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A GENERALIZED WORST-CASE COMPLEXITY ANALYSIS FOR
NON-MONOTONE LINE SEARCHES

GEOVANI N. GRAPIGLIA∗ AND EKKEHARD W. SACHS†

Abstract. We study the worst-case complexity of a non-monotone line search framework that
covers a wide variety of known techniques published in the literature. In this framework, the non-
monotonicity is controlled by a sequence of nonnegative parameters. We obtain complexity bounds
to achieve approximate first-order optimality even when this sequence is not summable.

Key words. Nonlinear optimization, Unconstrained optimization, Non-monotone line search,
Worst-case complexity

1. Introduction. The worst-case complexity analysis of algorithms for non-
convex optimization has become a very active research area [31, 32, 34]. This type
of analysis aims at an estimate for the maximum number of iterations that an algo-
rithm needs to generate an ǫ-approximate critical point of the objective function. The
numerical schemes for smooth unconstrained optimization considered so far include
line search algorithms [7, 12, 19, 32, 36], trust-region algorithms [14, 17, 18, 21] and
regularization algorithms [4, 8, 9, 10, 11, 16, 20, 27, 33, 40].

In most of these studies, the algorithms that were analyzed are monotone, that
is, they do not allow an increase in the values of the objective function in successive
iterations. In this paper we consider a whole family of non-monotone step-size rules
and analyze their complexity. This is carried out by using a general algorithmic
framework, extending the work in [37].

The framework is built upon a generalized Armijo rule in which the non-monotonicity
is controlled by a sequence {νk} of non-negative real numbers. It was shown in [19]
that, if the sequence {νk} is summable, the algorithms in the class take at most
O(ǫ−2) iterations to find ǫ-approximate critical points. Here, we relax the summa-
bility assumption and provide complexity estimates for the resulting non-monotone
schemes. As a by-product, we obtain a unified liminf-type global convergence result
for non-monotone schemes in which νk → 0, covering the non-monotone rules in [23]
and [41]. Compared to these approaches, the analysis presented here is remarkably
simple and our generalized results allow more freedom for the development of new
non-monotone line search algorithms. As an example, we design a non-monotone
stepsize rule related to the Metropolis rule.

The paper is organized as follows. In Section 2, we present worst-case complexity
estimates. We use these estimates to derive in a new way global convergence results as
outlined in Section 3. In Section 4, a Metropolis-based non-monotone rule is motivated
and defined. We report preliminary numerical experiments in Section 5.

2. Worst-Case Complexity Analysis. Given a Hilbert space (X, 〈 . , . 〉), we
consider the minimization problem

(2.1) min
x∈X

f(x),
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2 A Generalized Worst-Case Complexity Analysis for Non-Monotone Line Searches

where f : X → R is Fréchet differentiable. We shall denote the gradient of f at x ∈ X
by ∇f(x). Furthermore, given xk ∈ X , we call dk ∈ X a descent direction for f at xk

if 〈∇f(xk), dk〉 < 0. Finally, we shall denote the norm induced by the inner product
〈 . , . 〉 by ‖ · ‖.

We will consider the following general descent algorithm with a non-monotone
Armijo line search, which is a slight modification of the scheme proposed by Sachs
and Sachs [37].
Algorithm 1. (General Non-monotone Descent Algorithm)

Step 0 Given x0 ∈ X , α0 > 0 and β, ρ ∈ (0, 1), set k := 0.
Step 1 Compute a descent direction dk ∈ X for xk.
Step 2.1 Set l := 0.
Step 2.2 Choose νk,l ≥ 0. If

(2.2) f(xk + αkβ
ldk) ≤ f(xk) + ραkβ

l 〈∇f(xk), dk〉+ νk,l

set lk = l, νk = νk,lk and go to Step 3. Otherwise, set l := l + 1 and repeat Step 2.2.
Step 3 Set xk+1 = xk + αkβ

lkdk, αk+1 = αkβ
lk−1, k := k + 1 and go to Step 1.

Remark 2.1. The root of the non-monotone term f(xk) + νk,l in Algorithm 1
can be traced back to [25] and [13]. In addition, a trust-region with line search using
a similar non-monotone term has been proposed in [39].

Remark 2.2. The difference between Algorithm 1 and the general scheme in [37]
is that at any given iteration k, instead of using a fixed non-monotone term νk, we
allow it to change within the line search procedure. This flexibility allows to cover the
non-monotone rule described in Section 4.

To analyze the worst-case complexity of Algorithm 1, we shall consider the fol-
lowing assumptions:

A1 The objective function f : X → R is Fréchet differentiable and its gradient
∇f : X → X is Lipschitz continuous with Lipschitz constant L > 0.

A2 There exists flow ∈ R such that f(x) ≥ flow for all x ∈ X .
A3 For all k,

〈∇f(xk), dk〉 ≤ −c1‖∇f(xk)‖2 and ‖dk‖ ≤ c2‖∇f(xk)‖

for some constants c1, c2 > 0.
Lemma 2.3. Suppose f : X → R is Fréchet differentiable and its gradient ∇f :

X → X is Lipschitz continuous with Lipschitz constant L > 0:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ X.

Then,

(2.3) f(y) ≤ f(x)− 〈∇f(x), y − x〉 + L

2
‖y − x‖2 ∀x, y ∈ X.

Proof. See, for example, Theorem 1.2.22 in [38].
The next lemma provides a lower bound on αk.
Lemma 2.4. Suppose that A1 and A3 hold. Then, for all k,

(2.4) αk ≥ min

{

α0,
2(1− ρ)c1

Lc22

}

≡ ᾱ.
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Proof. Since νk,l ≥ 0 for all k and l, the result can be shown as in the proof of
Lemma 2 in [19].

The first theorem gives an upper bound on the total number of function evalua-
tions after k ≥ 1 iterations.

Theorem 2.5. Suppose that A1 and A3 hold and let Nk be the total number of
function evaluations up to the k-th iteration of Algorithm 1. Then,

(2.5) Nk ≤ 2(k + 1) +
1

log(β)
[log(ᾱ)− log(α0)] ,

where ᾱ is defined in Lemma 2.4.
Proof. Theorem 3 in [19] applies here, since the proof only uses αk+1 = βℓk−1αk

and the bound αk ≥ ᾱ for all k.
Remark 2.6. From (2.5) we see that in Algorithm 1 the average number of

function evaluations per iteration, up to the k-th iteration, is asymptotically bounded
by 2:

Nk

k
≤ 2

(

1 +
1

k

)

+
1

k

log(ᾱ)− log(α0)

log(β)
.

Now, define

(2.6) κc = min

{

ρβα0c1,
2βρ(1− ρ)c21

Lc22

}

.

With respect to sequence {νk}+∞
k=0 that controls the amount of the non-monotonicity,

we shall consider the following assumption:
A4 limT→+∞

1
T

∑T−1
k=0 νk = 0.

Note that, if
∑+∞

k=0 νk < +∞, then A4 is satisfied. However, A4 also may be
satisfied for sequences that are not summable. An example is νk = M/(k + 1), with
M > 0, for which

∑+∞
k=0 νk = +∞ but

lim
T→+∞

1

T

T−1
∑

k=0

νk ≤ lim
T→+∞

M

T
[ln(T ) + 1] = 0.

Therefore, the complexity analysis presented here includes non-monotone terms that
were not covered by the analysis in [19].

Given ǫ > 0, under the assumption A4, we shall denote by T0(ǫ) any non-negative
integer such that

(2.7) T ≥ T0(ǫ) =⇒
1

T

T−1
∑

k=0

νk ≤ κcǫ
2

2
,

where κc is given by (2.6).
Our next theorem establishes an upper bound on the number of iterations nec-

essary for Algorithm 1 generate xk such that ‖∇f(xk)‖ ≤ ǫ. Using (2.7), the proof
follows by adapting the proof of Theorem 1 in [19].

Theorem 2.7. Suppose that A1-A4 hold and let the sequence {xk}+∞
k=0 be gene-

rated by Algorithm 1. If

(2.8) T ≥ max

{

T0(ǫ),
2(f(x0)− flow)

κcǫ2

}

,
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then

(2.9) min
k=0,...,T−1

‖∇f(xk)‖ ≤ ǫ.

Proof. It follows from (2.2), A3 and Lemma 2.4 that

νk + f(xk)− f(xk+1) ≥ ραkβ
lk (−〈∇f(xk), dk〉)

≥ ρβαk+1c1‖∇f(xk)‖2

≥ κc‖∇f(xk)‖2,(2.10)

where κc is defined in (2.6). Summing up these inequalities for k = 0, . . . , T − 1, and
using A2, we get

T−1
∑

k=0

κc‖∇f(xk)‖2 ≤ f(x0)− f(xT ) +
T−1
∑

k=0

νk ≤ f(x0)− flow +
T−1
∑

k=0

νk.

Consequently,

κcT min
k=0,...,T−1

‖∇f(xk)‖2 ≤ f(x0)− flow +

T−1
∑

k=0

νk,

which gives

(2.11) min
k=0,...,T−1

‖∇f(xk)‖2 ≤ f(x0)− flow
κcT

+
1

κcT

T−1
∑

k=0

νk.

Since (2.8) holds, we have T ≥ T0(ǫ), and so it follows from (2.7) that

(2.12)
1

κcT

T−1
∑

k=0

νk ≤ ǫ2

2
.

On the other hand, also by (2.8) we have

(2.13)
f(x0)− flow

κcT
≤ ǫ2

2
.

Combining (2.11), (2.12) and (2.13), we have

min
k=0,...,T−1

‖∇f(xk)‖2 ≤ ǫ2

2
+

ǫ2

2
= ǫ2,

which gives (2.9).
An important class of non-monotone schemes is the one that corresponds to {νk}

summable. As mentioned in the Introduction, it includes, for example, the non-
monotone rule of Zhang and Hager [41] and the non-monotone rule of Ahookhosh,
Amini and Bahrami [1] (for details, see Section 6 in [37]). For this class, Theorem 2.7
has the following consequence.

Corollary 2.8. Suppose that A1-A3 hold and that
∑+∞

k=0 νk < +∞. Let

{xk}+∞
k=0 be a sequence generated by Algorithm 1. Given ǫ ∈ (0, 1), if

(2.14) T ≥ 2max

{

+∞
∑

k=0

νk, f(x0)− flow

}

κ−1
c ǫ−2,
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then

(2.15) min
k=0,...,T−1

‖∇f(xk)‖ ≤ ǫ.

Proof. Note that

0 ≤ 1

T

T−1
∑

k=0

νk ≤ 1

T

+∞
∑

k=0

νk, for all T ≥ 1.

Since {νk} is summable, it follows that A4 is satisfied. Moreover,

T ≥
2
(

∑+∞
k=0 νk

)

κcǫ2
=⇒ κcǫ

2

2
≥ 1

T

(

+∞
∑

k=0

νk

)

≥ 1

T

(

T−1
∑

k=0

νk

)

.

Therefore, (2.7) holds for

T0(ǫ) =
2
∑+∞

k=0 νk
κcǫ2

,

and (2.14) can be rewritten as

T ≥ max

{

T0(ǫ),
2(f(x0)− flow)

κcǫ2

}

.

Thus, by Theorem 2.7, (2.15) must be true.
When

∑+∞
k=0 νk < +∞, Corollary 2.8 gives a worst-case complexity bound of

O(ǫ−2) iterations, which agrees with the bound established in [19]. The next result
allows us to obtain worst-case complexity estimates even when {νk} is not summable.

Corollary 2.9. Suppose that A1-A3 hold and that νk → 0. Let constant C > 0
such that νk ≤ C for all k and, given δ > 0, let k0(δ) be a positive integer such that
νk ≤ δ if k ≥ k0(δ). Then, for any sequence {xk}+∞

k=0 generated by Algorithm 1, if

(2.16) T ≥ max

{

2k0(δ/2)C

δ
, 1 + k0(δ/2),

2(f(x0)− flow)

κcǫ2

}

for δ = κcǫ
2/2, it follows that

(2.17) min
k=0,...,T−1

‖∇f(xk)‖ ≤ ǫ.

In particular, if νk = M/k for all k, with M > 0 constant, then (2.17) holds if

(2.18) T ≥ max

{

16M2

κ2
cǫ

4
, 1 +

4M

κcǫ2
,
2(f(x0)− flow)

κcǫ2

}

.

Proof. Given δ > 0, if

T ≥ max

{

2k0(δ/2)C

δ
, 1 + k0(δ/2)

}
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we have

1

T

T−1
∑

k=0

νk =
1

T





k0(δ/2)−1
∑

k=0

νk



 +
1

T





T−1
∑

k=k0(δ/2)

νk





≤ 1

T





k0(δ/2)−1
∑

k=0

C



+
1

T





T−1
∑

k=k0(δ/2)

δ

2





≤ 1

T





k0(δ/2)−1
∑

k=0

C



+
1

T

(

T−1
∑

k=0

δ

2

)

≤ k0(δ/2)C

T
+

δ

2
≤ δ.

Therefore, the assumption A4 is satisfied and (2.7) holds for

T0(ǫ) = max

{

2k0(δ/2)C

δ
, 1 + k0(δ/2)

}

,

with δ = κcǫ
2/2. Consequently, if (2.16) holds, then (2.8) is true and the conclusion

comes directly from Theorem 2.7. Finally, suppose that νk = M/k for all k. Then,
νk → +∞, νk ≤ M for all k and, given δ > 0,

νk =
M

k
≤ δ ⇐⇒ k ≥ M

δ
.

Hence, in this case, we have

k0(δ) =
M

δ
and C = M.

Therefore, the condition (2.16) becomes (2.18).
Remark 2.10. Consider νk = ǫ/k for all k ≥ 1, with ǫ ∈ (0, 1). In this case, even

though
∑+∞

k=0 νk = +∞, it follows from Corollary 2.9 (with M = ǫ) that Algorithm 1
takes at most O(ǫ−2) iterations to generate xk such that ‖∇f(xk)‖ ≤ ǫ.

A worst-case complexity bound of O
(

ǫ−2
)

also can be obtained for variants of
Algorithm 1 characterized by the following assumption:

A4’ νk = o
(

‖∇f(xk)‖2
)

as k → +∞, i.e., for all δ > 0, there exists n0 ∈ N such
that

νk ≤ δ‖∇f(xk)‖2, ∀k ≥ n0.

Under assumption A4’, for any δ > 0, we can define the number

(2.19) n0(δ) = min
{

n0 ∈ N | νk ≤ δ‖∇f(xk)‖2, ∀k ≥ n0

}

.

One example of sequence {νk} satisfying A4’ is

ν0 = 0 and νk = k−1‖∇f(xk)‖2 ∀k ≥ 1.

The next lemma gives a finite upper bound of O(ǫ−2) for the total number of
iterations of Algorithm 1 in which ‖∇f(xk)‖ > ǫ for a given ǫ > 0.
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Lemma 2.11. Suppose that A1-A3 hold and let sequence {xk}+∞
k=0 be generated by

Algorithm 1. Given ǫ > 0, if A4’ holds, then the number of elements of the set

(2.20) Ωǫ = {k | ‖∇f(xk)‖ > ǫ}

is bounded as follows

(2.21) |Ωǫ| ≤ k1 +





2
(

f(x0)− flow +
∑k1−1

i=0 νi

)

κc



 ǫ−2,

where k1 = n0(
κc

2 ) is independent of ǫ, with κc and n0(·) defined in (2.6) and (2.19),
respectively.

Proof. By A4’ and (2.19), k1 is well-defined and

νk ≤ κc

2
‖∇f(xk)‖2, ∀k ≥ k1.

Thus, it follows from (2.10) that

κc‖∇f(xk)‖2 ≤ f(xk)− f(xk+1) + νk

≤ f(xk)− f(xk+1) +
κc

2
‖∇f(xk)‖2, ∀k ≥ k1,

which implies that

(2.22)
κc

2
‖∇f(xk)‖2 ≤ f(xk)− f(xk+1), ∀k ≥ k1.

Given 0 ≤ s < t, let us define

(2.23) Ωǫ(s, t) = {s ≤ k ≤ t | ∇f(xk)‖ > ǫ} .

For all t > k1, it follows from (2.22) that

κc

2
ǫ2 ≤ f(xk)− f(xk+1), ∀k ∈ Ωǫ(k1, t).

Therefore,

|Ωǫ(k1, t)|
κcǫ

2

2
=

∑

k∈Ωǫ(k1,t)

κcǫ
2

2

≤
∑

k∈Ωǫ(k1,t)

f(xk)− f(xk+1)

≤
t
∑

k=k1

f(xk)− f(xk+1)

= f(xk1 )− f(xt+1)

≤ f(xk1 )− flow,

and so

(2.24) |Ωǫ(k1, t)| ≤
[

2 (f(xk1)− flow)

κc

]

ǫ−2.
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Since t > k1 is arbitrary, by (2.23), (2.24) and (2.20), we get

(2.25) |Ωǫ| ≤ k1 + |Ωǫ(k1,+∞)| ≤ k1 +

[

2(f(xk1)− flow)

κc

]

ǫ−2.

Finally, notice that

(2.26) f(xk1) ≤ f(x0) +

k1−1
∑

i=0

νi.

Thus, (2.21) follows directly from (2.25) and (2.26).

3. Global Convergence Results. The next theorem comes as a by-product
from the previous complexity estimates and yields a convergence result which simpli-
fies known proofs substantially and generalizes other non-monotone step-size rules.

Theorem 3.1. Suppose that A1-A3 hold and let the sequence {xk}+∞
k=0 be gen-

erated by Algorithm 1. If νk → 0 as k → +∞, then either there exists k̄ such that
∇f(xk̄) = 0 or

(3.1) lim inf
k→+∞

‖∇f(xk)‖ = 0.

Proof. Let ǫ > 0. Since νk → 0 as k → +∞, there exist constants C and

k0(
κcǫ

2

4 ) > 0 such that νk ≤ C for all k, and νk ≤ κcǫ
2/4 for all k ≥ k0(

κcǫ
2

4 ). Thus,
from Corollary 2.9, if

(3.2) T ≥ max

{

4k0(
κcǫ

2

4 )C

κcǫ2
, 1 + k0

(

κcǫ
2

4

)

,
2(f(x0)− flow)

κcǫ2

}

then

min
k=0,...,T−1

‖∇f(xk)‖ ≤ ǫ.

As ǫ > 0 is arbitrary, this proves that

lim
T→+∞

(

min
k=0,...,T−1

‖∇f(xk)‖
)

= 0.

Therefore, either there exists k̄ for which ‖∇f(xk̄)‖ = 0 or (3.1) is true.
More importantly, our analysis provides a unified global convergence proof for

many non-monotone methods based on the method proposed in [23], which is one of
the most used non-monotone line search algorithms. It corresponds to the modified
Armijo rule

(3.3) f(xk + αkβ
lkdk) ≤ max

0≤j≤m(k)
f(xk−j) + ραkβ

lk〈∇f(xk), dk〉,

for a suitable choice of m(k). Notice that this rule can be written in the form (2.2)
with

νk,l ≡ νk = max
0≤j≤m(k)

f(xk−j)− f(xk).
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Corollary 3.2. Suppose that A1-A3 hold and let sequence {xk}+∞
k=0 be generated

by Algorithm 1 where (2.2) is replaced by

(3.4) f(xk + αkβ
lkdk) ≤ Rk + ραkβ

lk〈∇f(xk), dk〉

with

(3.5) f(xk) ≤ Rk ≤ max
0≤j≤m(k)

f(xk−j)

where m(0) = 0 and 0 ≤ m(k) ≤ min {m(k − 1) + 1, N}, for a user-defined N ∈ N.
If

{x ∈ R
n | f(x) ≤ f(x0)}

is bounded, then either exists k̄ such that ∇f(xk̄) = 0 or

lim inf
k→+∞

‖∇f(xk)‖ = 0.

Proof. As in the proof of Lemma 2 in [3], by (3.5), one can show that

(3.6) lim
k→+∞

f(xk) = lim
k→+∞

max
0≤j≤m(k)

f(xk−j).

Hence for νk = Rk − f(xk) we obtain

lim
k→+∞

νk = lim
k→+∞

Rk − f(xk) ≤ lim
k→+∞

max
0≤j≤m(k)

f(xk−j)− f(xk) = 0.

Therefore, the result follows directly from Theorem 3.1. This generalized conver-
gence result includes, for example, the non-monotone methods in [1, 2, 3, 35]. The
worst-case complexity of these methods, however, depends on how fast νk = Rk−f(xk)
converges to zero. Due to the max {·} on the right-hand side of (2.16), the best
iteration-complexity bound that one can get from Corollary 2.9 is O(ǫ−2). This is ex-
actly the complexity obtained by Cartis, Sampaio and Toint [12] for a non-monotone
method based on rule (3.3).

Notice that Theorem 3.1 gives a liminf-type convergence result. An improved lim-
type result can be obtained for variants of Algorithm 1 characterized by assumption
A4’. Indeed, from the complexity estimate given in Lemma 2.11, we can establish the
global convergence of Algorithm 1 with the same argument used to prove Corollary
2.1 in [27].

Theorem 3.3. Suppose that A1-A3 hold and let the sequence {xk}+∞
k=0 be gener-

ated by Algorithm 1. If A4’ also holds, then

(3.7) lim
k→+∞

‖∇f(xk)‖ = 0.

Proof. Suppose that (3.7) does not hold. Then, there exists ǫ > 0 and a subse-

quence
{

xkj

}+∞

j=0
of {xk}+∞

k=0 such that

‖∇f(xkj
)‖ > ǫ, ∀j ∈ N.

This means that the corresponding set Ωǫ = {k | ‖∇f(xk)‖ > ǫ} is infinite, contra-
dicting Lemma 2.11.
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4. A Metropolis-Based Non-Monotone Rule. One of the core ideas of non-
monotone rules is to allow the iterates to escape from local minimizers and to increase
the probability of finding global minimizers. In the context of derivative-free heuristics
for global optimization, Simulated Annealing [28, 24, 26] is one of the most efficient
schemes. At the kth iteration of a simulated annealing algorithm, the acceptance
or rejection of a candidate point x+

k is usually done by the Metropolis rule: given a
uniform random number pk ∈ [0, 1], the next iterate is set as

(4.1) xk+1 =







x+
k , if pk ≤ min

{

1, exp

(

−f(x+
k )− f(xk)

τk

)}

,

xk, otherwise,

where τk > 0 for all k, with τk → 0. By rule (4.1), if f(x+
k ) ≤ f(xk) then x+

k is always
accepted, i.e., xk+1 = x+

k . However, the candidate point x+
k also can be accepted

when f(x+
k ) > f(xk), allowing the iterates to escape from local minimizers. The

larger the difference f(x+
k )− f(xk) > 0 is, the smaller is the probability to accept x+

k .
Since τk → 0, the probability of accepting x+

k when f(x+
k ) > f(xk) also goes to zero

when k → +∞.
Back to Algorithm 1, notice that the bigger is the non-monotone parameter νk,l,

the bigger is the chance to accept a candidate point x+
k,l = xk+αkβ

ldk with f(x+
k,l) >

f(xk). Thus, we can try to mimic the Metropolis acceptance rule by choosing νk,l as
follows:
Step 2.1 Set l := 0.
Step 2.2 Compute x+

k,l = xk + αkβ
ldk and define

(4.2) νk,l = σexp



−
max

{

θ, f(x+
k,l)− f(xk)

}

τk





for some constants σ, θ > 0 independent of k and l, with τk = 1/ ln(k + 1). If

f(x+
k,l) ≤ f(xk) + ραkβ

l〈∇f(xk), dk〉+ νk,l

set lk = l and νk = νk,lk . Otherwise, set l := l + 1 and repeat Step 2.2.

The next two theorems establish complexity bounds of O(ǫ−2) and O(ǫ−
2(1+θ)

θ )
for Algorithm 1, when θ > 1 and θ ∈ (0, 1], respectively.

Theorem 4.1. Suppose that A1-A3 hold and let the sequence {xk}+∞
k=0 be gener-

ated by Algorithm 1 with νk,l defined by (4.2). Given ǫ > 0, if θ > 1 and

(4.3) T ≥ 2max

{

σ

+∞
∑

k=0

1

(k + 1)θ
, f(x0)− flow

}

κ−1
c ǫ−2,

then

(4.4) min
k=0,...,T−1

‖∇f(xk)‖ ≤ ǫ.

Proof. By (4.2), for all k we have

(4.5) νk = σe−max{θ,f(xk+1)−f(xk)}ln(k+1) ≤ σ

(

1

k + 1

)θ

.
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Thus,

+∞
∑

k=0

νk = σ

+∞
∑

k=0

(

1

k + 1

)θ

< +∞,

and Corollary 1 yields the result.
Theorem 4.2. Suppose that A1-A3 hold and let sequence {xk}+∞

k=0 be generated
by Algorithm 1 with νk,ℓ defined by (4.2). Given ǫ ∈ (0, 1), if θ ∈ (0, 1] and

(4.6) T ≥ max

{

(

4

κc

)
1+θ
θ

σ
1
θ , 1 +

(

4σ

κc

)
1
θ

,
2(f(x0)− flow)

κc

}

ǫ−
2(1+θ)

θ ,

then (4.4) holds.
Proof. By (4.5), we have νk → 0. Moreover, νk ≤ σ and given δ > 0,

νk ≤ δ if k ≥
(σ

δ

)
1
θ

.

Denote

C = σ and k0(δ) =
(σ

δ

)
1
θ

.

Taking δ = κcǫ
2/2, it follows from (4.6) that

T ≥ max

{

(

4

κc

)
1+θ
θ

σ
1
θ ǫ−

2(1+θ)
θ , 1 +

(

4σ

κc

)
1
θ

ǫ−
2
θ ,

2(f(x0)− flow)

κc
ǫ−2

}

= max

{

2k0(δ/2)C

δ
, 1 + k0(δ/2),

2(f(x0)− flow)

κcǫ2

}

.

Thus, by Corollary 2.9, (4.4) must be true.
Remark 4.3. The smaller is θ, the bigger is the chance to accept x+

k,ℓ with

f(x+
k,ℓ) > f(xk). Thus, the higher level of non-monotonicity obtained with θ ∈ (0, 1]

may lead to better local minimizers. However, this has a price: by Theorem 4.2, the
number of iterations that Algorithm 1 needs to find approximate stationary points may
be significantly bigger in comparison to the case θ > 1.

5. Preliminary Numerical Experiments. We performed some numerical ex-
periments comparing Octave implementations of six instances of Algorithm 1. Specif-
ically, we considered the following codes:

(i) the monotone algorithm obtained from Algorithm 1 by setting νk,l = 0 for all
k and l. We shall refer to this code as “M1”.

(ii) the non-monotone algorithm in [23] obtained from Algorithm 1 by setting
νk,l = max0≤j≤mk

[f(xk−j)] − f(xk) for all k and l, where m(0) = 0 and
m(k) = min [m(k − 1) + 1, 10]. We shall refer to this code as “NM1”.

(iii) the non-monotone algorithm in [41] obtained from Algorithm 1 by setting
νk,l = Ck − f(xk) for all k and l, where C0 = f(x0) and, for all k ≥ 1,

Ck =
ηk−1Qk−1Ck−1 + f(xk)

Qk
∀k ≥ 1,

Qk = ηk−1Qk−1 + 1 and ηk−1 = 0.85/k, with Q0 = 1. We shall refer to this
code as “NM2”.
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(iv) the non-monotone algorithm obtained from Algorithm 1 by setting ν0,l = 0,
and νk,l = ǫ/k for k ≥ 1, where ǫ is the desired precision for the norm of the
gradient. We will refer to this code as “NM3”.

(v) the non-monotone algorithm obtained from Algorithm 1 by setting ν0,l = 0,
and νk,l = γk‖∇f(xk)‖22 with γk = ‖∇f(x0)‖−2

2

(

1
k

)

, for k ≥ 1. We will refer
to this code as “NM4”.

(vi) the non-monotone algorithm obtained from Algorithm 1 by setting νk,l as in
(4.2), with user-define positive parameters σ and θ. We shall refer to this
code as “NM5(σ, θ)”.

In all implementations, we consider the parameters α0 = 1 and β = ρ = 0.5. The
search directions were generated as dk = −Hk∇f(xk), where Hk is computed using
the BFGS update whenever it is possible, namely:

Hk+1 =







(

I − sky
T
k

sTk yk

)

Hk

(

I − yks
T
k

sTk yk

)

+
sks

T
k

sTk yk
, if sTk yk > 0,

Hk, otherwise.

whereH0 = I, sk = xk+1−xk and yk = ∇f(xk+1)−∇f(xk). All the experiments were
performed with Octave 4.2.2 on a PC with a 2.70 GHz Intel(R) i5 microprocessor.

In our first experiment, we applied the referred codes to the set of problems from
[30]1. We used the stopping rules:

(5.1) ‖∇f(xk)‖2 ≤ 10−5,

and

(5.2) k = kmax ≡ 500.

We declare that a problem p was solved by a solver s when s stopped due to (5.1).
In this case, let

np,s = the number of iterations required to solve problem p by solver s.

As proposed in [15], the relative performance of solver s on problem p can be measured
in terms of the performance ratio

rp,s =
np,s

n∗
p

, where n∗
p = min {np,s : s ∈ S} .

Using rp,s, the performance profile for each code s is defined as

ρs(τ) =
no. of problems s.t. rp,s ≤ τ

total no. of problems
.

Note that ρs(1) is the percentage of problems for which the solver s wins over the
rest of the solvers (i.e., np,s = n∗

p). The usual graphs of performance profiles are
not very informative in this case because of the superposition of a large number
of lines (one for each code), which makes difficult the interpretation of the results.
Therefore, we summarize the relevant information at Table 5.1. Specifically, we report
the performance ratio rp,s for each pair (p, s) in our test set, and ρs(1) for each solver
s.

1We considered the same dimensions as in [19].
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PROBLEM (n∗
p) M1 NM1 NM2 NM3 NM4 NM5(ǫ, 2) NM5(ǫ, 1)

1. (43) 1.000 1.162 1.000 1.558 1.000 1.581 1.534
2. (27) 1.037 4.629 1.037 1.666 1.000 1.444 1.629
3. (173) 1.017 1.034 1.017 F 1.000 F F
4. (50) 1.480 4.680 1.140 1.260 1.000 1.300 1.260
5. (17) 1.058 1.529 1.058 1.764 1.000 2.235 1.705
6. (36) 1.000 5.666 1.000 3.083 1.000 1.027 3.055
7. (34) 1.000 1.323 1.000 1.205 1.000 1.676 1.176
8. (19) 1.000 2.473 1.000 2.421 1.000 1.105 2.368
9. (3) 1.333 1.333 1.333 1.333 1.333 1.000 1.000
10. (305) F F F F F 1.000 F
11. (9) 1.000 1.111 1.000 10.000 1.000 1.111 10.000
12. (25) 1.000 3.240 1.200 4.440 1.000 1.120 4.120
13. (39) 1.000 1.102 1.000 6.000 1.000 1.025 6.461
14. (85) 1.000 1.729 1.000 1.741 1.000 1.023 1.729
15. (24) 1.000 1.166 1.000 1.666 5.416 1.083 1.625
16. (83) F 1.108 F 1.698 F 1.000 1.686
17. (79) 1.000 1.075 1.000 1.050 1.000 F F
18. (37) 1.054 1.081 1.054 1.000 1.054 1.432 5.648
19. (49) 1.081 1.000 1.081 1.612 1.040 1.428 1.591
20. (57) 1.000 1.263 1.000 1.666 1.000 2.368 1.649
21. (67) 1.000 1.910 1.000 1.835 1.000 1.194 1.820
22. (39) 1.000 1.102 1.000 6.000 1.000 1.025 6.461
23. (63) 1.158 4.031 1.158 2.857 1.158 1.000 2.857
24. (16) 1.187 1.187 1.187 5.562 1.000 1.375 5.500
25. (60) 1.000 3.350 1.000 1.650 1.000 1.083 1.633
26. (58) F F F 1.000 F F 1.000
27. (10) 1.900 1.000 1.900 3.300 F 1.100 1.400
28. (8) 1.750 1.500 1.000 2.500 1.125 4.125 2.750
29. (31) 1.032 1.709 1.000 1.032 1.032 2.193 1.032
30. (38) 1.078 1.473 1.000 5.078 1.078 2.342 5.052
31. (1) 4.000 3.000 3.000 3.000 3.000 1.000 1.000
32. (20) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
33. (18) 1.055 1.000 1.055 1.000 1.000 1.000 1.000

ρs(1) 0.454 0.121 0.515 0.121 0.606 0.212 0.151

Table 5.1

Numerical results for problems from the Moré-Garbow-Hillstrom collection [30].

An entry “F” indicates that the corresponding code stopped due to (5.2). As we can
see, solver NM4 was the most efficient (winning on 60.6% of the problems), while
solvers NM1 and NM3 were the most robust (failing in only two problems). The
superior performance of NM2 and NM4 are in line with the empirical evidence that
it is better to start with a bigger non-monotone term far from a critical point and to
have a smaller one close to it (see, e.g., [1, 35]). Moreover, the fact that NM5(ǫ, 2)
was more efficient than NM5(ǫ, 1) is in accordance with Theorems 4.1 and 4.2 (recall
Remark 4.3). These numerical results illustrate the ability of our new nonmonotone
rules for finding approximate critical points.

In order to investigate the ability of non-monotone methods for finding better local
optima, we applied all codes to minimize the two-dimensional Griewank function [22]:

(5.3) f(x) = 1 +
x2
1

4000
+

x2
2

4000
− cos(x1) cos

(

x2/
√
2
)

.
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This function has a huge number of local minimizers but only one global minimizer,
namely x∗ = (0, 0) with f(x∗) = 0. We considered 60 initial points generated in the
box [−600, 600]× [−600, 600]:

(

−600 +
1200(i− 1)

3
,−600 +

1200(j − 1)

14

)

, i = 1, . . . , 4, j = 1, . . . , 15.

For each starting point we recorded the best function value found by each code within
500 iterations. The distributions of these values are summarized in Table 5.2.

M1 NM1 NM2 NM3 NM4 NM5(ǫ, 2)
Maximum 179.8002 136.3502 179.8002 179.8002 179.8002 179.8002
75th Percentile 119.1955 89.9534 119.1955 119.1955 119.1955 119.1955
Median 82.7324 25.2736 82.7324 82.7324 78.1701 82.7324
25th Percentile 34.0983 9.7496 28.9691 34.0983 34.0983 34.0983
Minimum 10.1014 0.3353 10.1014 10.1014 10.1014 10.1014

Table 5.2

Results for the Griewank function: distributions of the best function values found by each code
within 500 iterations.

From Table 5.2, we see that code NM1 (with more aggressive non-monotone be-
havior) was much better than the other codes in terms of the best function values
found. Since in NM5 the non-monotonicity can be increased by increasing σ or de-
creasing θ, we set σ = |f(x0)| and tested several values of θ. The distributions of the
best function values found by each variant of NM5 within 500 iterations are summa-
rized on Table 5.3.

NM5(|f(x0)|, θ) θ = 4 θ = 2 θ = 1 θ = 0.5 θ = 0.25 θ = 0.125
Maximum 136.3843 124.3656 70.2559 19.2514 10.1188 18.2874
75th Percentile 99.6332 96.3803 29.7006 6.8724 4.9171 2.6889
Median 62.0849 70.6839 19.2193 2.1444 1.6082 0.9238
25th Percentile 34.0983 19.2036 10.1014 0.7201 0.3102 0.2367
Minimum 10.1014 5.8595 1.1145 0.0377 0.0404 0.0609

Table 5.3

Results for code NM5 with M = |f(x0)| and different values of θ.

As expected, the best function values were obtained with small values of θ (see
Remark 4.3). Moreover, the function values obtained with θ ≤ 0.5 were signifi-
cantly better than the values obtained with NM1. These preliminary results confirm
the ability of non-monotone methods of escaping from the closest local minimizers.
Moreover, they suggest that non-monotone line searches based on the Metropolis rule
(as in NM5) may be competitive with standard non-monotone methods on difficult
problems with many non-global local minimizers.

6. Conclusion. In this paper, we investigated the worst-case complexity of a
generalized version of the non-monotone line search framework proposed in [37] for
smooth unconstrained optimization problems. In this framework, the level of non-
monotonicity is controlled by a sequence {νk} of non-negative parameters. In a previ-
ous paper [19], we proved that the algorithms in the referred framework take at most
O(ǫ−2) iterations to find ǫ-critical points, when the objective f is nonconvex. For
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that, we had to assume that
∑+∞

k=0 νk < +∞. Now, by refining our analysis, we were

able to obtain bounds of the same order even when
∑+∞

k=0 νk = +∞. Our general-
ized results include a unified global convergence proof for non-monotone schemes in
which νk → 0, allowing more freedom for the design of new non-monotone line search
algorithms. As a topic for future research, it would be interesting to investigate the
possible extension of our results to inexact subsampled methods for minimizing finite
sums [5, 6].
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