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Abstract We construct approximate Fekete point sets for kernel-based inter-
polation by maximising the determinant of a kernel Gram matrix obtained
via truncation of an orthonormal expansion of the kernel. Uniform error esti-
mates are proved for kernel interpolants at the resulting points. If the kernel
is Gaussian we show that the approximate Fekete points in one dimension
are the solution to a convex optimisation problem and that the interpolants
converge with a super-exponential rate. Numerical examples are provided for
the Gaussian kernel.

Keywords reproducing kernel Hilbert spaces · Gaussian kernel · radial basis
functions

1 Introduction

Kernel-based methods are widely used in interpolation and approximation
of functions [38, 14, 13]. Let d ∈ N and Ω ⊂ Rd be a compact set with a
non-empty interior. Given evaluations of a function f : Ω → R at a scattered
set of distinct points Xn = {xxx1, . . . ,xxxn} ⊂ Ω and a continuous positive-definite
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kernel K : Ω ×Ω → R, the kernel interpolant sf is

sf (xxx) =

n∑
k=1

ckK(xxx,xxxk),

where the coefficients ck are uniquely determined by the interpolation conditions
sf (xxxk) = f(xxxk) for every k = 1, . . . , n. The choice of the evaluation points Xn
can have a significant effect on the accuracy of the approximation sf (xxx) ≈ f(xxx)
at xxx /∈ Xn. Popular methods for constructing “good” point sets include different
types of greedy algorithms [32, 11, 21, 40, 27] that construct the next point
xxxn+1 by maximising the power function. An alternative approach is to select n
points concurrently by maximising

detKXn = det(K(xxxk,xxxm))nk,m=1,

the determinant of the kernel Gram matrix, over all sets of n points Xn ⊂ Ω. The
resulting points are called Fekete points in an analogue to the classical Fekete
points that maximise the Vandermonde determinant [6, 8]. The asymptotic
distribution of these points for kernel-based interpolation in one dimension has
been studied by Bos and Maier [7] and Bos and De Marchi [5].

Because maximisation of detKXn is typically intractable, in this article
we study approximate Fekete points that are obtained by maximising the
determinant of the kernel matrix of a truncated version of the kernel. Let
{ϕ`}∞`=1 be an orthonormal basis of HK(Ω), the reproducing kernel Hilbert
space (RKHS) of K. Then the kernel can be written as

K(xxx,yyy) =

∞∑
`=1

ϕ`(xxx)ϕ`(yyy).

The approximate Fekete points X ∗n are then defined as any set of n points that
maximise

det K̂Xn = det

(
n∑
`=1

ϕ`(xxxk)ϕ`(xxxm)

)n
k,m=1

. (1.1)

This and related constructions have been recently suggested by Tanaka [36]
and, in the context of numerical integration and sampling from determinantal
point processes, by Belhadji et al. [3] and Gautier et al. [16]. Our construction
differs slightly from the prior work in that we do not require the basis functions
{ϕ`}∞`=1 to arise from Mercer’s theorem, which significantly simplifies analysis
and construction of the points, at least when the kernel is Gaussian. This
article contains two main theoretical contributions:

– Let f ∈ HK(Ω). In Section 3 we use a bound on the Lebesgue constant for
interpolation using {ϕ`}n`=1 to prove that

sup
xxx∈Ω
|f(xxx)− sf (xxx)| ≤ 2 ‖f‖HK(Ω) (1 + n) sup

xxx∈Ω

( ∞∑
`=n+1

ϕ`(xxx)
2

)1/2

(1.2)

for kernel interpolation at any approximate Fekete points.
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– In Section 4 we show that for a certain simple orthonormal expansion [20]
of the univariate Gaussian kernel

K(x, y) = exp
(
− ε2(x− y)2

)
with a scale parameter ε > 0 the objective function (1.1) is convex and has
a unique maximiser. This is made possible by a convenient factorisation
of the determinant in (1.1) for this basis. We then specialise the uniform
error estimate (1.2) and some other results from Section 3 for the Gaussian
kernel.

Two numerical examples for the Gaussian kernel are given in Section 5. We
also discuss improved error estimates in subspaces of HK(Ω) and tensor prod-
uct extensions of the univariate approximate Fekete points for anisotropic
multivariate Gaussian kernels.

2 Background

This section reviews basic properties of kernel interpolants and defines the
approximate Fekete points studied in the remainder of the article.

2.1 Kernel-based interpolation

Every positive-definite kernel K : Ω × Ω → R on a general domain Ω ⊂ Rd

induces a unique reproducing kernel Hilbert space HK(Ω), which is a Hilbert
space consisting of real-valued functions defined on Ω. The RKHS is char-
acterised by the properties that K(·,xxx) ∈ HK(Ω) for every xxx ∈ Ω and
〈f,K(·,xxx)〉HK(Ω) = f(xxx) for every f ∈ HK(Ω) and xxx ∈ Ω, the latter of
which is known as the reproducing property.

Given a set of n distinct points, Xn = {xxx1, . . . ,xxxn} ⊂ Ω, the kernel inter-
polant sf is the minimum-norm interpolant to a function f : Ω → R at these
points:

sf = argmin
{
‖g‖HK(Ω) : g ∈ HK(Ω) s.t. g(xxxk) = f(xxxk) for every xk ∈ Xn

}
.

(2.1)
This definition implies that ‖sf‖HK(Ω) ≤ ‖f‖HK(Ω). The main advantage in
working in an RKHS as opposed to some different function space is that the
minimum-norm interpolant has a simple algebraic form:

sf (xxx) =

n∑
k=1

ckK(xxx,xxxk) = cccTkkkXn(xxx), (2.2)

where we denote ccc = (c1, . . . , cn) ∈ Rn and kkkXn(xxx) = (K(xxx,xxxk))
n
k=1 ∈ Rn.

The coefficients ccc are
c1
...
cn

 =


K(xxx1,xxx1) · · · K(xxx1,xxxn)

...
. . .

...
K(xxxn,xxx1) · · · K(xxxn,xxxn)


−1 

f(xxx1)
...

f(xxxn)

 ,
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where KXn = (K(xxxk,xxxm))
n
k,m=1 is the positive-definite kernel Gram matrix.

From this it follows that sf is the unique interpolant to f at Xn in the span of
{K(·,xxxk)}nk=1.

The interpolant can be written as sf =
∑n
k=1 f(xxxk)uk using the cardinal

functions uk ∈ span{K(·,xxxk)}nk=1 that satisfy uk(xxxm) = δkm. From the repro-
ducing property and the Cauchy–Schwarz inequality it then follows that for
any f ∈ HK(Ω) the interpolation error admits the bound

|f(xxx)− sf (xxx)| =

∣∣∣∣∣
〈
f,K(·,xxx)−

n∑
k=1

K(·,xxxk)uk(xxx)
〉
HK(Ω)

∣∣∣∣∣
≤ ‖f‖HK(Ω)

∥∥∥∥K(·,xxx)−
n∑
k=1

K(·,xxxk)uk(xxx)
∥∥∥∥
HK(Ω)

=: ‖f‖HK(Ω) PXn(xxx),

(2.3)

where the non-negative power function, PXn , can be alternatively expressed as

PXn(xxx) =
√
K(xxx,xxx)− kkkXn(xxx)TK−1XnkkkXn(xxx) = sup

‖f‖HK (Ω)≤1
|f(xxx)− sf (xxx)| .

(2.4)
The latter form is the point-wise worst-case approximation error. The power
function can be also written in a determinantal form [e.g., 30, Lemma 3]

PXn(xxx) =
detKXn∪{xxx}
detKXn

,

which suggests, via (2.3), that points Xn that maximise detKXn ought to
provide small approximation error. Numerous explicit bounds on the error
f−sf in different norms and for different classes of kernels and functions within
and without the RKHS can be found in [38, Chapter 11] and [39, 22, 1, 24].

2.2 Approximate Fekete points

For the remainder of this article we assume that Ω is a compact subset of Rd

with a non-empty interior and that the positive-definite kernel K : Ω×Ω → R
is continuous. These assumptions guarantee that the RKHS is separable [e.g.,
23, Proposition 11.7]. Let {ϕ`}∞`=1 be any orthonormal basis of HK(Ω). Then
the kernel can be written as

K(xxx,yyy) =

∞∑
`=1

ϕ`(xxx)ϕ`(yyy) (2.5)

for all xxx,yyy ∈ Ω. Note that there is an infinite number of different orthonormal
bases of the RKHS and the expansion (2.5) is valid for each of them. For example,
an infinitude of bases can be generated by varying the domain and measure in
Mercer’s theorem (see Section 3.3), though we do not assume that the basis
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{ϕ`}∞`=1 arises this way. It is easy to verify that K in (2.5) is the reproducing
kernel: Any f ∈ HK(Ω) has the expansion f =

∑∞
`=1〈f, ϕ`〉HK(Ω)ϕ` so that

〈f,K(·,xxx)〉HK(Ω) =

∞∑
`,k=1

〈ϕ`, ϕk〉HK(Ω)〈f, ϕ`〉HK(Ω)ϕk(xxx)

=

∞∑
`=1

〈f, ϕ`〉HK(Ω)ϕ`(xxx)

= f(xxx).

The Fekete points for interpolation with the kernel (2.5) are the points that
maximise the determinant

detKXn = det


K(xxx1,xxx1) · · · K(xxx1,xxxn)

...
. . .

...
K(xxxn,xxx1) · · · K(xxxn,xxxn)

 (2.6)

of the kernel matrix. As exact computation of the Fekete points is typically
challenging, we fix an orthonormal basis {ϕ`}∞`=1 of HK(Ω), truncate the
expansion (2.5) after n terms and consider maximisation of the resulting
approximation of the objective function (2.6). Define the truncated kernel

K̂(xxx,yyy) =

n∑
`=1

ϕ`(xxx)ϕ`(yyy) (2.7)

and its kernel matrix K̂Xn = (K̂(xxxk,xxxm))
n
k,m=1 ∈ Rn×n. From (2.7) it is easy

to see that

K̂Xn = ΦXnΦ
T
Xn , where ΦXn =


ϕ1(xxx1) · · · ϕn(xxx1)

...
. . .

...
ϕ1(xxxn) · · · ϕn(xxxn)

 .
The approximate Fekete points X ∗n = {xxx∗1, . . . ,xxx∗n} ⊂ Ω are then any points
such that

X ∗n = {xxx∗1, . . . ,xxx∗n} ∈ argmax
Xn={xxx1,...,xxxn}⊂Ω

det K̂Xn = argmax
Xn={xxx1,...,xxxn}⊂Ω

detΦXn .

(2.8)
Note that because {ϕ`}n`=1 are linearly independent, there exists Xn ⊂ Ω
such that detΦXn > 0. As Ω is compact and the continuity of K implies the
continuity of the basis functions, there exist points X ∗n at which detΦXn attains
a maximal value.

Given a set Xn of n previously selected points, the popular P -greedy
algorithm [11, 27] selects xxxn+1 such that

xxxn+1 ∈ argmax
xxx∈Ω

PXn(xxx), (2.9)
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which, using the block determinant identity and (2.4), can be written in the
equivalent form

xxxn+1 ∈ argmax
xxx∈Ω

det

[
KXn kkkXn(xxx)

kkkXn(xxx)
T K(xxx,xxx)

]
= argmax

xxx∈Ω
detKXn∪{xxx}.

That is, the P -greedy points can be interpreted as greedily computed Fekete
points. Because it is known [27] that the interpolation error of the P -greedy
algorithm decays fast (in some cases with an optimal rate), it is reasonable
to expect that these rates are inherited or surpassed by interpolation at the
Fekete points, and by extension perhaps by interpolation at the approximate
Fekete points. This is confirmed by numerical examples for the Gaussian kernel
in Section 5.

3 Error estimates

This section provides upper bounds on the error of approximating f ∈ HK(Ω)
with the kernel interpolant sf when the interpolation points are the approximate
Fekete points from Section 2.2.

3.1 Interpolation with basis functions and Lebesgue constants

For any f : Ω → R and any points Xn = {xxx1, . . . ,xxxn} ⊂ Ω such that the
matrix ΦXn = (ϕm(xxxk))

n
k,m=1 is invertible there exists a unique interpolant sϕf

such that

(i) sϕf (xxxk) = f(xxxk) for every k = 1 . . . , n;
(ii) sϕf ∈ span{ϕ`}n`=1.

From these requirements it follows that

sϕf =

n∑
k=1

ckϕk, (3.1)

where the coefficients are
c1
...
cn

 =


ϕ1(xxx1) · · · ϕn(xxx1)

...
. . .

...
ϕ1(xxxn) · · · ϕn(xxxn)


−1 

f(xxx1)
...

f(xxxn)

 .
Alternatively, the interpolant can be written in the Lagrange form

sϕf =

n∑
k=1

f(xxxk)u
ϕ
k , (3.2)
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where uϕk are the Lagrange basis functions solved from


ϕ1(xxx1) · · · ϕ1(xxxn)

...
. . .

...
ϕn(xxx1) · · · ϕn(xxxn)



uϕ1 (xxx)

...
uϕk (xxx)

 =


ϕ1(xxx)

...
ϕn(xxx)

 (3.3)

for every xxx ∈ Ω. The Lebesgue constant is defined using the Lagrange function
as follows:

Λϕ(Xn) = sup
xxx∈Ω

n∑
k=1

|uϕk (xxx)| . (3.4)

A standard argument yields a conservative upper bound on the Lebesgue
constant at approximate Fekete points [6].

Proposition 3.1 If X ∗n are any approximate Fekete points (2.8), then the
Lebesgue constant (3.4) satisfies

Λϕ(X ∗n) ≤ n. (3.5)

Proof Cramer’s rule applied to (3.3) gives

uϕk (xxx) =
detΦkXn(xxx)

detΦXn
, (3.6)

where ΦkXn(xxx) is obtained by replacing the kth row of the matrix ΦXn with the
row vector (ϕ1(xxx), . . . , ϕn(xxx)) ∈ Rn. Because any approximate Fekete points
maximise detΦXn among all sets of n points within Ω and ΦkX∗n (xxx) = ΦX∗n,k(xxx)
with X ∗n,k(xxx) = {xxx1, . . . ,xxxk−1,xxx,xxxk+1, . . . ,xxxn},

detΦX∗n ≥ detΦX∗n,k(xxx) = detΦkX∗n (xxx).

From (3.6) we thus get

Λϕ(X ∗n) = sup
xxx∈Ω

n∑
k=1

|uϕk (xxx)| = sup
xxx∈Ω

n∑
k=1

∣∣∣∣detΦkX∗n (xxx)detΦX∗n

∣∣∣∣ ≤ sup
xxx∈Ω

n∑
k=1

1 = n.

ut

See [10] for bounds on the Lebesgue constant for kernel interpolation,
supxxx∈Ω

∑n
k=1 |uk(xxx)|, when the RKHS is a Sobolev space.
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3.2 Uniform error estimates

In this section we derive an estimate of the uniform interpolation error when
f is in the RKHS of K. Recall that since {ϕ`}∞`=1 is an orthonormal basis of
HK(Ω), any f ∈ HK(Ω) can be written as

f =

n∑
`=1

f`ϕ` (3.7)

for a square-summable sequence of real coefficients f` = 〈f, ϕ`〉HK(Ω). The
RKHS norm of f in (3.7) is

‖f‖2HK(Ω) =

∞∑
`=1

f2` . (3.8)

That is, HK(Ω) consists of functions having the form (3.7) such that their
norm in (3.8) is finite. The following standard result on orthonormal expansions
will be useful. Its proof consists of a straightforward application of the Cauchy–
Schwarz inequality.

Lemma 3.2 If f =
∑∞
`=1 f`ϕ` ∈ HK(Ω), then∣∣∣∣∣f(xxx)−

n∑
`=1

f`ϕ`(xxx)

∣∣∣∣∣ ≤ ‖f‖HK(Ω)

( ∞∑
`=n+1

ϕ`(xxx)
2

)1/2

for every xxx ∈ Ω.

Theorem 3.3 Let Xn = {xxx1, . . . ,xxxn} ⊂ Ω be any points such that ΦXn is
invertible. Then for any f ∈ HK(Ω),

sup
xxx∈Ω

|f(xxx)− sf (xxx)| ≤ 2 ‖f‖HK(Ω) (1+Λϕ(Xn)) sup
xxx∈Ω

( ∞∑
`=n+1

ϕ`(xxx)
2

)1/2

. (3.9)

Proof Let f =
∑∞
`=1 f`ϕ` ∈ HK(Ω) and define g =

∑n
`=1 f`ϕ`. Then

|f(xxx)− sϕf (xxx)| ≤ |f(xxx)− g(xxx)|+ |g(xxx)− s
ϕ
g (xxx)|+ |sϕg (xxx)− s

ϕ
f (xxx)| .

The first term on the right-hand side can be bounded with Lemma 3.2. The
second term vanishes because g ∈ span{ϕ`}n`=1 and sϕg being the unique
interpolant to g in span{ϕ`}n`=1 imply that sϕg = g. Finally, the Lagrange
form (3.2) and Lemma 3.2 yield a bound on the third term:

|sϕg (xxx)− s
ϕ
f (xxx)| =

∣∣∣∣∣
n∑
k=1

[g(xxxk)− f(xxxk)]uϕk (xxx)

∣∣∣∣∣
≤ ‖f‖HK(Ω)

n∑
k=1

|uϕk (xxx)|
( ∞∑
`=n+1

ϕ`(xxxk)
2

)1/2

≤ ‖f‖HK(Ω) Λϕ(Xn) sup
xxx∈Ω

( ∞∑
`=n+1

ϕ`(xxx)
2

)1/2

.
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Therefore,

|f(xxx)− sϕf (xxx)| ≤ ‖f‖HK(Ω) (1 + Λϕ(Xn)) sup
xxx∈Ω

( ∞∑
`=n+1

ϕ`(xxx)
2

)1/2

. (3.10)

To obtain a bound on |f(xxx)− sf (xxx)| observe that

|f(xxx)− sf (xxx)| ≤ |f(xxx)− sϕf (xxx)|+ |s
ϕ
f (xxx)− sf (xxx)| ,

where, because sϕf (xxxk) = sf (xxxk) = f(xxxk) for k = 1, . . . , n and
‖sf‖HK(Ω) ≤ ‖f‖HK(Ω) by the norm-minimality property (2.1), both terms on
the right-hand side obey the bound (3.10). The claim follows. ut

Proposition 3.1 immediately yields an error estimate for any approximate
Fekete points.

Corollary 3.4 Suppose that f ∈ HK(Ω) is interpolated at any approximate
Fekete points (2.8). Then

sup
xxx∈Ω

|f(xxx)− sf (xxx)| ≤ 2 ‖f‖HK(Ω) (1 + n) sup
xxx∈Ω

( ∞∑
`=n+1

ϕ`(xxx)
2

)1/2

. (3.11)

Due to the presence of a supremum on the right-hand side of (3.9) and (3.11)
it is difficult to make the bounds explicitly dependent on, for example, smooth-
ness of the kernel as is usual in the error analysis of radial basis function
interpolants [38, Chapter 11]. One would ideally select a basis {ϕ`}∞`=1 that
minimises the supremum in (3.11). This seems challenging, so in practice selec-
tion of the basis is dictated by convenience, that is, by one’s ability to derive
an explicit bound for the supremum and the ease of implementation of the
optimisation problem (2.8).

3.3 Improved error estimates in subspaces

It is known that the rate of convergence of kernel interpolation can be improved
if the function being interpolated lives in a subset of the RKHS. The existing
results in [28, 29, 31] and [38, Section 11.5] are particularly interesting when
the kernel is finitely smooth1. Roughly speaking, in this case a typical algebraic
rate of convergence is “doubled” for sufficiently smooth elements of the RKHS.
Specifically, let µ be a Borel measure on Ω that assigns positive measure to every
open set and let {ψ`}∞`=1 and (λ`)

∞
`=1 be the eigenfunctions and the positive

decreasing eigenvalues of the integral operator Tf(xxx) =
∫
Ω
K(xxx,yyy)f(yyy) dµ(yyy).

By Mercer’s theorem [e.g., 35],

HK(Ω) =

{
f ∈ L2(µ) : ‖f‖2HK(Ω) =

∞∑
`=1

〈f, ψ`〉2L2(µ)

λ`
<∞

}
.

1 Wendland [38, p. 192] goes as far as describing these results “almost pointless” for kernels,
such as the Gaussian, that are associated with exponential rates of convergence.
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The standard improved error estimate states that for f ∈ HK(Ω) such that
f = Tv for some v ∈ L2(µ) the bound (2.3) is improved to

|f(xxx)− sf (xxx)| ≤ ‖v‖L2(µ) PXn(xxx) ‖PXn‖L2(µ) . (3.12)

Because the range of T is

T (L2(µ)) =

{
f ∈ L2(µ) : ‖f‖2HK(Ω) =

∞∑
`=1

〈f, ψ`〉2L2(µ)

λ2`
<∞

}
⊂ HK(Ω),

the collection of functions for which (3.12) holds is a subset of the RKHS.
Theorem 3.5 below is significantly more flexible than this result and does not
require that the Mercer expansion be used.

Let (α`)∞`=1 be a positive, increasing, and divergent sequence and define the
subspace

HαK(Ω) =

{
f =

∞∑
`=1

f`ϕ` : ‖f‖2HαK(Ω) =

∞∑
`=1

α2
`f

2
` <∞

}
⊂ HK(Ω).

For simplicity we also assume that α1 ≥ 1, which can always be achieved using
a scaling that does not affect HαK(Ω) as a set. It is easy to verify that HαK(Ω)
is an RKHS and that its reproducing kernel is

Kα(xxx,yyy) =

∞∑
`=1

1

α2
`

ϕ`(xxx)ϕ`(yyy).

Theorem 3.5 Suppose that f ∈ HαK(Ω) is interpolated at any approximate
Fekete points (2.8). Then

sup
xxx∈Ω

|f(xxx)− sf (xxx)| ≤ 2 ‖f‖HαK(Ω) (1 + n)α−1n+1 sup
xxx∈Ω

( ∞∑
`=n+1

ϕ`(xxx)
2

)1/2

.

Proof When f ∈ HαK(Ω), we replace the estimate of Lemma 3.2 with the
following estimate:∣∣∣∣∣f(xxx)−

n∑
`=1

f`ϕ`(xxx)

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑

`=n+1

α`f`α
−1
` ϕ`(xxx)

∣∣∣∣∣
2

≤
( ∞∑
`=n+1

α2
`f

2
`

)( ∞∑
`=n+1

α−2` ϕ`(xxx)
2

)

≤ ‖f‖2HαK(Ω) α
−2
n+1

∞∑
`=n+1

ϕ`(xxx)
2.

The proof of Theorem 3.3 and the fact that ‖f‖HK(Ω) ≤ ‖f‖HαK(Ω), which
follows from our assumption α` ≥ 1 for every `, then yield the claimed uniform
bound. ut
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4 Gaussian kernel

The d-dimensional anisotropic Gaussian kernel

K(xxx,yyy) = exp

(
−

d∑
i=1

ε2i (xi − yi)2
)

(4.1)

with scale parameters εi > 0 has the orthonormal expansion

K(xxx,yyy) =
∑
ααα∈Nd

0

(√
2|ααα|εεεααα

ααα!
xxxααα exp

(
−

d∑
i=1

ε2ix
2
i

))

×

(√
2|ααα|εεεααα

ααα!
yyyααα exp

(
−

d∑
i=1

ε2i y
2
i

))
=:

∑
ααα∈Nd

0

ϕααα(xxx)ϕααα(yyy),

where Nd
0 is the collection of d-dimensional non-negative multi-indices ααα,

|ααα| = α1 + · · · + αd, ααα! = α1! × · · · × αd!, and zzzααα = zα1
i × · · · × z

αd
d for any

zzz ∈ Rd. This expansion can be verified via a straightforward calculation. The
RKHS of (4.1) is thus

HK(Ω) =

{
f(xxx) =

∑
ααα∈Nd

0

fααα

√
2|ααα|εεεααα

ααα!
xxxααα exp

(
−

d∑
i=1

ε2ix
2
i

)
:
∑
ααα∈Nd

0

f2ααα <∞

}
.

However, for the most of this section we set d = 1 and consider the one-
dimensional Gaussian kernel

K(x, y) = exp
(
− ε2(x− y)2

)
(4.2)

with a single scale parameter ε > 0. The orthonormal expansion and the RKHS
are then2

K(x, y) =

∞∑
`=0

(√
2`ε2`

`!
x` exp(−ε2x2)

)(√
2`ε2`

`!
y` exp(−ε2y2)

)

=:
∞∑
`=0

ϕ`(x)ϕ`(y)

(4.3)

and

HK(Ω) =

{
f(x) =

∞∑
`=0

f`

√
2`ε2`

`!
x` exp(−ε2x2) :

∞∑
`=0

f2` <∞

}
. (4.4)

2 Observe that in this section we begin indexing of the expansion from zero to simplify
notation.
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The above results and other properties of the Gaussian kernel and its RKHS
are studied in more detail in [34, 20] and [9, Section 4]. In Section 4.1 we
show that, owing to the special structure of the above basis functions and the
resulting convenient factorisation of detΦXn , the approximate Fekete points
for the one-dimensional Gaussian kernel are solved from a convex optimisation
problem. Note that most prior work, such as [36, 3], uses a well-known Mercer
expansion of the Gaussian kernel instead of (4.3). This expansion is

K(x, y) =

∞∑
`=0

λσ` ψ
σ
` (x)ψ

σ
` (y), (4.5)

where the eigenfunctions are orthonormal with respect to the Gaussian measure
with variance σ2:

1√
2πσ2

∫
R

ψσ` (x)ψ
σ
k (x) exp

(
− x2

2σ2

)
dx = δ`k.

The eigenfunctions and values are [15]

ψσ` (x) =

√
β

`!
e−δ

2x2

H`
(√

2αβx
)

and λσ` =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)`
,

where H` is the `th probabilists’ Hermite polynomial and the constants are

α =
1√
2σ
, β = (1 + 8ε2σ2)1/4 and δ2 =

1

4σ2
(β2 − 1).

The Mercer expansion (4.5) can be then verified by inserting

ρ =
ε2

α2 + δ2 + ε2
and γ =

√
2αβ

into the Mehler formula

exp

(
− ρ2γ2(x2 + y2)− 2ργ2xy

2(1− ρ2)

)
=
√
1− ρ2

∞∑
`=0

ρ`

`!
H`(γx)H`(γy),

and multiplying both sides with

exp

(
− ργ2

2(1 + ρ)
(x2 + y2)

)
= exp

(
− δ2(x2 + y2)

)
.

The expansion (4.3) used in this article is evidently much simpler to work with.
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4.1 Approximate Fekete points via convex optimisation

Let

K̂(x, y) =

n−1∑
`=0

(√
2`ε2`

`!
x` exp(−ε2x2)

)(√
2`ε2`

`!
y` exp(−ε2y2)

)

=

n−1∑
`=0

ϕ`(x)ϕ`(y)

be the truncation of the Gaussian kernel (4.2) and K̂Xn = (K̂(xk, xm))nk,m=1 ∈
Rn×n the corresponding kernel matrix. Define the matrices

ΦXn =


ϕ0(x1) · · · ϕn−1(x1)

...
. . .

...
ϕ0(xn) · · · ϕn−1(xn)

 and VXn =


1 x1 · · · xn−11
...

...
. . .

...
1 xn · · · xn−1n

 ,
the latter of which is the classical Vandermonde matrix. Since K̂Xn = ΦXnΦ

T
Xn

and the kth row of the matrix ΦXn is that of the matrix VXn multiplied by
(2k−1ε2(k−1)/(k − 1)!)1/2 exp(−ε2x2k), we have

(
det K̂Xn

)1/2
= |detΦXn |

=

( n−1∏
`=0

2`ε2`

`!

)1/2

exp

(
− ε2

n∑
k=1

x2k

)
|detVXn |

=

( n−1∏
`=0

2`ε2`

`!

)1/2

exp

(
− ε2

n∑
k=1

x2k

)∣∣∣∣ ∏
1≤i<j≤n

(xi − xj)
∣∣∣∣ ,

where the last equation uses the standard explicit expression for the Vander-
monde determinant. This expression verifies that K̂Xn and ΦXn are invertible
whenever the points are distinct. Define

W (x1, . . . , xn) = exp

(
− ε2

n∑
k=1

x2k

)∣∣∣∣ ∏
1≤i<j≤n

(xi − xj)
∣∣∣∣ . (4.6)

The approximate Fekete points (2.8) for the Gaussian kernel are thus seen to
be

X ∗n = {x∗1, . . . , x∗n} ∈ argmax
Xn={x1,...,xn}⊂Ω

det K̂X

= argmax
Xn={x1,...,xn}⊂Ω

W (x1, . . . , xn).
(4.7)
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Maximisation of W (x1, . . . , xn) is equivalent to minimisation of the energy

I(x1, . . . , xn) = − logW (x1, . . . , xn) = ε2
n∑
k=1

x2k +
∑

1≤i<j≤n
log

1

|xi − xj |

=

n∑
k=1

Qε(xk) +
∑

1≤i<j≤n
N(xi − xj),

where Qε(x) = ε2x and N(x) = 1/ log |x|. To ensure that I is well-defined and
to eliminate non-uniqueness arising from ordering of the points, define the
simplex

Rn =
{
(x1, . . . , xn) ∈ Ωn : x1 < x2 < · · · < xn−1 < xn

}
⊂ Ωn

and consider I as a function defined on Rn. Adaptation of the proof of The-
orem 3.3 of Tanaka and Sugihara [37] shows that the objective function I is
convex and that there exists a unique minimiser X ∗n ∈ Rn.

Proposition 4.1 If Ω ⊂ R is a closed interval, then the energy function
I : Rn → R is convex and has a unique minimiser.

Proof The Hessian matrix ∇2I of I is

(∇2I)ij =
∂2I

∂xi∂xj
=

{
Q′′ε (xi) +

∑
k 6=iN

′′(xi − xk) (i = j),

−N ′′(xi − xj) (i 6= j).

Because both
N(x) = log

1

|x|
and Qε(x) = ε2x2

are strictly convex on R\{0} and R, respectively, we have N ′′ > 0 and Q′′ > 0.
Therefore the diagonal elements of ∇2I are always positive. Moreover,∑

k 6=i
|−N ′′(xi − xk)| =

∑
k 6=i

N ′′(xi − xk) <
∑
k 6=i

N ′′(xi − xk) +Q′′ε (xi), (4.8)

which verifies that the Hessian is diagonally dominant and hence positive-
definite. That is, the energy function I is convex on Rn.

To verify that there is a unique minimiser in the non-closed set Rn, consider
the function J(Xn) = exp(−I(Xn)) which is continuous on the closure of Rn if
we set J(Xn) = 0 for every Xn = {x1, . . . , xn} ∈ Ωn such that xi = xi+1 for
some i. Being positive on Rn, any maximiser of J is in Rn. As a maximiser
of J is a minimser of I and I is convex it follows that I must have a unique
minimiser in Rn. ut

Remark 4.2 If we set ε = 0, the above optimisation problem becomes that of
finding the Fekete points for polynomial interpolation. However, in this case
the objective function I is no longer convex because Q′′ε (xi) = 0 in (4.8). Our
optimisation problem can be thus viewed as a regularised version of the standard
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Fekete problem. Based on this and the well-known convergence3 of kernel
interpolants to polynomial interpolants at the so-called flat limit [30, 19, 18] it
may be expected that X ∗n converge to the polynomial Fekete points as ε→ 0.
We do not attempt to prove this.

4.2 Error estimates

In this section we denote cΩ = supx∈Ω |x| <∞.

Lemma 4.3 Consider the basis functions (4.3) and assume that n ≥ 2ε2c2Ω.
Then

sup
x∈Ω

( ∞∑
`=n

ϕ`(x)
2

)1/2

≤
(√

2 εcΩ
)n

√
n!

.

Proof By differentation it is easy to see that ϕ`(x)2 attains its maximal value
on R at x0 ± (`/(2ε2))1/2 and that ϕ2

` is decreasing on [−(`/(2ε2))1/2, 0] and
increasing on [0, (`/(2ε2))1/2]. It follows that

sup
x∈Ω

ϕ`(x)
2 = ϕ`(cΩ)

2 =
2`ε2`

`!
c2`Ω exp(−2ε2c2Ω)

for every ` ≥ n if n ≥ 2ε2c2Ω . By Taylor’s theorem there is ξ ∈ [0, 2ε2c2Ω ] such
that

sup
x∈Ω

∞∑
`=n

ϕ`(x)
2 ≤ exp(−2ε2c2Ω)

∞∑
`=n

(2ε2c2Ω)
`

`!

= exp(−2ε2c2Ω)
exp(ξ)

n!
(2ε2c2Ω)

n

≤ exp(−2ε2c2Ω)
exp(2ε2c2Ω)

n!
(2ε2c2Ω)

n

=
(2ε2c2Ω)

n

n!
.

This proves the claim. ut

Using the estimate of Lemma 4.3 in Corollary 3.4 yields an explicit error
estimate for interpolation with the Gaussian kernel.

Theorem 4.4 Consider the Gaussian kernel with the orthonormal expan-
sion (4.3) and suppose that Ω ⊂ R is a closed interval. If f ∈ HK(Ω) is

3 In one dimension the convergence occurs for any points and most commonly used infinitely
smooth radial kernels but in higher dimensions the Gaussian kernel is special in that it is
the only known kernel for which convergence to a polynomial interpolant, of minimal degree
in a certain sense, occurs for every point set.



16 Toni Karvonen et al.

interpolated at the unique approximate Fekete points X ∗n defined in (4.7) and
n ≥ 2ε2c2Ω, then

sup
x∈Ω
|f(x)− sf (x)| ≤ C1 ‖f‖HK(Ω) n

3/4 exp

(
− n

(
1

2
log n− logC2

))
, (4.9)

where C1 = (128/π)1/4 ≈ 2.53 and C2 =
√
2 e εcΩ.

Proof The claim follows from Corollary 3.4, Lemma 4.3, and the lower bound
n! ≥

√
2πnn+1/2 e−n in Stirling’s approximation [26]:

sup
x∈Ω
|f(x)− sf (x)| ≤ 2 ‖f‖HK(Ω) (1 + n)

(√
2 εcΩ

)n
√
n!

≤ 4 ‖f‖HK(Ω)

(√
2 εcΩ

)n
n

√
n!

≤
(
128

π

)1/4

‖f‖HK(Ω)

(√
2 εcΩ

)n
en/2 n

nn/2+1/4

=

(
128

π

)1/4

n3/4 ‖f‖HK(Ω)

(√
2 e εcΩ
n1/2

)n
= C1 ‖f‖HK(Ω) n

3/4 exp

(
− n

(
1

2
log n− logC2

))
.

ut

Also Theorem 3.5 can be specialised, and in some cases the kernel of the
subspace HαK(Ω) has an explicit form. For instance, set α` =

√
`! 2`ε2`. Then

Kα(x, y) = exp
(
− ε2(x2 + y2)

) ∞∑
`=0

1

α2
`

2`ε2`

`!
(xy)`

= exp
(
− ε2(x2 + y2)

) ∞∑
`=0

1

(`!)2
(xy)`,

which can be written in terms of I0, the modified Bessel function of the first
kind:

Kα(x, y) = exp
(
− ε2(x2 + y2)

)
I0
(
2
√
xy
)
.

Theorem 4.5 Consider the Gaussian kernel with the orthonormal expan-
sion (4.3) and suppose that Ω ⊂ R is a closed interval. If f ∈ HαK(Ω) is
interpolated at the unique approximate Fekete points X ∗n defined in (4.7) and
n ≥ 2ε2c2Ω, then

sup
x∈Ω
|f(x)− sf (x)| ≤ C1 ‖f‖HαK(Ω) n

3/4α−1n exp

(
− n

(
1

2
log n− logC2

))
,

where C1 = (128/π)1/4 ≈ 2.53 and C2 =
√
2 e εcΩ.
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If Ω = [a, b] ⊂ R is a closed interval, the standard fill-distance based
bound [24, Theorem 6.1] for interpolation error is

sup
x∈Ω
|f(x)− sf (x)| ≤ 2 ‖f‖HK(Ω) exp

(
C log(hXn,Ω)/hXn,Ω

)
(4.10)

whenever the fill-distance

hXn,Ω = sup
x∈Ω

min
xk∈Xn

|x− xk|

is sufficiently small. The constant in (4.10) satisfies C ≤ 1
8 min{(b− a)/6, 1}.4

For the equispaced points

Xn =

{
a, a+

b− a
n

, . . . , b− b− a
n

, b

}
,

which have the minimal fill-distance hXn,Ω = (b − a)/n, the bound (4.10)
becomes

sup
x∈Ω
|f(x)− sf (x)| ≤ 2 ‖f‖HK(Ω) exp

(
− C

b− a
n

(
log n− log(b− a)

))
,

where C/(b−a) ≤ 1
48 . Our bound (4.9) for points X ∗n , being essentially of order

exp(− 1
2n log n), is thus better when n is sufficiently large. However, a significant

advantage of bounds of the type (4.10) is that they apply to nested point sets
(i.e., Xn ⊂ Xn+1 for every n ≥ 1). It cannot be expected that the approximate
Fekete point sets are nested. Further error estimates for Chebyshev-type nodes
that cluster near the boundary are provided in [25].

Remark 4.6 It is easy to see that in the Gaussian case the Lagrange basis
functions in (3.3) can be expressed in terms of the classical polynomial Lagrange
functions:

uϕk (x) = exp(ε2x2k) exp(−ε2x2)lk(x), (4.11)

where
lk(x) =

∏
6̀=k

x− x`
xk − x`

.

Let Λpol(Xn) = supx∈Ω
∑n
k=1 |lk(x)| be the Lebesgue constant for polynomial

interpolation. It follows easily from (4.11) and the boundedness of Ω that there
exist C1, C2 > 0 such that

C1Λpol(Xn) ≤ Λϕ(Xn) ≤ C2Λpol(Xn)

for any Xn ⊂ Ω. This implies that in Theorem 3.3 the coefficient 1 + Λϕ(Xn)
can be replaced with 1 + C2Λpol(Xn), which means that convergence results
are available if polynomial Lebesgue constants can be controlled (e.g., if Xn
are the Chebyshev points).

4 This is the constant C in Theorem 6.1 of Rieger and Zwicknagl [24]. To derive the
claimed bound, observe that this constant is given as C = εB/4 for B ≤ min{(b− a)/6, 1}
in their proof of Theorem 4.5. On p. 120 they show that ε = 1/2 if the kernel is Gaussian.
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4.3 Tensor product algorithms

In this section we provide error estimates for interpolation with anisotropic
Gaussian kernels in higher dimensions when the evaluation points are con-
structed as tensor products of the approximate Fekete points (4.7). Besides [2]
there does not appear to be much work on error estimates for general anisotropic
kernels. Fasshauer et al. [12] and Sloan and Woźniakowski [33] analyse the L2-
error of general linear algorithms for functions in the RKHS of an anisotropic
Gaussian.

Let
Ω = Ω1 × · · · ×Ωd ⊂ Rd for Ωi = [ai, bi] 6= ∅ (4.12)

be a hyper-rectangle and consider the d-dimensional anisotropic Gaussian
kernel (4.1),

K(xxx,yyy) = exp

(
−

d∑
i=1

ε2i (xi − yi)2
)

=:
d∏
i=1

Ki(xi, yi),

on Ω. Let n1, . . . , nd ∈ N and denote N = n1 × · · · × nd. We take the point
set to be a tensor product of approximate Fekete point sets (4.7) for Gaussian
kernels Ki on Ωi:

X ∗N = X ∗1,n1
× · · · × X ∗d,nd ⊂ Ω, (4.13)

where X ∗i,ni ⊂ Ωi stands for the set of ni approximate Fekete points for kernel
Ki on Ωi. Due to the tensor product structure of the point set and the RKHS [4,
Section 4.6 in Chapter 1], any function f ∈ HK(Ω) of the form

f(xxx) = f1(x1)× · · · × fd(xd) for f1 ∈ HK1
(Ω1), . . . , fd ∈ HKd(Ωd)

has the norm

‖f‖HK(Ω) = ‖f1‖HK1
(Ω1)
× · · · × ‖fd‖HKd (Ωd)

and the kernel interpolant sf to any f ∈ HK(Ω) can be written as

sf (xxx) = s1,f1(x1)× · · · × sd,fd(xd),

where si,fi is the kernel interpolant, based on Ki, of fi ∈ HKi(Ωi) at the points
X ∗i,ni .

Theorem 4.7 Consider the multi-dimensional Gaussian kernel (4.1) and sup-
pose that Ω ⊂ Rd is a hyper-rectangle of the form (4.12). If f ∈ HK(Ω) is
interpolated at the tensor product points X ∗N defined in (4.13) and ni ≥ 2ε2i c

2
Ωi

for every i = 1, . . . , d, then

sup
xxx∈Ω

|f(xxx)− sf (xxx)| ≤ C1 ‖f‖HK(Ω)

d∑
i=1

n
3/4
i exp

(
− ni

(
1

2
log ni − logCi,2

))
,

(4.14)
where C1 = (128/π)1/4 ≈ 2.53 and Ci,2 =

√
2 e εicΩi .



Kernel-based interpolation at approximate Fekete points 19

Proof Let g(xxx) = g1(x1)× · · · × gd(xd) for gi ∈ HKi(Ωi) and denote gi:j(xxx) =
gi(xi)× · · · × gj(xj) for 1 ≤ i ≤ j ≤ d. Then

g(xxx)− sg(xxx) = g2:d(xxx)g1(x1)− sg2:d(xxx)sg1(x1)
= g2:d(xxx)[g1(x1)− s1,g1(x1)] + [g2:d(xxx)− sg2:d(xxx)]s1,g1(x1)

=

d∑
i=1

[gi(xi)− si,gi(xi)]gi+1:d(xxx)

i−1∏
j=1

sj,gj (xj),

where the notational convention gd+1:d(xxx) = 1 is used. By the reproducing
property and the minimum-norm property (2.1),

|gi(xi)| =
∣∣〈g,Ki(·, xi)〉HKi (Ωi)

∣∣ ≤ ‖gi‖HKi (Ωi) and |si,gi(xi)| ≤ ‖gi‖HKi (Ωi)

for any i ≤ d and xi ∈ Ωi. Because sf−sf ≡ 0, the norm ‖f‖HK(Ω) on the
right-hand side of the bound (4.9) can be replaced with ‖f − sf‖HK(Ω) by
considering interpolation of the function f − sf . From this and the above
estimates we get

|g(xxx)− sg(xxx)| ≤
d∑
i=1

|gi(xi)− si,gi(xi)|
∏
j 6=i
‖gj‖HKj (Ωj)

≤ C1

d∑
i=1

n
3/4
i exp

(
− ni

(
1

2
log ni − logCi,2

))
× ‖gi − si,gi‖HKi (Ωi)

∏
j 6=i
‖gj‖HKj (Ωj) .

To obtain a bound that is valid for any function in HK(Ω) we exploit (2.3).
For any xxx ∈ Ω set g = K(·,xxx). Because ‖Ki(·, xi)‖HKi (Ωi) = 1 and, by the
power function characterisations (2.3) and (2.4) and the estimate (4.9),

PX∗N (xxx)
2 = g(xxx)− sg(xxx)

and

‖gi − si,gi‖HKi (Ωi) = PX∗i,ni (xi) ≤ C1n
3/4
i exp

(
− ni

(
1

2
log ni − logCi,2

))
,

we have

PX∗N (xxx)
2 ≤ C2

1

d∑
i=1

[
n
3/4
i exp

(
− ni

(
1

2
log ni − logCi,2

))]2

≤

[
C1

d∑
i=1

n
3/4
i exp

(
− ni

(
1

2
log ni − logCi,2

))]2
.

The claim now follows from (2.3). ut
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In particular, if n1 = · · · = nd = n (so that N = nd) and all Ωi and εi are
equal, the bound of Theorem 4.7 becomes

sup
xxx∈Ω

|f(xxx)− sf (xxx)| ≤ C1 ‖f‖HK(Ω) dN
3/(4d) exp

(
−N1/d

(
1

2d
logN−logC2

))
.

It would be straightforward to generalise Theorem 4.5 to the tensor product
setting.

5 Numerical examples

This section contains two numerical examples where maxima of power functions
as well as interpolation errors for specific RKHS functions are compared when
the interpolation points are either the approximate Fekete, P -greedy points, or
the Chebyshev points and the kernel is Gaussian.

5.1 Power function

Figure 1 displays the maxima of power functions of the univariate Gaussian
kernel (4.2) with ε = 1 and ε = 2 on Ω = [−1, 1] for three different choices of
the interpolation points:

1. The approximate Fekete points whose construction is outlined in Section 4.1.
2. The P -greedy points, obtained via greedy maximisation of the power func-

tion as defined in (2.9).
3. The classical Chebyshev points

xk = cos

(
2k − 1

2n
π

)
for k = 1, . . . , n

which do not depend on the choice of the kernel.

The point sets are depicted in Figure 2 for n = 40. The P -greedy points as well
as the power function maxima were computed by discretising the interval into
1,000 equispaced points. That is, the next P -greedy point was always solved
from

xn+1 ∈ argmax
x∈Ωh

PXn(x), (5.1)

where Ωh = {−1,−1+ h, · · · , 1− h, 1} and h = 1
999 , is a uniform discretisation

of [−1, 1]. The results show that the approximate Fekete points outperform
the P -greedy points and the Chebyshev points. Given Remark 4.2 it is not
surprising that the approximate Fekete points are only marginally better than
the Fekete points when the relatively small value ε = 1 is used. We also see
that the approximate Fekete points are very close, but not identical, to the
Chebyshev points when ε = 1 and that they cover the domain more uniformly
than the P -greedy points for the both values of ε used.
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Fig. 1 Top: Power function maximamaxx∈[−1,1] PXn (x) approximated using a discretisation
of [−1, 1] into 1,000 equispaced points for the approximate Fekete and P -greedy points of
the Gaussian kernel (4.2) with ε = 1 (left) and ε = 2 (right). Also displayed are the (scaled)
theoretical rates from Theorem 4.4. Bottom: Ratios of power function maxima for (1) P -
greedy and approximate Fekete points and (2) Chebyshev and approximate Fekete points.
These panels demonstrate that the power function for the P -greedy points can attain a value
almost ten times that for the approximate Fekete points (n = 34 for ε = 1 and n = 38 for
ε = 2) and that the approximate Fekete points are typically only marginally better than the
Chebyshev points when ε = 1 but can consistently outperform them when ε is increased.

As proved in Proposition 4.1, the approximate Fekete points are solved
from a convex optimisation problem. Computing the next P -greedy point
in (5.1) requires finding the maximum of PXn on the finite set Ωh, and PXn
can be updated to step n + 1 on Ωh at a computational cost of O(n2 |Ωh|).
On the downside, it should be noted that the power function quickly becomes
numerically unstable due to severe ill-conditioning of the kernel matrix of the
Gaussian kernel. The superiority of the the approximate Fekete points from
computational perspective is demonstrated by our implementation which used
MATLAB’s native fmincon function to efficiently compute the approximate



22 Toni Karvonen et al.

Approx. Fekete — Chebyshev — P -greedy (n = 40; ε = 1)

Approx. Fekete — Chebyshev — P -greedy (n = 40; ε = 2)

−1 −0.5 0 0.5 1

Fig. 2 Approximate Fekete points (top), Chebyshev points (middle), and P -greedy points
(bottom) on Ω = [−1, 1] for the Gaussian kernel (4.2) with ε = 1 and ε = 2.

Fekete points without domain discretisation but had to resort to costly arbitrary-
precision arithmetic (mpmath library [17] in Python) for numerically stable
computation of the P -greedy points (arbitrary-precision arithmetic was also
used to compute the power function maxima for all point sets). This makes a
straightforward comparison of computational complexities of the two methods
difficult.

5.2 Specific RKHS functions

We use the kernel interpolant (2.2) based on the Gaussian kernel (4.2) with
ε ∈ {1, 2} to approximate the functions

fε,m(x) = xm exp(x− ε2x2) (5.2)

for m ∈ {5, 10, 15} on Ω = [−1, 1]. Using (4.4) and the expansion

fε,m(x) = xm
∞∑
`=0

1

`!
x` exp(−ε2x2)

we compute that

‖fε,m‖2HK(Ω) =

∞∑
`=m

`!

2`ε2`((`−m!))2
= (2ε2)−m

∞∑
`=0

(2ε2)−`
(`+m)!

(`!)2
,

which can be proved to converge by using, for example, the ratio test. This
verifies that fε,m ∈ HK(Ω) for every m ∈ N and ε > 0.
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Fig. 3 The ratios (5.3) of maximal errors in interpolating the function (5.2) using the kernel
interpolant (2.2) based on the Gaussian kernel (4.2) with ε = 1 (left) and ε = 2 (right).
Ratios larger than one mean that the approximate Fekete points outperform the P -greedy
points or Chebyshev points in terms of the selected error criterion.

The results are displayed in Figure 3 in terms of the ratios of maximal
interpolation errors,

supx∈[−1,1] |fε,m(x)− sfε,m(x)|
supx∈[−1,1] |fε,m(x)− s∗fε,m(x)|

, (5.3)
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where the interpolant in the numerator uses either the P -greedy points or the
Chebyshev points and the interpolant in the denominator uses the approximate
Fekete points. As in Section 5.1, the suprema were approximated using the
1,000-point equispaced discretisation of the interval and arbitrary-precision
arithmetic. The results show that the approximate Fekete points fairly con-
sistently outperform the two alternatives, particularly when the number of
points and the scale parameter are large (n ≥ 15 and ε = 2). The results for
ε = 1 closely mirror those for the power function in Section 5.1 in that the
improvement over the Chebyshev points is only marginal.
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