for the solution of interval systems of equations (presented e. g. in [1, 11, 18, 19, 20, 30]) are
designed for systems with independent interval parameters. As for the interval system (9), its
interval parameters are highly dependent, and, hence, enclosing its solution set (10) is a very
complex problem. Currently, there are few developed numerical methods for its solution, and
they are of low efficiency.

We reformulate the “normal system” approach in the way that does not involve direct mul-
tiplication of matrices, thus avoiding the multiple occurrences of parameters in the expressions
that form the equations system equivalent to minimization of ‖Ax− b‖2. This technique is also
well known and is called reduction to an “extended system of equations”.

The normal system A>Ax = A>b is equivalent to the system of linear equations

A>(b− Ax) = 0.

Introducing the new variable y = b− Ax, we can rewrite the normal system as{
y + Ax = b,

A>y = 0.

In the matrix-vector form, if we take the unknown vector in aggregated form as (y, x)>, the
above is equivalent to the equation(

I A

A> 0

) (
y

x

)
=

(
b

0

)
, (11)

1Later, a similar definition of dependent intervals was given in [8].
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where I is the identity m×m-matrix, 0 in the matrix is zero n× n-matrix, and 0 in the right-
hand side vector is the zero n-vector. System (11) is a symmetric square linear system of the
size m+ n.

To solve the interval linear least squares problem (6), we can intervalize system (11), which
gives (

I A

A> 0

) (
y

x

)
=

(
b

0

)
. (12)

We need computing an enclosure of its solution set with respect to the variable x, that is, for
the set {

x ∈ Rn

∣∣∣∣
(
I A

A> 0

) (
y

x

)
=

(
b

0

)
for some A ∈ A and b ∈ b

}
. (13)

System (12) is an symmetric interval system of linear equations, that is, a system of linear
algebraic equations in which the elements of the matrix and right-hand side vector can vary
within prescribed intervals, but in such a way that the resulting matrix is always symmetric.
Such systems are the simplest representatives of the so-called interval systems of equations
with dependent parameters (or “tied interval systems of equations”), but in symmetric interval
linear systems, the dependence between the parameters has a fairly simple form that can be
handled by existing numerical methods. In particular, the so-called PPS-methods (based on
Partitioning of the Parameter Set and developed in [25, 27, 28]) can be applied for enclosing
the solution set (13) for system (12). This is the main idea of our work.

Figure 1: The least squares solution set to the interval linear system (15).

There is another way to reduce the normal system A>Ax = A>b to an extended linear
system. If we denote y = Ax, then −y + Ax = 0, and the normal system can be rewritten as(

−I A

A> 0

) (
y

x

)
=

(
0

A>b

)
. (14)

This method is not as good for our purposes as the previous one, since the matrix of system
(14) is almost the same, but the product A>b appears in the right-hand side. The latter means
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that the right-hand side is dependent on the matrix of the system, and in the interval context
this problem is more complex than (12).

We consider, as an example, the interval linear system[−13,−11] [−7,−5]

[−3,−1] [1, 3]

[5, 7] [11, 13]

 (
x1
x2

)
=

[−1, 0]

[0, 1]

[−1, 1]

 . (15)

Its least squares solution set, constructed by Monte-Carlo simulation, is depicted in Fig. 1.
The solution sets of symmetric interval linear systems of equations are known to have a

structure which is significantly different from that of the solution sets for usual interval linear
systems with independent parameters. Thus, the solution sets of interval linear systems of
equations are polyhedra, bounded by pieces of hyperplanes. The solution sets to symmetric
interval linear systems of equations are bounded by pieces of hyperplanes and second-order
(quadratic) algebraic surfaces [2, 18], being curvilinear in general. The least squares solution
set (5) in full rank situation coincides with (10), and then, in its turn, with the solution set (13)
to the symmetric interval linear system (12). As a consequence, if the interval matrix of the
system has full rank, then the least squares solution sets have all the properties of the solution
set for the symmetric case (which is seen from Fig. 1).

2 Theory

The problem we set in the first section will be solved with the help of the so-called PPS-methods
proposed and developed in the works [25, 27, 28]. These methods are based on adaptive splitting
(subdivision) of the interval parameters of the equations system into smaller subintervals and
solving the resulting subsystems (also called descendant systems). Since the results produced
by interval methods are more accurate for narrower interval data, the subdivision process leads
to increasingly accurate estimates of the solution to the problem. Overall, PPS-methods can
be considered as an extension of the well-known interval methods of global optimization, based
on the adaptive “branch-and-bound” strategy, to the case of estimating solution sets of interval
systems of equations, when the objective function is specified implicitly. We will see that in
the next section.

The key point in the organization of PPS-methods is a way of splitting (subdividing) the
interval elements of the equation system into subintervals. If the interval parameters of the
system of linear algebraic equations are independent of each other in the sense of Definition 2,
then the following statement is true:

Theorem 3 (Beeck-Nickel theorem) Let Ax = b be an interval system of linear algebraic
equations with a regular matrix A ∈ IRn×n, and let Ξ(A, b) denote its united solution set,
that is,

Ξ(A, b) =
{
x ∈ Rn | (∃A ∈ A)(∃b ∈ b)(Ax = b)

}
.

For any index ν ∈ {1, 2, . . . , n}, the exact coordinate estimates of the points from the solution
set, i. e., the extreme values min{xν | x ∈ Ξ(A, b) } and max{xν | x ∈ Ξ(A, b) }, are attained
at the solutions to the “corner” systems of equations Ax = b, such that the matrix A and
vector b are made up of endpoints of the interval elements of A and b respectively.

By virtue of the Beeck-Nickel theorem, PPS-methods can be organized so that the interval
elements in the equations system are divided into their endpoints, that is, in the most advanta-
geous way in which the interval parameters sequentially disappear (see the detailed derivation
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of this fact in [25, 28]). This greatly simplifies the implementation of PPS-methods and makes
them very efficient in solving interval linear systems of moderate dimensions. But if the interval
parameters of the equation system are dependent on each other, then the “endpoint splitting”
of the intervals is no longer adequate, and we must split the parameter intervals into parts
with non-zero widths, while maintaining the dependence between the parameters. Then the
efficiency of PPS-algorithms becomes not so high as for the case of independent interval data.

For the problem considered in our work, when the symmetric interval system of linear
equations is solved and the components of the right-hand side are independent of each other
and of the matrix, we can apply a “mixed” subdivision strategy. Namely, the interval elements
of the matrix will be split up into subintervals of nonzero width, whereas the components of
the interval vector in the right side will be split up into their endpoints. Clearly, the “mixed”
subdivision strategy is more effective than total subdivision of all interval elements of the system
to their halves.

The theoretical basis for the “mixed” subdivision is the following result:

Theorem 4 Let a symmetric interval system of linear equations Ax = b be given with regular
symmetric interval matrix A = A> ∈ IRn×n and right-hand side b ∈ IRn such that its interval
components are independent from each other and from the matrix A, and let Ξsym denote its
united solution set, that is,

Ξsym =
{
x ∈ Rn | (∃A ∈ A)(∃b ∈ b)(A = A> & Ax = b)

}
.

Then, for any ν ∈ {1, 2, . . . , n}, the exact component-wise estimates of the points from the
united solution set Ξsym , i. e. min {xν | x ∈ Ξsym} and max {xν | x ∈ Ξsym}, are attained at
the point linear systems Ãx = b̃ for which the right-hand side vectors b̃ are constructed of the
endpoints of components of the interval vector b.

Proof. Using Cramer’s rule (see e.g. [13, 16, 31]), we can give expressions for each component
of the solution to a system of linear algebraic equations Ax = b with A ∈ A and b ∈ b:

xν =
det
(
A:1, . . . , A:,ν−1, b, A:,ν+1, . . . , A:n

)
detA

, ν = 1, 2, . . . , n,

where the numerator is the determinant of a matrix obtained from A by replacing its ν-th
column A:ν with the vector-column of the right-hand side b. Now, we are able to answer the
question: how xν depends on the elements bi of the right-hand side b?

From the properties of the determinant, we can conclude that, for any i = 1, 2, . . . , n,

xν = xν(bi) =
ξbi + η

detA
, (16)

where ξ, η do not depend on bi. These relations are valid for all values of the remaining
components of the right-hand side b and all elements of the matrix A within the respective
intervals. Now, the statement of the theorem follows from the monotonicity of the linear
functions xν(b), ν = 1, 2, . . . , n, of the arguments bi determined by (16). �

3 The simplest PPS-algorithm

3.1 A short overview of PPS-methods

If the system of linear algebraic equations Ax = b has a regular n × n-matrix A = (aij), then
its solution x∗ is known to be

x∗ = A−1b,
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and its k-th components is (A−1b)k. For an interval linear system Ax = b with a regular
interval n× n-matrix A, the united solution set

Ξ(A, b) = { x ∈ Rn | (∃A ∈ A)(∃b ∈ b)(Ax = b)}

can be equivalently represented as

Ξ(A, b) =
⋃

A∈A, b∈b

A−1b.

Therefore, for any fixed index ν ∈ {1, 2, . . . , n},

min
{
xν | x ∈ Ξ(A, b)

}
= min

A∈A, b∈b

(
A−1b

)
ν
,

which means that our problem reduces to a global optimization problem

find min φ(A, b) over the interval box A× b (17)

for the objective function φ(A, b) := (A−1b)ν . To solve it, we can apply the well-known and
developed interval global optimization methods, based on adaptive subdivision of the domain of
the objective function (see e. g. [11, 22, 30]). A prerequisite for the application of these methods
is the constructive estimation of the ranges of values of the objective function φ over interval
boxes, or at least available estimates of this ranges from below (in the case of minimization
problems).

The latter can be done using existing interval methods that compute interval enclosures for
the united solution sets to interval linear systems, see [1, 11, 18, 19, 20, 30]. If, for any interval
linear system Qx = r, we know an enclosure X for its solution set, X ⊇ Ξ(Q, r), produced
by an interval method, then

Xν ≤ min
A∈Q, b∈r

φ(A, b),

and the discrepancy between the left-hand and right-hand sides of the above inequality vanishes
with decreasing widths of Q and r for most interval methods. Thus, the basic prerequisite for
the application of interval global optimization methods to (17) is fulfilled, which results in
PPS-methods [25, 28]. The facts that the objective function φ is specified implicitly in the
optimization problem to be solved, and the estimates of its range of values are performed not
in the usual way, through the solution of auxiliary interval linear systems, are secondary and
should not be confusing.

In PPS-methods, we organize the adaptive subdivision of the initial interval linear system
into systems with narrower interval elements and then sequentially solve them, computing
increasingly accurate estimates for min

{
xν | x ∈ Ξ(A, b)

}
from below (see details in [25, 28]).

An important feature of PPS-methods is their ability to adapt to the problem being solved.
In particular, the PPS-method can be terminated early, if we have exhausted the computing
resources or the time allotted for solving the problem. As a result, an answer will still be
obtained, i. e. we will get the desired lower estimate for min

{
xν | x ∈ Ξ(A, b)

}
.

3.2 PPS-methods for symmetric interval systems

3.2.1 A general idea

How can one adapt the computational scheme of PPS-methods for the case when the interval
parameters of the equations system are dependent from each other in the sense of Definition 2?
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If these dependencies can be described, for example, as additional inequalities or equalities
on parameter values, then we should include these new conditions in the statement of the
optimization problem (17). Then the objective function will not change, but its domain of
definition, on which we search for the minimum, can change very significantly. It will not be
the box A×b any longer, it should be its subset or even a set of smaller dimension than A×b.

If the specific form of dependencies between the interval parameters of the system is known,
then, to solve the problem, we can use the interval technique of constrained optimization, which
is presented, for example, in the book [11]. But in some simple cases, processing additional
restrictions on interval parameters can be performed very simply. Such a case is the symmetric
interval system of linear equations Ax = b, in which A = (aij), A

> = A and point values
aij, aji are taken from the respective intervals aij and aji so that aij = aji. Then the interval
parameters aij and aji become identical, and we can, in fact, reduce the dimension of the
domain of the objective function in (17): the total number of interval parameters, associated
with the matrix, becomes just n(n+ 1)/2 instead of n2.

In terms of subdivision procedure, the main ideas of our modification of the original PPS-
methods are simple and natural, and they have been formulated in [27, 30]:

• instead of splitting the elements of the interval linear system to their endpoints, we will
subdivide the interval parameters of the system into subintervals of nonzero widths, their
union being equal to the initial interval;

• we subdivide the interval system so that the resulting systems (“descendant systems”)
conform to the dependencies (constraints) imposed on interval parameters of the system.

In particular, if a symmetric interval system of linear equations is considered, then, in a single
partitioning act, we should simultaneously split two intervals symmetric with respect to the
main diagonal of the matrix, so that the resulting interval subsystems again have symmetric
interval matrices.

Let us give a rigorous exposition of the informal ideas expressed above. We introduce the
following notation:

Encl is a fixed numerical method for outer interval estimation (enclosing) of the symmetric
solution sets for interval linear systems (we will call it basic method);

Encl (Q, r) is an interval vector produced by the method Encl when applied to the interval
linear system Qx = r, i. e., Encl (Q, r) ∈ IRn being an interval box that encloses the
symmetric solution set Ξsym(Q, r) for the system Qx = r,

Encl (Q, r) ⊇ Ξsym(Q, r);

Υ (Q, r) is the lower endpoint of the ν-th component (for a given ν ∈ { 1, 2, . . . , n }) of the
enclosure for the solution set Ξsym(Q, r) produced by the method Encl , i. e.

Υ (Q, r) :=
(

Encl (Q, r)
)
ν
. (18)

Since Ξsym(A, b) ⊆ Ξ(A, b), then traditional and well-developed methods of outer interval
estimation of the solution set can be taken as basic methods, for example, those described
e.g. in [1, 11, 19, 20, 30]. This means that the algorithm for estimating the solution sets
to interval systems with dependencies (ties) between interval parameters is constructed from
simple methods for the solution of interval systems with independent data.
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Two natural requirements that we impose on the basic method Encl are as follows:

the estimate Υ (Q, r) is inclusion monotonic with respect
to the matrix Q and vector r , i. e., for any Q′, Q′′ ∈ IRn×n

and r′, r′′ ∈ IRn, the inclusions Q′ ⊆ Q′′ and r′ ⊆ r′′ imply

Υ (Q′, r′) ≥ Υ (Q′′, r′′)

(C1)

and

the estimate Υ (Q, r) is exact for point linear algebraic systems,

i. e. Υ (Q, r) = (Q−1r )ν for every Q ∈ Rn×n and r ∈ Rn.
(C2)

If the basic method Encl is a natural interval extension of a point (non-interval) method
(such as the interval Gauss method for linear systems), or, more generally, the result of the
basic method Encl is obtained using only interval arithmetic operations, then property (C1)
is obviously satisfied due to the inclusion monotonicity of interval arithmetic. Otherwise, if
noninterval operations are encountered in the algorithm of the basic method, then property
(C1) may be violated. We assign to program developers to check whether a particular basic
method satisfies property (C1).

We have
min{xν | x ∈ Ξsym(A, b) } =

(
Ã−1b̃

)
ν

for a certain symmetric point matrix Ã = ( ãij) ∈ Rn×n and a point vector b̃ = ( b̃i) ∈ Rn made
up of representatives of the elements of the matrix A and vector b. Then, according to the
very definition of the estimate Υ ,

Υ (Ã, b̃) ≤
(
Ã−1b̃

)
ν
.

3.2.2 Subdivision of the interval matrix of the system

Suppose that, for a certain pair of the indices k, l ∈ {1, 2, . . . , n}, the elements akl and alk in
the matrix A, symmetric with respect to the main diagonal, have non-zero width. Let

A′ be the matrix obtained from A by replacing the elements akl and alk
with [akl,mid alk],

A′′ be the matrix obtained from A by replacing the elements akl and alk
with [ mid akl,akl],

Ã
′

be the matrix obtained from Ã by replacing the elements ãkl and ãlk
with [akl,mid akl],

Ã
′′

be the matrix obtained from Ã by replacing the elements ãkl and ãlk
with [ mid akl,akl].

Interval system of linear algebraic equations A′x = b and A′′x = b, obtained from the original
system by dissecting, to their halves, pairs of interval elements symmetric with respect to the
main diagonal, will be called descendant systems of Ax = b.
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Inasmuch as
Ã
′ ⊆ A′ ⊆ A, Ã

′′ ⊆ A′′ ⊆ A,

and b̃ ⊆ b, then condition (C1) has, as a consequence, the inequalities

Υ (A, b) ≤ Υ (A′, b) ≤ Υ (Ã
′
, b̃)

and
Υ (A, b) ≤ Υ (A′′, b) ≤ Υ (Ã

′′
, b̃).

Consequently, by taking the minimums from the corresponding parts of the inequalities, we get

Υ (A, b) ≤ min
{
Υ (A′, b), Υ (A′′, b)

}
≤ min

{
Υ (Ã

′
, b̃), Υ (Ã

′′
, b̃)
}
. (19)

In addition, since the matrix Ã is necessarily contained either in Ã
′
or in Ã

′′
, then at least one

of the inequalities

Υ (Ã
′
, b̃) ≤ Υ (Ã, b̃) or Υ (Ã

′′
, b̃) ≤ Υ (Ã, b̃)

is fulfilled. Taking the minimum of the left-hand sides of these inequalities, we get

min
{
Υ (Ã

′
, b̃), Υ (Ã

′′
, b̃)
}
≤ Υ (Ã, b̃) ≤

(
Ã−1b̃

)
ν

= min{xν | x ∈ Ξsym(A, b) }. (20)

Comparison of inequalities (19) and (20) leads to the relation

Υ (A, b) ≤ min
{
Υ (A′, b), Υ (A′′, b)

}
≤ min{xν | x ∈ Ξsym(A, b) },

and, hence, to the following practical prescription: solving two interval “descendant systems”
A′x = b and A′′x = b, in which A′ and A′′ are obtained by dividing an interval element in
the matrix A to its halves, we generally come to a more accurate lower bound for the desired
value min{xν | x ∈ Ξsym(A, b) }, in the form of min

{
Υ (A′, b), Υ (A′′, b)

}
.

The same effect is achieved by splitting the right-hand side vector b in some interval compo-
nent bi into subintervals [ bi,mid bi] and [ mid bi, bi], which can be justified by calculations that
are completely similar to (19)–(20). However, we can perform the subdivision of the right-hand
side vector much more efficiently, based on the result of Theorem 4.

3.2.3 Subdivision of the right-hand side vector

Suppose that, for a certain index k ∈ {1, 2, . . . , n}, the component bk in the vector b has
non-zero width. Let

b′ be the vector obtained from b by replacing the component bk with bk,

b′′ be the vector obtained from b by replacing the component bk with bk,

b̃
′

be the vector obtained from b̃ by replacing the component b̃k with bk,

b̃
′′

be the vector obtained from b̃ by replacing the component b̃k with bk.

12



Inasmuch as
b̃
′ ⊆ b′ ⊆ b, b̃

′′ ⊆ b′′ ⊆ b,

and Ã ⊆ A, then condition (C1) has, as a consequence, the inequalities

Υ (A, b) ≤ Υ (A, b′) ≤ Υ (Ã, b̃
′
)

and
Υ (A, b) ≤ Υ (A, b′′) ≤ Υ (Ã, b̃

′′
).

Consequently, by taking the minimums from the corresponding parts of the inequalities, we get

Υ (A, b) ≤ min
{
Υ (A, b′), Υ (A, b′′)

}
≤ min

{
Υ (Ã, b̃

′
), Υ (Ã, b̃

′′
)
}
. (21)

In addition, since the vector b̃ is necessarily contained either in b̃
′

or in b̃
′′
, then at least one of

the inequalities

Υ (Ã, b̃
′
) ≤ Υ (Ã, b̃) or Υ (Ã, b̃

′′
) ≤ Υ (Ã, b̃)

is fulfilled. Taking the minimum of the left-hand sides of these inequalities, we get

min
{
Υ (Ã, b̃

′
), Υ (Ã, b̃

′′
)
}
≤ Υ (Ã, b̃) ≤

(
Ã−1b̃

)
ν

= min{xν | x ∈ Ξsym(A, b) }. (22)

Comparison of inequalities (21) and (22) leads to the relation

Υ (A, b) ≤ min
{
Υ (A, b′), Υ (A, b′′)

}
≤ min{xν | x ∈ Ξsym(A, b) },

and, hence, to the following practical prescription: solving two interval “descendant systems”
Ax = b′ and Ax = b′′, in which b′ and b′′ are obtained by dividing an interval component in
the right-hand side vector b to its endpoints, we generally come to a more accurate lower bound
for the desired value min{xν | x ∈ Ξsym(A, b) }, in the form of min

{
Υ (A, b′), Υ (A, b′′)

}
.

From now on, for consistency, we agree to denote descendants systems, obtained from
Ax = b by halving two symmetric interval elements in the matrix A or by splitting to endpoints
one interval element in b, through A′x = b′ and A′′x = b′′.

3.2.4 An overall algorithm

The procedure improving the estimate for min{xν | x ∈ Ξsym(A, b) } by splitting the elements
of the interval system (12) can be repeated with respect to the descendant systems A′x = b′

and A′′x = b′′. Then we can split again the descendants of A′x = b′ and A′′x = b′′ and
further improve the estimate, and so on. We will formalize this process of successive improving
the lower bound for min{xν | x ∈ Ξsym(A, b) } in the way implemented in the well-known
“branch-and-bound” method of combinatorial optimization [21] and how it was adapted for
interval methods of global optimization (see, for example, books [11, 22]):

first, we organize all the interval systems Qx = r that result from splitting the original interval
system Ax = b, together with their estimates Υ (Q, r), in the form of records (structures)
that will be stored in a special working list L;
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Table 1: The simplest PPS-method for symmetric interval systems

Input

A symmetric interval linear system Ax = b.

A number ν ∈ {1, 2, . . . , n} of the component to be estimated.

A method Encl that computes the estimate Υ according to the rule (18).

A constant ε > 0.

Output

An estimate Z from below for min{xν | x ∈ Ξsym(A, b) }.

Algorithm

assign Q← A and r ← b ;

compute the estimate υ ← Υ (Q, r);

initialize the working list L ←
{

(Q, r, υ)
}

;

DO WHILE
(
( maximum width of the elements from Q and r ) ≤ ε

)
in the matrix Q = ( qij) and vector r = ( ri), we choose the interval

element s having the maximum width;

generate the interval descendant systems Q′x = r′ and Q′′x = r′′:

if s = qkl for some k, l ∈ { 1, 2, . . . , n }, then assign

q′ij ← q′′ij ← qij for (i, j) 6= (k, l) or (i, j) 6= (l, k),

q′lk ← q′kl ← [ q
kl
,mid qkl ], q

′′
lk ← q′′kl ← [ mid qkl, qkl ],

r′ ← r′′ ← r;

if s = rk for some k ∈ { 1, 2, . . . , n }, then assign

Q′ ← Q′′ ← Q, r′k ← rk, r′′k ← rk,

r′i ← r′′i ← ri for i 6= k;

compute the estimates υ′ ← Υ (Q′, r′) and υ′′ ← Υ (Q′′, r′′);

delete the late leading record (Q, r, υ) from the working list L;

put the records (Q′, r′, υ′) and (Q′′, r′′, υ′) into the working list L,
keeping its ordering with respect to the third field;

denote the first record of the list by (Q, r, υ);

END DO

Z ← υ;
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second, we split such interval system Qx = r from the list L that provides the smallest current
estimate of Υ (Q, r) for the value min{xν | x ∈ Ξsym(A, b) };

third, in the interval system chosen from the list L for splitting, we subdivide the element
with the maximum width.

So, in the process of executing the algorithm, we will maintain a list L, consisting of triples of
the form (

Q, r, Υ (Q, r)
)
, (23)

where Q is an interval n× n-matrix, Q ⊆ A,

r is an interval n-vector, r ⊆ b.

In addition, the records that form L will be ordered in ascending order of the values of the
estimate Υ (Q, r), and the first record of the list, as well as the corresponding interval system
Qx = r and the estimate Υ (Q, r) (record #1 in the list) will be called leading at the current
step. The complete pseudocode of the resulting new algorithm, which we call PPS-method
(meaning Partitioning Parameter Set), is presented in Table 1 (where “←” denotes the as-
signment operator). It differs from the PPS-methods presented in [25, 28] by the process of
generating interval descendant systems from the leading interval system and the termination
criterion.

How close the result of the algorithm and the desired min{xν | x ∈ Ξsym(A, b) } will be
to each other depends, on the one hand, on the numerical method by which we compute the
estimate Υ (Q, r), i. e., on the basic method chosen for solving the descendant systems. On the
other hand, this depends on the sensitivity of the solution to the point systems that form the
last leading system (that can be evaluated during the execution of the algorithm). In particular,
in order for the value calculated by the algorithm to tend to min{xν | x ∈ Ξsym(A, b) }) for
ε→ 0, it is necessary and sufficient to fulfill condition (C2). If, in the original interval system,
the total width of interval elements is “large” compared to ε, then, as a rule, the simplest
PPS-method will not work until the end, and therefore it is more expedient to consider it as
an iterative refinement procedure.

4 Modification of PPS-methods for symmetric systems

The simplest algorithm we considered in the previous section computes a solution to our prob-
lem, but in reality it may take too much time and memory to find estimates for the symmetric
solution set in real-life problems. In order to make the algorithm more practical, we have to
supplement it with additional improvements that increase its overall efficacy.

4.1 Monotonicity test

Let us be given a system of linear algebraic equationsQx = r with a symmetric matrixQ = (qij),
Q> = Q, and a right-hand side vector r = (ri). Suppose that the elements of the matrix Q
and r vary within some intervals and the matrix Q remains symmetric in this variation. We
can say then that a symmetric interval linear system Qx = r is defined. Recall a fact from
calculus: the solution vector of a system of linear algebraic equations with a nonsingular matrix
is a smooth (continuously differentiable) function of the elements of this and of the components
of the right-hand side vector. The same is true for systems of linear equations with symmetric
matrices. Consequently, we can investigate the monotonicity of the individual components of
the solution, i.e. their increase or decrease relative to certain arguments, using standard tools
of differential calculus.
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Assume that we know interval enclosures of the derivatives

∂xν(Q, r)

∂qij
and

∂xν(Q, r)

∂ri

of the ν-th component of the solution x(Q, r) to the point symmetric system Qx = r with
respect to the ij-th entry of the matrix Q and i-th element of the vector r. We will denote
these interval enclosures by

∂xν(Q, r)

∂qij
and

∂xν(Q, r)

∂ri

respectively. Now, if we take a symmetric interval n × n-matrix Q̃ = (q̃ij) and an interval
n-vector r̃ = (r̃i) with their elements in the form

q̃ij =



[q
ij
, q

ij
] for

∂xν(Q, r)

∂qij
≥ 0,

[qij, qij] for
∂xν(Q, r)

∂qij
≤ 0,

qij for int
∂xν(Q, r)

∂qij
3 0

(24)

and

r̃i =



[ri, ri] for
∂xν(Q, r)

∂ri
≥ 0,

[ri, ri] for
∂xν(Q, r)

∂ri
≤ 0,

ri for int
∂xν(Q, r)

∂ri
3 0,

(25)

then, obviously,

min{xν | x ∈ Ξsym(Q̃, r̃)} = min{xν | x ∈ Ξsym(Q, r)} (26)

due to monotonicity reasons.
Then, since the number of interval elements (with nonzero widths) in Q̃ and r̃ may be

substantially less than that in Q and r, reducing the interval system Qx = r to Q̃x = r̃
generally simplifies the computation of the desired min{xν | x ∈ Ξsym(Q, r)}.

Earlier in the interval analysis, a number of numerical schemes have already used derivatives
of the solution of system of linear algebraic equations with respect to matrix elements and right-
hand sides (see, e. g. [1]). Below, we derive formulas for these derivatives taking into account
the symmetric form of the matrix of the equation system.

Let l and k be some fixed indices such that 1 ≤ k ≤ l ≤ n. We rewrite the system of linear
equations Qx = r in the expanded form

n∑
j=1

qijxj = ri , i = 1, 2, . . . , n, (27)

and differentiate it with respect to qkl. Since

∂

∂qkl
(qijxj) =

∂qij
∂qkl

xj + qij
∂xj
∂qkl

,
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where

∂qij
∂qkl

=

0, if (i, j) 6= (k, l),

1, if (i, j) = (k, l),

we get from (27) 

n∑
j=1

qij
∂xj
∂qkl

= 0, if i 6= k and i 6= l,

n∑
j=1

qij
∂xj
∂qkl

+ xl = 0, if i = k,

n∑
j=1

qij
∂xj
∂qkl

+ xk = 0, if i = l.

Therefore, if
∂x

∂qkl
=

(
∂x1
∂qkl

, . . . ,
∂xn
∂qkl

)>
,

then

Q · ∂x
∂qkl

= (0, . . . , 0,−xl, 0, . . . , 0,−xk, 0, . . . , 0)> ,

where (−xl) is in the k-th position of the vector, and (−xk) is in the l-th position. Hence,

∂x

∂qkl
= Q−1 · (0, . . . , 0,−xl, 0, . . . , 0,−xk, 0, . . . , 0)> .

If Y = (yij) is the inverse matrix for Q, then the derivatives of the solution to the symmetric
system of linear equation Qx = r with respect to the elements of the matrix are given by the
formulas

∂x

∂qkl
= −yνkxl − yνlxk.

Differentiating of equalities (27) with respect to rk results in simpler relations

n∑
j=1

qij
∂xj
∂rk

= 0 , if i 6= k,

n∑
j=1

qij
∂xj
∂rk

+ xl = 1 , if i = k.

Therefore, if
∂x

∂rk
=

(
∂x1
∂rk

, . . . ,
∂xn
∂rk

)>
,

then

Q · ∂x
∂rk

= (0, . . . , 0, 1, 0, . . . , 0)>,

where 1 is in the k-th position of the vector. Hence,

∂x

∂rk
= Q−1 · (0, . . . , 0, 1, 0, . . . , 0)>.
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If Y = (yij) is, as before, the inverse matrix for Q, then the derivatives of the solution of the
symmetric system of linear equations Qx = r with respect to the components of the right-hand
side vector are given by the formulas

∂xν
∂rk

= yνk.

Finally, let Y = (yij) be the inverse interval matrix for Q, i. e., an interval enclosure for
the set of inverse matrices from Q,

Y ⊇ {Q−1 | Q ∈ Q},

and xk and xl be components of an interval vector x such that x ⊇ Ξsym(Q, r). Then we can
take the following interval enclosures of the derivatives:

∂xν(Q, r)

∂qkl
= −yνkxl − yνlxk,

∂xν(Q, r)

∂rk
= −yνk. (28)

To use the above results effectively, we will need to have some (rough) outer estimate x
for the solution set and outer estimates for the elements of the inverse interval matrix dirung
the execution of the algorithm. This complicates the algorithm a bit, but does not pose a big
problem.

Now, instead of triples (Q, r, υ), the working list L of the algorithm will consist of records
of the form (

Q, r, υ,x,Y
)
,

where Q, r are the interval matrix and right-hand side vector
of the interval linear “descendant systems” obtained
from the subdivision of the original system Ax = b,

υ is an estimate for min{xν | x ∈ Ξ(Q, r)} from below,

x is an enclosure of the solution set,

Y is an enclosure of the inverse interval matrix for Q.

4.2 Improving the subdivision process

The PPS-method we have constructed to solve our problem is an essentially iterative algorithm
that provides the exact answer as the limit of a sequence. But it has a substantial distinction
from the traditional iterative methods (considered e. g. in computational linear algebra) in
that the complete convergence, when the error of the approximate solution becomes sufficiently
small, requires so many steps that usually it is never carried out in practice when solving
real problems. This is caused by the intractability of our problem, which requires a special
organization of the algorithm to obtain the best possible results.

Suppose that E(N) is the error in estimating the solution set at the Nth iteration of an
algorithm implementing the PPS-method. Fig. 2 shows a collection of graphs of E(N), where
different graphs correspond to different subdivision strategies.2 The error function E∗ has a
higher decrease rate than the other error functions on the number of steps that are actually
available to us (it is marked with a vertical dashed line in Fig. 2).

The last point is especially important since in practice we work within a relatively small
starting area of a large set of steps necessary for the complete convergence of the algorithm.
The actual error we have achieved with this or that version of the PPS-algorithm will depend

2The graphs at Fig. 2, of course, are idealized and depict the functions E(N) as smooth, whereas in reality
they have a discrete “stepwise” character.
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N

E(N)

E∗

Figure 2: Error functions E(N) for various subdivision strategies in PPS-methods.

on the behavior of the error function E(N). According to the algorithm properties, all the
functions E(N) are descending, but the more steep is the function decrease the better accuracy
of the result we get with the PPS-algorithm in a finite number of its steps.

To generate subsystems, the main PPS-method selects, in each iteration, an interval ele-
ment with the largest width from the interval system. The choice of the widest element is
motivated by the well-known convergence result for interval global optimization algorithms
based on “branch-and-bound” strategy (see [22, 26]), which are the nearest “relatives” of the
PPS-methods. But sometimes the strategy of selecting the widest element is not optimal in
the sense that it does not provide the fastest convergence to the solution for “not very large”
values of N , which we can practically reach.

Therefore, we need a better subdivision strategy for the subsystems, which would provide
at each step a faster improvement in the estimate for min{xν | x ∈ Ξ(Q, r)}. One of the
useful ideas that can help in this is the use of information about the speed of change of the
objective function depending on changes of parameters of the system, i. e. information about
its derivatives with respect to these parameters. For PPS-methods, this technique has been
successfully applied in [25, 28] for interval linear systems with independent parameters.

In the following, we extend this strategy to symmetric interval linear systems. Let us
consider two linear equations systems

Q̌x = r and Q̂x = r

with the symmetric regular matrices Q̌ = (q̌ij) and Q̂ = (q̂ij) such that they differ only in the

(k, l)-th and (l, k)-th entries, i. e. q̌kl = q̌lk 6= q̂kl = q̂lk and the rest of the entries in Q̌ and Q̂
coincide with each other. The Lagrange mean-value theorem implies that the dfference between
the ν-th components of the solutions to these systems can be represented as follows:

(Q̌−1r)ν − (Q̂−1r)ν =
∂xν(Q̃, r)

∂qkl
·
(
q̌kl − q̂kl

)
(29)

for some matrix Q̃ ∈ �{Q̌, Q̂}. Strictly speaking, Q̃ belongs to the straight line segment that
connects the matrices Q̌ and Q̂, but this is not so important.

Similarly, if the vectors ř = (ři) and r̂ = (r̂i) differ only in the k-th component and řk < r̂k,
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then it follows from the Lagrange mean-value theorem that

(Q−1ř)ν − (Q−1r̂)ν =
∂xν(Q, r̃)

∂rk
·
(
řk − r̂k

)
(30)

for some vector r̃ ∈ �{ř, r̂}.
Now, let the symmetric interval matrices Q̌ and Q̂ be obtained from the interval matrix Q =

(qij) by subdividing its elements qkl and qlk into the subintervals q̌kl = q̌lk = [ q
kl
,mid qkl ],

q̂kl = q̂lk = [ mid qkl, qkl]. According these subsystems, we have the solutions set min{xν |
x ∈ Ξ(Q̌, r)} and min{xν | x ∈ Ξ(Q̂, r)} with the same right side vector r. Therefore, by the
continuity of these quantities, it follows from (29) that

min{xν | x ∈ Ξ(Q̂, r)} −min{xν | x ∈ Ξ(Q̌, r)} =
∂xν(Q́, ŕ)

∂qkl
· wid qkl (31)

for some matrix Q́ ∈ Q and vector ŕ ∈ r.
Similarly, let ř and r̂ be the interval vectors obtained from the interval vector r by subdi-

viding its k-th component into the endpoints rk and rk, that is, řk = rk, r̂k = rk. We have
again

min{xν | x ∈ Ξ(Q, r̂)} −min{xν | x ∈ Ξ(Q, ř)} =
∂xν(Q̀, r̀)

∂rk
· wid rk (32)

for some matrix Q̀ ∈ Q and vector r̀ ∈ r. Hence, the value of the product of the width of
an interval element from either Q or r by the absolute value of the interval extension of the
corresponding derivative may serve, in a sense, as a local measure of how the subdivision of the
element affects min{xν | x ∈ Ξ(Q, r)} and the size of the solution set. Therefore, in order to
reduce the size of the solution set Ξ(Q, r) to the maximum extent, we need to subdivide such
elements for which the quantities (31) or (32) have the maximum value.

Overall, to increase the convergence rate of the PPS-method, we recommend to subdivide
the leading symmetric interval systems along the elements on which the maximum of the values∣∣∣∣∂xν(Q, r)

∂qij

∣∣∣∣ · wid qij,

∣∣∣∣∂xν(Q, r)

∂ri

∣∣∣∣ · wid ri (33)

i, j = 1, 2, . . . , n, is attained, that is, along the element providing the maximal product of
width by the derivative estimate. Note that in order for the system to remain symmetric, after
determining the subdivided element, its symmetric element should also be subdivided, if this
element is selected in the matrix of the system.

4.3 Cleaning the working list

During the execution of PPS-methods, the size of the working lists that they generate may
become large. Processing such lists is laborious and can take much time, which slows down
the overall speed of the algorithm. At the same time, some subsystems of the original interval
system that the working list stores never becomes leading records and thus will not effect the
execution of the algorithm. We will call such subsystems, as well as the corresponding records,
unpromising.

To improve the overall efficiency of the algorithm, it makes sense to design and implement
a special procedure that reduces the size of the working list L by detecting the unpromising
records and deleting them from L. This can be done through using the upper estimate of the
sought-for minimum, as described for interval global optimization methods in [10, 11] and other
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works. In the context of PPS-methods, that was developed in [25, 27, 28]. If ω is an upper
bound of the minimum, then any subsystem Qx = r, such that

Υ (Q, r) > ω, (34)

cannot become the leading subsystem, and deleting it from the working list L in no way affects
the results of the algorithm.

Removing such unpromising records from the working list will be called its cleaning. It
reduces the size of the working list and lessens the amount of memory used, which facilitates
faster execution of the algorithm.

In the interval global optimization algorithms, the upper estimate ω is usually taken as the
minimum of values of the objective function at various points from the domain of definition.
In our situation, we have to compute, apart from the interval enclosures of the solution sets
to subsystems, point solutions to some point systems within the interval subsystems. Solving
the midpoint systems is, probably, the best choice from the general consideration, if we do not
have any additional information about the location of the minimum. So, at each step of the
algorithm, in addition to estimating min{xν | x ∈ Ξ } for each partitioned systems Q′x = r′

and Q′′x = r′′, we will compute solutions to the point systems

(mid Q′)x′ = mid r′, (mid Q′′)x′′ = mid r′′. (35)

Then we assign
ω ← min{x′ν , x′′ν , ω},

i. e. the new upper estimate is taken as the minimum of the previous value of ω and two newly
computed values x′ν and x′′ν . Then the upper estimate ω can be used in two ways.

First, we can test all newly generated subsystems by the inequality (34) before inserting
them into the working list L. If a subsystem satisfies inequality (34), then we “forget” about
it, that is, do not put it into the working list.

Second, we can specially arrange looking through the working list L and checking inequality
(34), which was called “cleaning the working list”. This procedure is time consuming, and it
makes sense to do it not at every step of the algorithm, but after several steps, when the
unpromising records accumulate. Yet another option is to fix a positive integer number M and
make cleaning of the working list L at every M -th step of the algorithm in which the change
of the upper estimate ω occurred.

4.4 An overall algorithm

The pseudo-code in Table 2 below summarizes the modifications of the PPS-methods, developed
in the preceding subsections, for outer estimation of the solution set sets to symmetric interval
linear systems.

On input, it requires the same information as the simplest PPS-algorithm from Table 1:

• a symmetric interval linear system Ax = b,

• a number ν ∈ {1, 2, . . . , n} of the component to be estimated,

• a method Encl that computes the estimate Υ according to the rule (18),

• a precision constant ε > 0.
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Table 2: The modified PPS-method for symmetric interval systems

assign Q← A and r ← b ;

compute the estimate υ ← Υ (Q, r);

initialize the working list L ←
{

(Q, r, υ,Y ,x)
}

;

DO WHILE
(
( maximum width of the elements from Q and r ) ≤ ε

)
using formulas (28), we compute interval enclosures for

∂xν(Q, r)

∂qij
and

∂xν(Q, r)

∂ri

that correspond to interval elements qij and ri with nonzero width;

“squeeze”, according to (24)–(25), elements from Q and r for which
the monotonicity of xν with respect to qij and ri was revealed;

in the matrix Q = ( qij) and vector r = ( ri), we choose the interval

element s which corresponds to the maximum product∣∣∣∣ ∂xν(Q, r)

∂qij

∣∣∣∣ · wid qij ,

∣∣∣∣ ∂xν(Q, r)

∂ri

∣∣∣∣ · wid ri, i, j ∈ { 1, 2, . . . , n };

generate the interval descendant systems Q′x = r′ and Q′′x = r′′:

if s = qkl for some k, l ∈ { 1, 2, . . . , n }, then assign

q′ij ← q′′ij ← qij for (i, j) 6= (k, l) or (i, j) 6= (l, k),

q′lk ← q′kl ← [ q
kl
,mid qkl ], q

′′
lk ← q′′kl ← [ mid qkl, qkl ],

r′ ← r′′ ← r;

if s = rk for some k ∈ { 1, 2, . . . , n }, then assign

Q′ ← Q′′ ← Q, r′k ← rk, r′′k ← rk,

r′i ← r′′i ← ri for i 6= k;

compute the estimates υ′ ← Υ (Q′, r′) and υ′′ ← Υ (Q′′, r′′);

compute interval enclosures for the “inverse interval matrices”
Y ′ ⊇ (Q′)−1 and Y ′ ⊇ (Q′)−1;

compute the estimates Υ (mid Q′,mid r′) and Υ (mid Q′′,mid r′′),
assign µ← min{Υ (mid Q′,mid r′), Υ (mid Q′′,mid r′′) };

delete the late leading record (Q, r, υ,Y ,x) from the list L;

if υ′ ≤ ω, then put the record (Q′, r′, υ′,Y ′,x′)
into the list L keeping its ordering with respect to the third field;

if υ′′ ≤ ω, then put the record (Q′′, r′′, υ′′,Y ′′,x′′)
into the list L keeping its ordering with respect to the third field;

if ω > µ, then assign ω ← µ and clean the working list L: deleting
from it all such records (Q, r, υ,Y ,x), that υ > ω;

denote the first record of the working list L by (Q, r, υ,Y ,x);

END DO

Z ← υ;
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On output, we get an estimate Z from below for min{xν | x ∈ Ξsym(A, b) }.
The worklist L of the algorithm from Table 2 consists of five-membered records of the form(

Q, r, Υ (Q, r),Y ,x
)
,

and the meaning and purpose of the individual members of this five was explained in the
previous subsections (see, in particular, §4.1). To get started with this algorithm, we need

• find preliminary rough enclosures for the united solution sets of the initial interval system
and the “inverse interval matrix”, i. e., compute x ⊇ Ξ(A, b) and Y ⊇ A−1,

• put Υ (A, b)← x and ω ← +∞,

• initialize the working list L with the record (A, b,x,Y ,x ).

To sum up, the algorithm described in Table 2 and applied to the auxiliary symmetric
interval linear system (12) in order to solve the interval linear least-squares problem (6) for the
system Ax = b will be called ILSQ-PPS method.

5 Numerical tests

In this section, we present results demonstrating the work of the ILSQ-PPS algorithm in a
number of test problems. The ILSQ-PPS method was implemented using the interval package
under Octave [14] on a laptop computer with IntelR© Core i5-3337U CPU at 1.8 GHz and 6 GB
RAM.

Example 1 Let us consider an interval 3× 2-system[0, 10] 2
−1 3
3 −2

 (
x1

x2

)
=

 10
−20

0

 (36)

with only one interval element in the position (1, 1).
Its least squares solution set can be constructed analytically, if we reformulate the system

in a parametric form as  t 2
−1 3
3 −2

 (
x1

x2

)
=

 10
−20

0

 ,

where t ∈ [0, 10]. Its normal linear system is(
t2 + 10 2t− 9

2t− 9 17

) (
x1

x2

)
=

(
10t+ 20

−40

)
. (37)

Therefore, according to Cramer’s rule, we can express the components of the solution vector
x(t) to (37):

x1(t) =
250t− 20

13t2 + 36t+ 89
, x2(t) =

−60t2 + 50t− 220

13t2 + 36t+ 89
. (38)
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The graph of this parametric line is depicted in Fig. 3, and it coincides with the pictures of
this solution set obtained in other ways. Now, if we implement ILSQ-PPS method for system
(36), this yields the enclosure (

[−0.2247, 2.3314]

[−3.2704,−1.6230]

)
,

which is an optimal outer estimation for Fig. 3.

Example 2 We consider a 6× 2-system Ax = b from [9] where

A =



[0.75, 1.25] 1

[1.75, 2.25] 1

[4.75, 5.25] 1

[5.75, 6.25] 1

[8.75, 9.25] 1

[9.75, 10.25] 1


, b =



[2.25, 2.75]

[1.25, 1.75]

[3.25, 3.75]

[4.25, 4.75]

[7.25, 7.75]

[6.25, 6.75]


. (39)

This system is obtained by “uniform intervalization” from the point linear least-squares problem
with the following data:

A =



1 1

2 1

5 1

6 1

9 1

10 1


, b =



2.5

1.5

3.5

4.5

7.5

6.5


. (40)

In the article [9], D. Gay presents a computational approach for estimation of the set of least
squares solution (10). The essence of his approach is the use of the first order approximation
of the solution to the problem (similar to the simplest sensitivity analysis) combined with the
monotonicity examination. At the final stage, a set of endpoints within the interval matrix and

Figure 3: The least squares solution set to the interval linear system (36).
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right-hand side is taken to produce the extreme values of the solution, thus constructing the
lower and upper bounds of the enclosure.

The result of the above approach applied to system (39) in [9] is the following enclosure(
[0.47, 0.736]

[0.205, 1.829]

)
while the result of our method is more narrow estimate for the solution set of (39):(

[0.5056, 0.7118]

[0.3363, 1.6503]

)
.

Example 3 Let us consider a 3× 2-system Ax = b proposed by A.H. Bentbib in [4], such that

A =

[0.1, 0.3] [0.9, 1.1]

[8.9, 9.1] [0.4, 0.6]

[0.9, 1.1] [6.9, 7.1]

 , b =

 [0.8, 1.2]

[−0.2, 0.2]

[1.8, 2.2]

 , (41)

and compare the result obtained in [4] with that produced by ILSQ-PPS method. For the
solution of the interval linear least squares problem, the article [4] develops an interval extension
of QR-factorization based on Householder transformations, and the technique gives, for system
(41), the interval box (

[−0.0558, 0.0232]

[0.2560, 0.3486]

)
. (42)

It is the best one among several results produced by various possible approaches to the interval
linear least squares problem compared in [4]. With our ILSQ-PPS method, we obtain the box(

[−0.0465, 0.0126]

[0.2616, 0.3454]

)
that has a smaller width as compared to the Bentbib’s result (42).

Next, let us replace, in system (41), the right-hand side b with the vector

b′ =

[0.8, 1.2]

[0.3, 0.7]

[6.8, 7.2]

 .

We thus obtain an interval system from the article [23], where J. Rohn considers a generalization,
to overdetermined interval linear systems of equations, of the Hansen-Blick-Rohn method for
enclosing the united solution sets. The united solution set for the interval system of equations
is always included in the set of the least squares solutions (see [29]), and this is why we can
compare the results obtained by our ILSQ-PPS method with those presented in [23]. The
Rohn’s method gives (

[−0.0372, 0.0372]

[0.9471, 1.0548]

)
, (43)

while the result of ILSQ-PPS method is(
[−0.0375, 0.0363]

[0.9467, 1.0543]

)
.
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We can see that the upper endpoints of both components have been improved in the above box,
although the least squares solution set is usually wider than the united solution set, which is
enclosed by (43).

Example 4 Consider an interval 3× 2-system of linear algebraic equations [0, 2] 2

−1 [3, 5]

5 −2

 (
x1

x2

)
=

−3

5

7

 (44)

with only 2 interval elements in its matrix.

Figure 4: The least squares solution set to the interval linear system (44).

The graph of the solution set to this system, depicted at Fig. 4, has curvilinear boundaries,
which is not specific for the solution sets to interval linear systems with independent interval
parameters. Again, ILSQ-PPS method gives(

[0.8461, 1.6858]

[0.1538, 0.9889]

)
,

which is an optimal enclosure of the least squares solution set for this system.

In the following two examples, to illustrate some of the features and performance of the
ILSQ-PPS method, we provide a short statistic.

Example 5 Let us investigate the interval linear 3× 2-system (15) presented in Section 1:[−13,−11] [−7,−5]

[−3,−1] [1, 3]

[5, 7] [11, 13]

 (
x1

x2

)
=

[−1, 0]

[0, 1]

[−1, 1]

 .
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The matrix A of the system satisfies inequalities (7) and (8) from Theorem 1 and 2, since

ρ(|mid A|+ · rad A) = 0.3636 < 1, (45)

σmin(mid A)

σmax(rad A)
=

6.6332

2.4495
' 2.7080 . (46)

Using ILSQ-PPS method, we obtain the box(
[−0.1460, 0.2222]

[−0.2222, 0.1998]

)

which is the interval hull of the set of least squares solutions to the system considered. Table 3
shows some performance indicators of the ILSQ-PPS method, and the value of each indicator
is displayed for both the lower and upper bounds of the components of the solution set.

Table 3: The characteristics of the ILSQ-PPS method for Example 5

Parameters
x1 x2

lower upper lower upper

Time 36.23 8.24 8.92 60.96

Iter 132 27 29 225

Error 5.5 · 10−6 1.02 · 10−15 9.99 · 10−16 8.88 · 10−16

In Table 3, “Time” is the execution time, in seconds, of the ILSQ-PPS method, for the lower
and upper bounds of each component of the solution set. “Iter” is the number of iterations for
the same bounds and “Error” shows the difference between upper estimate and Υ (Q, r) in the
last iteration for each component of the solution set.

Finally, we present an example of a “moderate size” system.

Example 6 We take the Toft interval linear system, considered in the articles [17, 32], and
add it to an overdetermined rectangular system that has the interval m× n-matrix (m > n) of
the form

A =



[1− r, 1 + r] 0 . . . 0 [1− r, 1 + r]

0 [1− r, 1 + r]
. . .

... [2− r, 2 + r]

...
. . . . . . 0

...

0 . . . 0 [1− r, 1 + r] [n− 1− r, n− 1 + r]

[1− r, 1 + r] [2− r, 2 + r] . . . [n− 1− r, n− 1 + r] [n− r, n+ r]

[θ − s, θ + s] 0 0 . . . 0

[0, s] [θ − s, θ + s] 0 . . . 0

...
. . . . . . . . .

...

[0, s] . . . [0, s] [θ − s, θ + s] 0



(47)
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and the right-hand side m-vector

b =


[1−R, 1 +R]

[1−R, 1 +R]
...

[1−R, 1 +R]

 ,

where r, s, θ and R are positive real numbers.

Table 4: The characteristics of the ILSQ-PPS method for Example 6

Parameters
x1 x6 x12

lower upper lower upper lower upper

Estimate 0.2200 0.3547 −0.1450 0.6649 0.1000 0.1661

Time 27.02 31.87 34.31 275.39 17.60 19.91

Iter 10 12 13 95 7 8

Error 6.0 · 10−6 9.0 · 10−6 1.4 · 10−14 1.1 · 10−5 6.7 · 10−6 1.7 · 10−14

Table 4 shows the results of the test runs for the 15 × 12-system (47) corresponding to
r = 0.1, s = 0.05, θ = 4, and R = 0.2. For brevity, we present in Table 4 the performance
of the ILSQ-PPS method for Example 6 with respect to only 3 selected components out of 12.
The components 12 and 6 turn out to be the most complex for the solution, and the ILSQ-PPS
method computed them most slowly.

In Example 6, the inequalities (7) and (8) are satisfied for A as follows:

ρ(|mid A|+ · rad A) = 0.1964 < 1,

σmin(mid A)

σmax(rad A)
=

1

0.4326
' 2.3114 .

(48)

In this case, inequalities (48) and Table 4 also show that criteria (7) and (8) influence the
performance of the ILSQ-PPS method. The smaller the spectral radius ρ

(
|mid A|+ · rad A

)
and the larger the difference between σmin(mid A) and σmax(rad A), the easier the problem for
numerical solution by ILSQ-PPS method.

6 Conclusion

The paper presents a computational method for outer estimation of the least squares solution
sets of interval systems of linear algebraic equations with a full-rank matrix. It is a further
development of parameter partitioning methods (PPS-methods), adapted to the specifics of the
linear least-squares problem.

The efficiency of the constructed method can be increased if the basic methods are not
general-purpose methods designed for general interval linear systems with independent coeffi-
cients at unknowns, but specialized methods for symmetric interval linear systems, i. e. taking
into account the symmetry of point matrices in the given interval matrix. Such is, for example,
interval-affine Gauss method [3]. But this is the subject of further research.
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