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Abstract

We present four frequently used finite difference methods and establish the error bounds for the discretiza-

tion of the Dirac equation in the massless and nonrelativistic regime, involving a small dimensionless

parameter 0 < ε ≪ 1 inversely proportional to the speed of light. In the massless and nonrelativistic

regime, the solution exhibits rapid motion in space and is highly oscillatory in time. Specifically, the

wavelength of the propagating waves in time is at O(ε), while in space it is at O(1) with the wave speed

at O(ε−1). We adopt one leap-frog, two semi-implicit, and one conservative Crank-Nicolson finite differ-

ence methods to numerically discretize the Dirac equation in one dimension and establish rigorously the

error estimates which depend explicitly on the time step τ , mesh size h, as well as the small parameter

ε. The error bounds indicate that, to obtain the ‘correct’ numerical solution in the massless and nonrel-

ativistic regime, i.e. 0 < ε ≪ 1, all these finite difference methods share the same ε-scalability as time

step τ = O(ε3/2) and mesh size h = O(ε1/2). A large number of numerical results are reported to verify

the error estimates.

Keywords: Dirac equation, massless and nonrelativistic regime, finite difference method, oscillatory in

time, rapid motion in space

1. Introduction1

The Dirac equation, which plays a fundamental role in particle physics and mathematics, was proposed

by the British physicist Paul Adrien Maurice Dirac in 1928 [15, 16, 29]. As a relativistic wave equation,

the Dirac equation predicted the existence of antimatter which was observed in experiments in 1932

[2]. Moreover, it is also used to describe the fine details of the hydrogen spectrum, and it has been

adopted to describe spin-1/2 massive particles, such as positrons, electrons, muons, neutrons, neutrinos,

protons, etc. In addition, the Dirac equation throws light on many scientific phenomena which cannot

be explained by classical physics, and provides theoretical support for interpreting some microscopic

phenomena and simulating scientific experiments [20]. Since the graphene was first produced in the lab
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in 2003 [17, 26], the Dirac equation has been extensively applied to study the structures and dynamical

properties of graphene, graphite, topological insulators and other two dimensional materials. With the

progress made in recent experiments, the study of the Dirac equation presents prospective and important

scientific applications. In this paper, we consider the Dirac equation in the massless and nonrelativistic

regime on the torus Td (d = 1, 2, 3) as following

i∂tΨ =

(
− i

ε

d∑

j=1

αj∂j +
1

ε
β

)
Ψ +

(
V (t,x)I4 −

d∑

j=1

Aj(t,x)αj

)
Ψ, x ∈ Td, (1.1)

where x = (x1, ..., xd)
T ∈ Td is the spatial coordinate, t is time, ∂j = ∂xj

(j = 1, ..., d), i =
√
−1,

ε := xs

tsc
∈ (0, 1] is a dimensionless parameter which is inversely proportional to the speed of light

c. In the expression of ε, xs and ts are the dimensionless length and time unit, respectively. Ψ :=

Ψ(t,x) = (ψ1(t,x), ψ2(t,x), ψ3(t,x), ψ4(t,x))
T ∈ C4 represents the complex-valued spinor wave function,

V := V (t,x) is the electric potential, while A := A(t,x) = (A1(t,x), ..., Ad(t,x))
T is the magnetic

potential. The electromagnetic potentials are given real-valued functions. Besides, In (n ∈ N) is the n×n
identity matrix, and the Dirac matrices αj (j = 1, 2, 3), β are all 4× 4 matrices which are defined as

αj =



 0 σj

σj 0



 , β =



 I2 0

0 −I2



 , j = 1, 2, 3, (1.2)

where the Pauli matrices σj (j = 1, 2, 3) are defined as follows

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.3)

As stated in [6], in the case of one dimension (1D) and two dimensions (2D) (d = 1, 2), the Dirac

equation (1.1) can be simplified as

i∂tΦ =

(
− i

ε

d∑

j=1

σj∂j +
1

ε
σ3

)
Φ+

(
V (t,x)I2 −

d∑

j=1

Aj(t,x)σj

)
Φ, x ∈ Td, (1.4)

where Φ := Φ(t,x) = (φ1(t,x), φ2(t,x))
T ∈ C2. To study its dynamics behavior, the initial condition is

usually taken as

Φ(t = 0,x) = Φ0(x), x ∈ Td. (1.5)

The Dirac equation (1.4) maintains the total mass conservation, i.e.

‖Φ(t, ·)‖2 :=

∫

Td

|Φ(t,x)|2dx =

∫

Td

2∑

j=1

|Φj(t,x)|2 dx

≡ ‖Φ(0, ·)‖2 = ‖Φ0‖2 , t ≥ 0.

(1.6)

Introduce the total density

ρ(t,x) =
2∑

l=1

ρl(t,x) = Φ(t,x)∗Φ(t,x), x ∈ Td, (1.7)
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where Φ∗ = Φ
T

with Φ benig the complex conjugate of Φ, and the l-th component position density

ρl(t,x) = |φl(t,x)|2 for l = 1, 2. Besides, we define the current density J(t,x) = (J1(t,x), · · ·, Jd(t,x))T

in the following

Jj(t,x) =
1

ε
Φ(t,x)∗σjΦ(t,x), j = 1, . . . , d. (1.8)

Then from the Dirac equation (1.4), we can derive the conservation law as below

∂tρ(t,x) +∇ · J(t,x) = 0, x ∈ Td, t ≥ 0. (1.9)

Here we notice when the electric potential V is perturbed by a real constant V 0, i.e., V → V + V 0, the

wave function can be expressed as Φ(t,x) → e−iV 0tΦ(t,x), implying that the total density ρ and the

position density of each component ρl, (l = 1, 2) are all unchanged. Furthermore, when d = 1 and the

magnetic potential A1 is perturbed by a real constant A0
1, i.e., A1 −→ A1 +A0

1, then the solution can be

expressed as Φ(t,x) → eiA
0
1tσ1Φ(t,x), which implies that the total density ρ is unchanged. However, this

property is not valid for d = 2. If the electromagnetic potentials are time-independent, i.e., V (t,x) = V (x)

and Aj(t,x) = Aj(x), j = 1, 2, then we can obtain that the energy functional remains conserved as

E(Φ(t, ·)) : =
∫

Td

(
− i

ε

d∑

j=1

Φ∗σj∂jΦ+
1

ε
Φ∗σ3Φ+ V (x)|Φ|2 −

d∑

j=1

Aj(x)Φ
∗σjΦ

)
dx

≡ E(Φ0), t ≥ 0.

(1.10)

When ε = 1 in (1.4) (or (1.1)), it collapses to the standard Dirac equation. A large quantity of2

analytical and numerical results have been devoted in this regime in literatures. For details, we refer3

to [1, 3, 4, 11, 12, 19, 21, 22, 24, 27] and references therein. We remark here that there have been4

massive numerical results for the linear/nonlinear Dirac equations in different parameter regimes, such5

as nonrelativistic regime [5–9, 13, 14, 18], semiclassical regime [10, 25, 30], etc.6

When 0 < ε ≪ 1 in (1.4) (or (1.1)), in the massless and nonrelativistic regime, the Dirac equation7

(1.4) (or (1.1)) is a highly oscillatory dispersive partial differential equation [9]. It propagates waves with8

wavelength O(ε) in time and O(1) in space, while the wave speed in space is at O(1/ε). In other words,9

the waves are highly oscillatory in time and are rapidly propagating in space. To illustrate this, Fig. 110

plots the wave function solution of (1.4) with d = 1, V (t, x) = 1
2+sin(πx) , A1(t, x) =

1
1+cos2(πx) and initial11

data Φ0(x) =
(
sin(π(x + 1)), cos(π(x+ 1))

)T
for various ε.12

For the Dirac equation in certain parameter regimes, the highly oscillatory nature of the solution13

causes serious numerical burdens, which makes the numerical approximation for the Dirac equation (1.4)14

(or (1.1)) costly and extremely challenging. As a result, it is very important to design effective numerical15

methods. To our best knowledge, there are few numerical methods and research achievements for the16

Dirac equation (1.4) (or (1.1)) in the massless and nonrelativistic regime. In this paper, the main purpose17

is to investigate the efficiency and to prove the error bounds of the finite difference methods for the Dirac18

equation in the massless and nonrelativistic regime. We analyze the stability and convergence of four19

fully explicit/semi-implicit/implicit finite difference methods. Specifically, we focus on how the error20

3
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Fig. 1. The real part of the wave function φ1(t, x = 0) and φ1(t = 4, x) for the Dirac equation (1.4) in 1D with various ε.

estimates are explicitly dependent on the time step τ , the mesh size h, as well as the small parameter21

ε. Based on our error estimates, if we want to obtain the ‘correct’ numerical solutions in the massless22

and nonrelativistic regime (0 < ε ≤ 1), the meshing strategies (or ε-scalability) for the above four finite23

difference methods should all be τ = O(ε3/2) and h = O(ε1/2). The performance of various methods is24

reported by numerical results.25

The rest of this paper is arranged as follows. In Section 2, we present the Crank-Nicolson finite26

difference (CNFD) method for the Dirac equation in the massless and nonrelativistic regime, show its27

mass and energy conservation, and establish its error bounds. Moreover, extensive numerical results are28

reported to confirm the error estimates and to demonstrate that our error bounds are sharp. In Section 3,29

we propose a semi-implicit finite difference (SIFD1) method for the problem, find its stability condition,30

prove its error bounds and report its numerical results. Similar results for another semi-implicit finite31

difference (SIFD2) method and the leap-frog finite difference (LFFD) method are presented in Section 4.32

Finally, some conclusions are drawn in Section 5.33

In order to simplify the notations, we adopt the standard Sobolev spaces and norms, and the notation34

p . q represents that there exists a generic positive constant C > 0 independent of ε, τ, h, such that35

|p| ≤ Cq. In the following discussion, we will take the 1D Dirac equation ((1.4) with d = 1) as an example36

to present the related stabilities and convergence analysis of the finite difference methods. The results37

can be generalized to the 2D case of (1.4) and the cases d = 1, 2, 3 of the four-component Dirac equation38

(1.1) directly, and the conclusions remain valid without modifications.39

In the following, we consider the 1D Dirac equation (1.4) on a bounded domain with periodic boundary40

conditions41

i∂tΦ =

(
− i

ε
σ1∂x +

1

ε
σ3

)
Φ+

(
V (t, x)I2 −A1(t, x)σ1

)
Φ, t > 0, x ∈ Ω, (1.11)

Φ(t, a) = Φ(t, b), ∂xΦ(t, a) = ∂xΦ(t, b), t ≥ 0; Φ(0, x) = Φ0(x), x ∈ Ω̄, (1.12)
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where Ω = (a, b), Φ := Φ(t, x), Φ0(a) = Φ0(b) and Φ
′
0(a) = Φ′

0(b).42

2. A Crank-Nicolson finite difference (CNFD) method and its error estimate43

In this section, for the Dirac equation (1.11)-(1.12), we adopt the Crank-Nicolson finite difference44

(CNFD) method.45

2.1. The CNFD method46

We choose the time step τ := ∆t > 0 and the mesh size h := ∆x = b−a
M , whereM is a positive integer,

and define the uniform time steps and grid points as following:

tn := nτ, n = 0, 1, 2, . . . xj := a+ jh, j = 0, 1, . . . ,M.

Denote Φn
j as the numerical approximation of Φ(tn, xj), V

n
j = V (tn, xj), V

n+ 1
2

j = V (tn+ τ/2, xj), A
n
1,j =

A1(tn, xj) and A
n+ 1

2

1,j = A1(tn+τ/2, xj) for n ≥ 0 and 0 ≤ j ≤M. Denote Φn = (Φn
0 , Φ

n
1 , · · ·, Φn

M )T ∈ XM ,

where XM = {U = (U0, U1, . . . , UM )T |Uj ∈ C2, j = 0, 1, . . . ,M, U0 = UM}, as the solution vector at

t = tn. Let us introduce the discretization operators of the finite difference method for n ≥ 0 and

j = 0, 1, · · ·,M as follows:

δ+t Φ
n
j =

Φn+1
j − Φn

j

τ
, δtΦ

n
j =

Φn+1
j − Φn−1

j

2τ
, δxΦ

n
j =

Φn
j+1 − Φn

j−1

2h
,

and

Φ
n+ 1

2

j =
Φn+1
j + Φn

j

2
.

In order to discretize the Dirac equation (1.11) for n ≥ 0, j = 0, 1, · · ·,M−1, we consider the following

frequently used CNFD scheme

iδ+t Φ
n
j =

1

ε

(
− iσ1δx + σ3

)
Φ
n+ 1

2

j +
(
V

n+ 1
2

j I2 −A
n+ 1

2

1,j σ1

)
Φ
n+ 1

2

j . (2.1)

The boundary and initial conditions of (1.12) are discretized as below:

Φn+1
M = Φn+1

0 , Φn+1
−1 = Φn+1

M−1, n ≥ 0; Φ0
j = Φ0 (xj) , j = 0, 1, . . . ,M. (2.2)

Here we notice that the CNFD method is time symmetric, which means that it is unchanged under47

n + 1 ↔ n and τ ↔ −τ . The CNFD method is unconditionally stable, in other words, it is stable for48

any τ , h > 0 and 0 < ε ≤ 1. The memory cost of the CNFD method (2.1) is O(M). It is implicit and at49

each time step for n ≥ 0, its corresponding linear system is coupled in order that it needs to be solved50

by means of either an iterative solver or a direct solver. Hence, the computational cost per step mainly51

depends on its linear system solver, which is generally much larger than O(M), especially in 2D and 3D.52

5



2.2. Mass and energy conservation53

If U ∈ XM , then we take U−1 = UM−1 and UM+1 = U1 if they are involved. In XM , define the

standard l2 and l∞ norms as below

‖U‖2l2 = h

M−1∑

j=0

|Uj |2 , ‖U‖2l∞ = max
0≤j≤M

|Uj | , U ∈ XM , (2.3)

For the CNFD method (2.1) to (1.11)-(1.12), we obtain the mass and energy conservative properties as54

below.55

Lemma 1. The CNFD method (2.1) conserves the mass in the discretized level, that is

‖Φn‖2l2 := h

M−1∑

j=0

∣∣Φn
j

∣∣2 ≡ h

M−1∑

j=0

∣∣Φ0
j

∣∣2 =
∥∥Φ0

∥∥2
l2
= h

M−1∑

j=0

|Φ0 (xj)|2 , n ≥ 0. (2.4)

Moreover, if both V (t, x) = V (x) and A1(t, x) = A1(x) remain time independent, the method (2.1)

conserves the energy as well,

En
h = h

M−1∑

j=0

[
− i

ε

(
Φn
j

)∗
σ1δxΦ

n
j +

1

ε

(
Φn
j

)∗
σ3Φ

n
j + Vj

∣∣Φn
j

∣∣2 −A1,j

(
Φn
j

)∗
σ1Φ

n
j

]

≡ E0
h, n ≥ 0,

(2.5)

in which Vj = V (xj) and A1,j = A1(xj) for j = 0, 1, · · · ,M.56

Proof. (i) First of all, we can prove the mass conservation in (2.4). Multiply both sides of equation (2.1)

from the left by hτ(Φ
n+ 1

2

j )∗ and take its imaginary part, we obtain that

h
∣∣Φn+1

j

∣∣2 = h
∣∣Φn

j

∣∣2− τh
2ε

[(
Φ
n+ 1

2

j

)∗
σ1δxΦ

n+ 1
2

j +
(
Φ
n+ 1

2

j

)T
σ1δxΦ

n+ 1
2

j

]
, n ≥ 0, j = 0, 1, ···M−1. (2.6)

Summing up (2.6) for j = 0, 1, · · ·,M − 1, as well as noticing (1.3), we have

∥∥Φn+1
∥∥2
l2
= ‖Φn‖2l2 −

τh

2ε

M−1∑

j=0

[(
Φ
n+ 1

2

j

)∗
σ1δxΦ

n+ 1
2

j +
(
Φ
n+ 1

2

j

)T
σ1δxΦ

n+ 1
2

j

]

= ‖Φn‖2l2 −
τ

4ε

M−1∑

j=0

[(
Φ
n+ 1

2

j

)∗
σ1Φ

n+ 1
2

j+1 +
(
Φ
n+ 1

2

j

)T
σ1Φ

n+ 1
2

j+1

−
(
Φ
n+ 1

2

j+1

)∗
σ1Φ

n+ 1
2

j −
(
Φ
n+ 1

2

j+1

)T
σ1Φ

n+ 1
2

j

]

= ‖Φn‖2l2 , n ≥ 0,

(2.7)

which directly gives (2.4) by induction.

(ii) Secondly, we prove the energy conservation in (2.5). Multiply both sides of (2.1) from the left by

2h(Φn+1
j − Φn

j )
∗ and take its real part, we obtain for j = 0, 1, · · ·M − 1,

−hRe
[
i

ε

(
Φn+1
j − Φn

j

)∗
σ1δx

(
Φn+1
j + Φn

j

)]
+
h

ε

[(
Φn+1
j

)∗
σ3Φ

n+1
j −

(
Φn
j

)∗
σ3Φ

n
j

]

+hVj

(∣∣Φn+1
j

∣∣2 −
∣∣Φn

j

∣∣2
)
− hA1,j

[(
Φn+1
j

)∗
σ1Φ

n+1
j −

(
Φn
j

)∗
σ1Φ

n
j

]
= 0, n ≥ 0.

(2.8)

6



Then sum up (2.8) for j = 0, 1, ···,M−1, notice the above mass conservation property and the summation

by parts formula, we get

h
M−1∑

j=0

Re

[
i

ε

(
Φn+1
j − Φn

j

)∗
σ1δx

(
Φn+1
j + Φn

j

)]

=Re

[
ih

ε

M−1∑

j=0

(
Φn+1
j

)∗
σ1δxΦ

n+1
j − ih

ε

M−1∑

j=0

(
Φn
j

)∗
σ1δxΦ

n
j

]
,

(2.9)

and

− Re

(
ih

ε

M−1∑

j=0

(
Φn+1
j

)∗
σ1δxΦ

n+1
j

)
+
h

ε

M−1∑

j=0

(
Φn+1
j

)∗
σ3Φ

n+1
j + h

M−1∑

j=0

Vj
∣∣Φn+1

j

∣∣2

− h

M−1∑

j=0

A1,j

(
Φn+1
j

)∗
σ1Φ

n+1
j = −Re

(
ih

ε

M−1∑

j=0

(
Φn
j

)∗
σ1δxΦ

n
j

)
+
h

ε

M−1∑

j=0

(
Φn
j

)∗
σ3Φ

n
j

+ h

M−1∑

j=0

Vj
∣∣Φn

j

∣∣2 − h

M−1∑

j=0

A1,j

(
Φn
j

)∗
σ1Φ

n
j , n ≥ 0,

(2.10)

which directly demonstrates (2.5).57

2.3. Error estimate58

Denote 0 < T < T ∗ with T ∗ being the maximal existence time of the solution, and ΩT = [0, T ]× Ω

with Ω = (a, b). In order to get the appropriate error estimates, we assume that the exact solu-

tion of (1.11) satisfies Φ ∈ C3
(
[0, T ]; (L∞(Ω))

2 ) ∩ C2
(
[0, T ];

(
W 1,∞

p (Ω)
)2 ) ∩ C1

(
[0, T ];

(
W 2,∞

p (Ω)
)2 ) ∩

C
(
[0, T ];

(
W 3,∞

p (Ω)
)2 )

and

(A)

∥∥∥∥
∂r+s

∂tr∂xs
Φ

∥∥∥∥
L∞([0,T ];(L∞(Ω))2)

.
1

εr
, 0 ≤ r ≤ 3, 0 ≤ r + s ≤ 3, 0 < ε ≤ 1, (2.11)

in which Wm,∞
p (Ω) = {u|u ∈ Wm,∞(Ω), ∂lxu(a) = ∂lxu(b), l = 0, . . . ,m − 1} for m ≥ 1 and here the

boundary values are understood in the trace sense. In the follow-up discussion, we will omit Ω when

referring to the space norm taken on Ω. Besides, we assume that the electric and magnetic potentials

satisfy V ∈ C(ΩT ), A1 ∈ C(ΩT ) and we denote

(B) Vmax := max
(t,x)∈ΩT

|V (t, x)|, A1,max := max
(t,x)∈ΩT

|A1(t, x)| . (2.12)

Here we define the grid error function en = (en0 , e
n
1 , ..., e

n
M )T ∈ XM as following:

enj := Φ(tn, xj)− Φn
j , j = 0, 1, · · · ,M, n ≥ 0, (2.13)

in which Φn
j being the numerical approximation of Φ(tn, xj) from the finite difference methods. For the59

CNFD method (2.1), we could derive the error estimates as follow.60

Theorem 1. Under the assumptions in (A) and (B), there exist the constants h0 > 0, τ0 > 0 independent

of ε and sufficiently small, such that for any 0 < ε ≤ 1, 0 < h ≤ h0 and 0 < τ ≤ τ0, for the CNFD

method (2.1) with (2.2), we obtain the error estimate on the wave function as below

‖en‖l2 .
h2

ε
+
τ2

ε3
, 0 ≤ n ≤ T

τ
. (2.14)

7



Proof. The local truncation error ξn = (ξn0 , ξ
n
1 , . . . , ξ

n
M )T ∈ XM of the CNFD (2.1) with (2.2) for 0 ≤ j ≤

M − 1 and n ≥ 0 is defined as follows

ξnj := iδ+t Φ(tn, xj) +

[
i

ε
σ1δx −

(σ3
ε

+ V
n+ 1

2

j I2 −A
n+ 1

2

1,j σ1

)]
Φ(tn+ 1

2
, xj), (2.15)

by using the Taylor expansion and triangle inequality, and by noticing the assumptions (A) and (B), we

obtain that

|ξnj | ≤
τ2

6
‖∂tttΦ‖l∞ +

τ2

4ε
‖∂xttΦ‖l∞ +

h2

6ε
‖∂xxxΦ‖l∞ +

τ2

4

(1
ε
+ Vmax +Amax

)
‖∂ttΦ‖l∞

.
τ2

ε3
+
h2

ε
+
τ2

ε2

.
h2

ε
+
τ2

ε3
, j = 0, 1, · · ·,M − 1, n ≥ 0,

(2.16)

hence, we have

‖ξn‖l∞ = max
0≤j≤M−1

∣∣ξnj
∣∣ . h2

ε
+
τ2

ε3
, ‖ξn‖l2 . ‖ξn‖l∞ .

h2

ε
+
τ2

ε3
, n ≥ 0, (2.17)

Subtracting (2.1) from (2.15) and noticing (2.13), we obtain the error function with 0 ≤ j ≤ M − 1 and

n ≥ 0 as below

iδ+t e
n
j = − i

ε
σ1δxe

n+ 1
2

j +
(σ3
ε

+ V
n+ 1

2

j I2 −A
n+ 1

2

1,j σ1

)
e
n+ 1

2

j + ξnj , (2.18)

here take its initial and boundary conditions as

en0 = enM , en−1 = enM−1, n ≥ 0, e0j = 0, j = 0, 1, . . . ,M. (2.19)

Multiply hτ(en+1
j + enj )

∗ from the left on both sides of (2.18) and take the imaginary part, then sum up

for j = 0, 1, · · ·,M − 1 and use Cauchy inequality again, we obtain

∥∥en+1
∥∥2
l2
− ‖en‖2l2 = τ Im

[
h

M−1∑

j=0

(
en+1
j + enj

)∗
ξnj

]

. τ
(
‖en+1‖2l2 + ‖en‖2l2

)
+ τ‖ξn‖2l2 , n ≥ 0,

(2.20)

by noticing (2.17) and summing the inequality (2.20) for n = 0, 1, 2, · · ·,m− 1, we obtain that

‖em‖2l2 −
∥∥e0
∥∥2
l2
. τ

m∑

s=0

‖es‖2l2 +mτ

(
h2

ε
+
τ2

ε3

)2

, 1 ≤ m ≤ T

τ
, (2.21)

where
∥∥e0
∥∥2
l2
= 0. By taking τ0 sufficiently small and using the discrete Gronwall’s inequality, we get

‖em‖2l2 .

(
h2

ε
+
τ2

ε3

)2

, 1 ≤ m ≤ T

τ
, (2.22)

which directly demonstrates the error estimate (2.14).61

Actually, in the massless and nonrelativistic regime, based on Theorem 1, when given an accuracy

bound δ > 0, the ε-scalability (or resolution) of the CNFD method is:

h = O(
√
δε) = O(

√
ε), τ = O

(√
δε3
)
= O

(√
ε3
)
, 0 < ε≪ 1. (2.23)

Furthermore, we get the following error estimates of the the total density and current density for the62

CNFD method.63
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Corollary 2.1. Under the assumptions in (A) and (B), there exist the constants h0 > 0, τ0 > 0 inde-

pendent of ε and sufficiently small, such that for any 0 < ε ≤ 1, if 0 < h ≤ h0 and 0 < τ ≤ τ0, for the

CNFD method (2.1), we obtain the error estimate on the total density as follow

‖ρn − ρ(tn, ·)‖l2 .
h2

ε
+
τ2

ε3
, 0 ≤ n ≤ T

τ
, (2.24)

in which ρn is from the wave function Φn in (1.7) with d = 1.64

Corollary 2.2. Under the assumptions in (A) and (B), there exist the constants h0 > 0, τ0 > 0 inde-

pendent of ε and sufficiently small, such that for any 0 < ε ≤ 1, if 0 < h ≤ h0 and 0 < τ ≤ τ0, for the

CNFD method (2.1), we obtain the error estimate on the current density as follow

‖Jn − J(tn, ·)‖l2 .
h2

ε
+
τ2

ε3
, 0 ≤ n ≤ T

τ
, (2.25)

in which Jn is from the wave function Φn in (1.8) with d = 1.65

We remark here that Corollaries 2.1, 2.2 also hold for SIFD1, LFFD and SIFD2 methods introduced66

later, if the corresponding stability conditions are satisfied.67

2.4. Numerical results68

In the discussion below, we numerically study the temporal and spatial scalability of the CNFD

method for the 1D Dirac equation (1.11) in the massless and nonrelativistic regime. The Dirac equation

is solved on a bounded domain Ω = (−1, 1) with periodic boundary conditions on ∂Ω. Here the ‘reference

exact’ solution Φ(t, x) = (Φ1(t, x), Φ2(t, x))
T is obtained by using the time-splitting Fourier pseudospectral

method with a very small time step τe = 10−6 and a very fine mesh size he = 1/16384 respectively so

that the errors in corresponding directions are sufficiently small. In the following example, we choose the

electric and magnetic potential as

V (t, x) =
1

2 + sin(πx)
, A1(t, x) =

1

1 + cos2(πx)
, x ∈ Ω, t ≥ 0, (2.26)

with the initial condition as

Φ1(0, x) = sin(πx) + sin(2πx), Φ2(0, x) = cos(πx), x ∈ Ω. (2.27)

In order to quantify the numerical errors of the finite difference methods for the Dirac equation, we69

give the error expressions of the wave function Φ, the total density ρ and the current density J as follows70

eh,τΦ (tn) =
∥∥Φn − Φ(tn, ·)

∥∥
l2
=

√√√√h

M−1∑

j=0

|Φn
j − Φ(tn, xj)|2,

eh,τρ (tn) =
∥∥ρn − ρ(tn, ·)

∥∥
l1
= h

M−1∑

j=0

|ρnj − ρ(tn, xj)|,

eh,τ
J

(tn) =

∥∥Jn − J(tn, ·)
∥∥
l1∥∥J(tn, ·)

∥∥
l1

=

M−1∑
j=0

|Jn
j − J(tn, xj)|

M−1∑
j=0

|J(tn, xj)|
,

(2.28)
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in which eh· (tn), e
τ
· (tn) are denoted as the spatial and temporal errors, respectively. Here ρn and Jn can71

be obtained by the numerical solution of Φ in view of the definition in (1.7) and (1.8).72

Table 1 displays spatial errors ehΦ(t = 2) (upper) and temporal errors eτΦ(t = 2) (lower) of the wave73

function respectively with different mesh size h and time step τ for the CNFD method (2.1). From Table74

1, for any ε ∈ (0, 1], we can directly observe that the CNFD method (2.1) has second order convergence75

in both time and space.76

Table 1 Spatial and temporal error analysis of the wave function eh,τΦ (t = 2) for the CNFD method

ehΦ(t = 2) h0 = 1/16 h0/2 h0/2
2 h0/2

3 h0/2
4

ε0 = 1 3.35E-1 8.48E-2 2.12E-2 5.30E-3 1.33E-3

Order − 1.98 2.00 2.00 2.00

ε0/4 1.20 3.22E-1 8.11E-2 2.03E-2 5.07E-3

Order − 1.90 1.99 2.00 2.00

ε0/4
2 1.43 1.21 3.22E-1 8.09E-2 2.02E-2

Order − 0.24 1.91 1.99 2.00

ε0/4
3 2.96 1.41 1.21 3.22E-1 8.09E-2

Order − 1.07 0.22 1.91 1.99

eτΦ(t = 2) τ0 = 1/40 τ0/4 τ0/4
2 τ0/4

3 τ0/4
4

ε0 = 1 3.44E-2 2.16E-3 1.35E-4 8.75E-6 6.37E-7

Order − 2.00 2.00 1.98 1.89

ε0/4
2/3 4.45E-1 2.87E-2 1.80E-3 1.13E-4 7.80E-6

Order − 1.98 2.00 2.00 1.93

ε0/4
4/3 1.34 4.35E-1 2.77E-2 1.73E-3 1.10E-4

Order − 0.81 1.99 2.00 1.99

ε0/4
2 1.87 1.31 4.34E-1 2.74E-2 1.79E-3

Order − 0.25 0.80 1.99 1.97

For the discretization error in space, the upper triangle above the the bold diagonal line in the top77

half of Table 1 indicates that second order convergence exists for the CNFD method when h = O(ε1/2).78

Similarly, for the discretization error in time, the CNFD method has second order convergence only when79

τ = O(ε3/2), which is verified through the upper triangle above the bold diagonal line in the bottom half80

of Table 1. Hence, in the massless and nonrelativistic regime, the ε-resolution for the CNFD method is81

h = O(ε1/2) on mesh size and τ = O(ε3/2) on time step, which is consistent with our error estimates in82

Theorem 1.83

In the following sections, for the Dirac equation (1.11) in the massless and nonrelativistic regime, we84

will introduce another three finite difference methods including the leap-frog and two semi-implicit finite85

10



difference methods, and take the one semi-implicit method as an example to verify the conclusions in86

Corollaries 2.1 and 2.2.87

3. A semi-implicit finite difference (SIFD1) method and its error estimate88

In this section, we propose the semi-implicit finite difference (SIFD1) method for (1.11)-(1.12) in89

which we adopt explicit discretization for the differential term and implicit discretization for the rest90

terms. Compared to the CNFD method in the previous section, the advantage of this scheme is that91

there is no need to solve coupled linear systems and thus it is more efficient.92

3.1. The SIFD1 method93

We consider the semi-implicit finite difference (SIFD1) scheme to discretize the equation (1.11) for

n ≥ 1, j = 0, 1, · · ·,M − 1,

iδtΦ
n
j = − i

ε
σ1δxΦ

n
j +

(σ3
ε

+ V n
j I2 − An

1,jσ1

) Φn+1
j + Φn−1

j

2
. (3.1)

Its discrete boundary and initial conditions are the same as (2.2). By applying Taylor expansion and

noticing the Dirac equation (1.11), the first step for the SIFD1 method (3.1) can be designed as

Φ1
j = Φ0

j − sin
(τ
ε

)
σ1Φ

′
0 (xj)− i

(
sin
(τ
ε

)
σ3 + τV 0

j I2 − τA0
1,jσ1

)
Φ0
j , j = 0, 1, . . . ,M, (3.2)

in which we adopt 1
τ sin(

τ
ε ) instead of 1

ε such that (3.2) have second order convergence with τ for any94

fixed 0 < ε ≤ 1 and ‖Φ1‖l∞ = max
0≤j≤M

∣∣Φ1
j

∣∣ . 1 for any 0 < ε ≤ 1. Here we remark when ε = 1, it can be95

replaced by 1.96

We notice that the SIFD1 method is time symmetric, in other words, it is unchanged under n+ 1 ↔
n−1 and τ ↔ −τ , and its memory cost is O(M). Then the SIFD1 method (3.1) is implicit, but for every

time step of n ≥ 1, its corresponding linear system is decoupled, as well as it can be solved explicitly as

below

Φn+1
j =

{
(i− τV n

j )I2 −
τ

ε
σ3 + τAn

1,jσ1

}−1

Hn
j , j = 0, 1, . . . ,M − 1,

in which Hn
j =

{(
(i+ τV n

j )I2 +
τ
εσ3 − τAn

1,jσ1
)
Φn−1
j − 2iτ

ε σ1δxΦ
n
j

}
. Thus, the computational cost of97

SIFD1 method per step also is O(M).98

3.2. Linear stability analysis99

For any U ∈ XM , we denote the corresponding Fourier representation as

Uj =

M/2−1∑

l=−M/2

Ũle
iµl(xj−a) =

M/2−1∑

l=−M/2

Ũle
2ijlπ/M , j = 0, 1, . . . ,M, (3.3)

in which µl and Ũl ∈ C2 are defined as

µl =
2lπ

b− a
, Ũl =

1

M

M−1∑

j=0

Uje
−2ijlπ/M , l = −M

2
, . . . ,

M

2
− 1. (3.4)
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Lemma 2. The SIFD1 method (3.1) is stable under its corresponding stability condition

0 < τ ≤ εh, h > 0, 0 < ε ≤ 1. (3.5)

Proof. Due to the fact that the implicit part
(
σ3/ε+ V n

j I2 −An
1,jσ1

) Φn+1

j
+Φn−1

j

2 is automatically stable,

here we just need to concentrate on the explicit part iδtΦ
n
j = − i

εσ1δxΦ
n
j . Plugging

Φn
j =

M/2−1∑

l=−M/2

ξnl (̃Φ
0)le

iµl(xj−a) =

M/2−1∑

l=−M/2

ξnl (̃Φ
0)le

2ijlπ/M , 0 ≤ j ≤M, (3.6)

with ξnl ∈ C being the amplification factor of the l-th mode in the phase space and (̃Φ0)l being the Fourier

coefficient at n = 0. Plug (3.6) into the SIFD1 method (3.1), we obtain the corresponding amplification

factor ξl satisfies

ξ2l − 2iτθlξl − 1 = 0, l = −M
2
, . . . ,

M

2
− 1, (3.7)

in which θl = ± sin(µlh)
εh . Hence the stability condition is equivalent to

|ξl| ≤ 1 ⇐⇒ |τθl| ≤ 1, l = −M
2
, . . . ,

M

2
− 1, (3.8)

which means
∣∣∣
τ

εh

∣∣∣ ≤ 1, and gives 0 < τ ≤ εh.100

3.3. Error estimate101

The error estimate for SIFD1 is given as follows.102

Theorem 2. Under the assumptions in (A) and (B), there exist the constants h0 > 0, τ0 > 0 independent

of ε and sufficiently small, such that for any 0 < ε ≤ 1, if 0 < h ≤ h0, 0 < τ ≤ τ0 and under the stability

condition (3.5), for the SIFD1 method (3.1) with (2.2) and (3.2), we obtain the error estimate on the

wave function as below

‖en‖l2 .
h2

ε
+
τ2

ε3
, 0 ≤ n ≤ T

τ
. (3.9)

Proof. The local truncation error ηn = (ηn0 , η
n
1 , . . . , η

n
M )T ∈ XM of the SIFD1 (3.1) with (2.2) and (3.2)103

for 0 ≤ j ≤M − 1 and n ≥ 1 is defined as follows104

η0j := i

(
δ+t +

1

ε
σ1δx

)
Φ0 (xj)−

(σ3
ε

+ V 0
j I2 −A0

1,jσ1

)
Φ0 (xj) , (3.10)

ηnj := i

(
δt +

1

ε
σ1δx

)
Φ(tn, xj)−

(σ3
ε

+ V n
j I2 −An

1,jσ1

) Φ(tn+1, xj) + Φ(tn−1, xj)

2
. (3.11)

By applying the Taylor expansion to (3.10) and (3.11), we get for j = 0, 1, · · ·,M − 1 and n ≥ 1,

η0j =
iτ

2
∂ttΦ (τ ′, xj) +

ih2

6ε
σ1∂xxxΦ0

(
x′j
)
,

ηnj =
iτ2

6
∂tttΦ (t′n, xj) +

ih2

6ε
σ1∂xxxΦ

(
tn, x

′
j

)
− τ2

2

(1
ε
σ3 + V n

j I2 −An
1,jσ1

)
∂ttΦ (t′′n, xj) ,

(3.12)

in which τ ′ ∈ (0, τ), t′n, tn
′′ ∈ (tn−1, tn+1) and x

′
j ∈ (xj−1, xj+1). Noticing (1.11) and the assumptions in

(A) and (B), we obtian

∣∣η0j
∣∣ . h2

ε
+
τ

ε2
,

∣∣ηnj
∣∣ . h2

ε
+
τ2

ε3
, j = 0, 1, . . . ,M − 1, n ≥ 1, (3.13)
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which directly implies

‖ηn‖l∞ = max
0≤j≤M−1

∣∣ηnj
∣∣ . h2

ε
+
τ2

ε3
, ‖ηn‖l2 . ‖ηn‖l∞ .

h2

ε
+
τ2

ε3
, n ≥ 1. (3.14)

Subtracting (3.1) from (3.11) and noticing (2.13), we obtain the error function with 0 ≤ j ≤ M − 1 and

n ≥ 1 as below

iδte
n
j = − i

ε
σ1δxe

n
j +

1

2

(σ3
ε

+ V n
j I2 −An

1,jσ1

)
(en+1

j + en−1
j ) + ηnj , (3.15)

in which its initial and boundary conditions (2.19) are the same as given before. For the first step, we

obtain
∥∥e1
∥∥
l2
= τ

∥∥η0
∥∥
l2
. τ

(
h2

ε
+

τ

ε2

)
.
h2

ε
+
τ2

ε3
, (3.16)

Denote En+1 as

En+1 =
∥∥en+1

∥∥2
l2
+ ‖en‖2l2 + 2Re

(
hτ

ε

M−1∑

j=0

(
en+1
j

)∗
σ1δxe

n
j

)
, n ≥ 0. (3.17)

and under its stability condition of (3.5), i.e. 0 < τ ≤ εhτ1 with τ1 = 1
2 , which implies τ

εh ≤ 1
2 , by using

the Cauchy inequality, we could derive

1

2

(∥∥en+1
∥∥2
l2
+ ‖en‖2l2

)
≤ En+1 ≤ 3

2

(∥∥en+1
∥∥2
l2
+ ‖en‖2l2

)
, n ≥ 0. (3.18)

From (3.16), we have

E1 .

(
h2

ε
+
τ2

ε3

)2

, (3.19)

Multiplying 2hτ(en+1
j +en−1

j )∗ from the left on both side to (3.15), by taking its imaginary part, summing

up the equation for j = 0, 1, · · ·,M − 1, and using the Cauchy inequality as before, then noticing (3.14)

and (3.18), we obtain for n ≥ 1,

En+1 − En = 2hτ Im

(M−1∑

j=0

(
en+1
j + en−1

j

)∗
ηnj

)

. τ
(
En + En+1

)
+ τ

(
h2

ε
+
τ2

ε3

)2

, n ≥ 0,

(3.20)

Summing up the above inequality of (3.20) for n = 1, 2, · · ·,m− 1, we obtain that

Em − E1 . τ
m∑

s=1

Es +mτ

(
h2

ε
+
τ2

ε3

)2

, 1 ≤ m ≤ T

τ
. (3.21)

Hence if we take τ0 sufficiently small, use the discrete Gronwall’s inequality, and notice the inequality

(3.19), we get

Em .

(
h2

ε
+
τ2

ε3

)2

, 1 ≤ m ≤ T

τ
, (3.22)

which directly demonstrates the error estimate (3.9) in view of (3.18).105

From Theorem 2, in the massless and nonrelativistic regime, when given an accuracy bound δ > 0,

the ε-resolution of the SIFD1 method is:

h = O(
√
δε) = O(

√
ε), τ = O

(√
δε3
)
= O

(√
ε3
)
, 0 < ε≪ 1. (3.23)
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3.4. Numerical results106

In the following numerical simulation, the electromagnetic potential, initial condition, error functions

and mesh sizes are same as (2.26)-(2.28) in Subsection 2.4. In order to satisfy its stability condition and

accuracy requirement for the SIFD1 methods, in Table 2, we take

δj(ε) =
1

2k
, (ε =

1

42k/3
, k = 0, 1, . . . , j = 1, 2, . . .) (3.24)

Table 2 Spatial and temporal error analysis of the wave function eh,τΦ (t = 2) for the SIFD1 method

ehΦ(t = 2) h0 = 1/16 h0/2 h0/2
2 h0/2

3 h0/2
4

ε0 = 1 3.35E-1 8.48E-2 2.12E-2 5.30E-3 1.33E-3

Order − 1.98 2.00 2.00 2.00

ε0/4 1.20 3.22E-1 8.11E-2 2.03E-2 5.07E-3

Order − 1.90 1.99 2.00 2.00

ε0/4
2 1.43 1.21 3.22E-1 8.08E-2 2.02E-2

Order − 0.24 1.91 1.99 2.00

ε0/4
3 2.96 1.41 1.21 3.20E-1 7.88E-2

Order − 1.07 0.22 1.92 2.02

eτΦ(t = 2)
τ0 = 1/40 τ0/4 τ0/4

2 τ0/4
3 τ0/4

4

h0 = 1/16 h0/4δ1(ε) h0/4
2δ2(ε) h0/4

3δ3(ε) h0/4
4δ4(ε)

ε0 = 1 2.93E-1 1.81E-2 1.13E-3 7.05E-5 4.40E-6

Order − 2.01 2.00 2.00 2.00

ε0/4
2/3 Unstable 1.53E-1 9.56E-3 5.98E-4 3.74E-5

Order − − 2.00 2.00 2.00

ε0/4
4/3 Unstable 1.19 7.93E-2 4.95E-3 3.10E-4

Order − − 1.96 2.00 2.00

ε0/4
2 Unstable 2.44 4.97E-1 3.11E-2 1.94E-3

Order − − 1.15 2.00 2.00

Table 2 presents the spatial errors ehΦ(t = 2) and temporal errors eτΦ(t = 2) of the wave function with107

various mesh sizes by using the SIFD1 method (3.1). From Table 2, for any ε ∈ (0, 1], we can observe that108

the SIFD1 method (3.1) has second order convergence in space and time. The ε-resolution of the SIFD1109

method is still h = O(ε1/2) and τ = O(ε3/2), which is verified by the upper triangles above the diagonal110

lines labelled with bold type in the top and bottom half of the table. Numerical results correspond well111

with our error estimate in Theorem 2.112
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4. Other finite difference methods and their error estimates113

Here we propose another semi-implicit finite difference (SIFD2) scheme and the explicit leap-frog114

finite difference (LFFD) scheme, and establish their error estimates.115

4.1. The SIFD2 method and LFFD method116

We consider the two other finite difference methods to discretize the Dirac equation (1.11) for n ≥
1, j = 0, 1, · · ·,M − 1. Another semi-implicit finite difference (SIFD2) scheme is given as follows

iδtΦ
n
j =

1

ε

(
− iσ1δx + σ3

)Φn+1
j + Φn−1

j

2
+
(
V n
j I2 −An

1,jσ1

)
Φn
j , (4.1)

and the leap-frog finite difference (LFFD) scheme is

iδtΦ
n
j =

1

ε

(
− iσ1δx + σ3

)
Φn
j +

(
V n
j I2 −An

1,jσ1
)
Φn
j . (4.2)

Their discrete boundary and initial conditions are the same as (2.2), and the first steps for SIFD2 (4.1),117

LFFD (4.2) are similar to SIFD1 in (3.2).118

Here we notice that the SIFD2 and LFFD methods are time symmetric, in other words, they remain

unchanged under n + 1 ↔ n − 1, τ ↔ −τ , and their memory costs are both O(M). The SIFD2 scheme

(4.1) is implicit, which means that at each time step for n ≥ 1, its corresponding linear system can be

decoupled in phase (Fourier) space, as well as it can be solved explicitly in phase space as following

(̃Φn+1)l =

(
iI2 −

τsin(µlh)

εh
σ1 −

τ

ε
σ3

)−1

Ln
l , l = −M/2, . . . ,M/2− 1,

in which

Ln
l =

{(
iI2 +

τsin(µlh)

εh
σ1 +

τ

ε
σ3

)
˜(Φn−1)l + 2τ ˜(GnΦn)l

}
,

and Gn = (Gn
0 , G

n
1 , . . . , G

n
M )T ∈ XM with Gn

j = V n
j I2 − An

1,jσ1 for j = 0, 1, . . . ,M, and hence its119

computational cost per step is O(M lnM). The LFFD method (4.2) is explicit and its computational120

cost per step is O(M). When ε = 1, it should be the most efficient and simplest method for the Dirac121

equation (1.4) and thus the LFFD method has been widely used. From what has been analysed above122

on the computational cost per time step, we can conclude that the CNFD method is the most expensive123

one and the LFFD method is the most efficient among the four finite difference methods.124

4.2. Linear stability analysis125

In the following, in order to realize the linear stability analysis of the finite difference methods for126

the Dirac equation (1.11) through the von Neumann method [28], we assume that V (t, x) ≡ V 0 and127

A1(t, x) ≡ A0
1 with V 0 and A0

1 being two real constants. Next we have the following conclusions from the128

SIFD2 and LFFD methods.129

Lemma 3. The SIFD2 method (4.1) is stable under its corresponding stability condition

0 < τ ≤ 1

|V 0|+ |A0
1|
, h > 0, 0 < ε ≤ 1. (4.3)
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Proof. Reference to the proof of Lemma 2, here we only need to focus on the explicit part iδtΦ
n
j =

(
V 0
j I2 −A0

i,jσ1
)
Φn
j . Substituting the formula (3.6) into the explicit part of (4.1), we get

ξ2l − 2iτ(−V 0 ±A0
1)ξl − 1 = 0, l = −M

2
, . . . ,

M

2
− 1, (4.4)

which indicates the stability condition is 0 < τ ≤ 1
|V 0|+|A0

1
|
.130

Lemma 4. The LFFD method (4.2) is stable under its corresponding stability condition

0 < τ ≤ εh

|V 0| εh+

√
h2 + (|A0

1| εh+ 1)
2
, h > 0, 0 < ε ≤ 1. (4.5)

Proof. (i) Plugging (3.6) into the LFFD method, and considering the orthogonality for the Fourier series,

we have
∣∣∣∣
(
ξ2l − 1

)
I2 + 2iτξl

(
σ3
ε

+ V 0I2 −A0
1σ1 +

sin (µlh)

εh
σ1

)∣∣∣∣ = 0, l = −M
2
, · · ·, M

2
− 1, (4.6)

Substituting (1.3) into (4.6), we obtain the amplification factor ξl satisfies

ξ2l − 2iτθlξl − 1 = 0, l = −M
2
, . . . ,

M

2
− 1, (4.7)

in which

θl = −V 0 ± 1

εh

√
h2 + (−A0

1εh+ sin (µlh))
2
, l = −M

2
, . . . ,

M

2
− 1, (4.8)

and the stability condition for the LFFD method (4.2) equivalents to

|ξl| ≤ 1 ⇐⇒ |τθl| ≤ 1, l = −M
2
, . . . ,

M

2
− 1, (4.9)

hence it directly gives the condition (4.5).131

4.3. Error estimate132

According to the assumption (B) in (2.12), the stability condition of the SIFD2 method becomes

0 < τ ≤ 1

Vmax +A1,max
, h > 0, 0 < ε ≤ 1, (4.10)

the stability condition of the LFFD method becomes

0 < τ ≤ εh

εhVmax +
√
h2 + (εhA1,max + 1)

2
, h > 0, 0 < ε ≤ 1, (4.11)

next we could establish the error bounds under these stability conditions.133

Theorem 3. Under the assumptions in (A) and (B), there exist the constants h0 > 0, τ0 > 0 independent

of ε and sufficiently small, such that for any 0 < ε ≤ 1, if 0 < h ≤ h0, 0 < τ ≤ τ0 and under the above

stability condition (4.10), for the SIFD2 method (4.1) with (2.2) and (3.2), we obtain the error estimate

on the wave function as below

‖en‖l2 .
h2

ε
+
τ2

ε3
, 0 ≤ n ≤ T

τ
. (4.12)

16



Theorem 4. Under the assumptions in (A) and (B), there exist the constants h0 > 0, τ0 > 0 independent

of ε and sufficiently small, such that for any 0 < ε ≤ 1, if 0 < h ≤ h0, 0 < τ ≤ τ0 and under the above

stability condition (4.11), for the LFFD method (4.2) with (2.2) and (3.2), we obtain the error estimate

on the wave function as below

‖en‖l2 .
h2

ε
+
τ2

ε3
, 0 ≤ n ≤ T

τ
. (4.13)

Table 3 Spatial and temporal error analysis of the wave function eh,τΦ (t = 2) for the SIFD2 method

ehΦ(t = 2) h0 = 1/16 h0/2 h0/2
2 h0/2

3 h0/2
4

ε0 = 1 3.35E-1 8.48E-2 2.12E-2 5.30E-3 1.33E-3

Order − 1.98 2.00 2.00 2.00

ε0/4 1.20 3.22E-1 8.11E-2 2.03E-2 5.07E-3

Order − 1.90 1.99 2.00 2.00

ε0/4
2 1.43 1.21 3.22E-1 8.09E-2 2.02E-2

Order − 0.24 1.91 1.99 2.00

ε0/4
3 2.96 1.41 1.21 3.23E-1 8.09E-2

Order − 1.07 0.22 1.91 1.99

eτΦ(t = 2) τ0 = 1/40 τ0/4 τ0/4
2 τ0/4

3 τ0/4
4

ε0 = 1 1.21E-1 7.68E-3 4.81E-4 3.03E-5 2.19E-6

Order − 1.99 2.00 1.99 1.90

ε0/4
2/3 1.48 1.12E-1 7.01E-3 4.39E-4 2.82E-5

Order − 1.87 2.00 2.00 1.98

ε0/4
4/3 3.15 1.52 1.10E-1 6.88E-3 4.32E-4

Order − 0.53 1.90 2.00 2.00

ε0/4
2 2.36 3.43 1.54 1.09E-1 6.85E-3

Order − -0.27 0.58 1.91 2.00

By referring to the proof of Theorems 1, 2, the proof of Theorems 3 and 4 are similarly obtained.

Actually, in the massless and nonrelativistic regime, when given an accuracy bound δ > 0, the ε-resolution

of the SIFD2 and LFFD methods is:

h = O(
√
δε) = O(

√
ε), τ = O

(√
δε3
)
= O

(√
ε3
)
, 0 < ε≪ 1. (4.14)

Based on the Theorems 1-4, the four finite difference methods analyzed here share the same spatial and134

temporal scalability for the Dirac equation in the massless and nonrelativistic regime.135

4.4. Numerical results136

In the following numerical simulation, the electromagnetic potential, initial condition, error functions137

and mesh sizes are same with (2.26)-(2.28) in Subsection 2.4. Due to the stability conditions and accuracy138
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Table 4 Spatial and temporal error analysis of the wave function eh,τΦ (t = 2) for the LFFD method

ehΦ(t = 2) h0 = 1/16 h0/2 h0/2
2 h0/2

3 h0/2
4

ε0 = 1 3.35E-1 8.48E-2 2.12E-2 5.30E-3 1.33E-3

Order − 1.98 2.00 2.00 2.00

ε0/4 1.20 3.22E-1 8.11E-2 2.03E-2 5.07E-3

Order − 1.90 1.99 2.00 2.00

ε0/4
2 1.43 1.21 3.22E-1 8.08E-2 2.02E-2

Order − 0.24 1.91 1.99 2.00

ε0/4
3 2.96 1.41 1.21 3.20E-1 7.86E-2

Order − 1.07 0.22 1.92 2.03

eτΦ(t = 2)
τ0 = 1/40 τ0/4 τ0/4

2 τ0/4
3 τ0/4

4

h0 = 1/16 h0/4δ1(ε) h0/4
2δ2(ε) h0/4

3δ3(ε) h0/4
4δ4(ε)

ε0 = 1 2.80E-1 1.73E-2 1.08E-3 6.75E-5 4.22E-6

Order − 2.01 2.00 2.00 2.00

ε0/4
2/3 Unstable 1.48E-1 9.22E-3 5.76E-4 3.60E-5

Order − − 2.00 2.00 2.00

ε0/4
4/3 Unstable 1.13 7.41E-2 4.63E-3 2.89E-4

Order − − 1.96 2.00 2.00

ε0/4
2 Unstable 1.55 4.24E-1 2.64E-2 1.65E-3

Order − − 0.93 2.00 2.00

requirement for the LFFD method, similar to the SIFD1 method, we take (3.24) in Table 4. Tables 3,139

4 present the spatial errors ehΦ(t = 2) and the temporal errors eτΦ(t = 2) of the wave function for the140

SIFD2 (4.1) and LFFD (4.2) methods, respectively. Besides, Tables 5, 6 display the errors in spatial and141

temporal of the total density e
h/τ
ρ (t = 2) and current density e

h/τ
J

(t = 2) by using the SIFD2 method.142

From Tables 3-6, we can directly observe that the LFFD and SIFD1 methods have second order143

convergence both in time and space, and the ε-resolution h = O(ε1/2) and τ = O(ε3/2) for the wave144

function and two densities are consistent with Theorems 3, 4 and Corollaries 2.1, 2.2. The error estimates145

are verified by the upper triangles above the diagonal line labelled with bold type in the top and bottom146

half of each table. Analogously, the two densities for the CNFD, SIFD1 and LFFD have similar results,147

which are omitted here for brief.148

According to the numerical results presented above, in the massless and nonrelativistic regime, we149

successfully verify the error estimates for the wave function, total and current densities of the Dirac150

equation in Theorems 1-4 and Corollaries 2.1, 2.2 by using the finite difference methods. Moreover, we151

could obtain our error estimates of Theorems and Corollaries are sharp.152
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Table 5 Spatial and temporal error analysis of the total density eh,τρ (t = 2) for the SIFD2 method

ehρ(t = 2) h0 = 1/32 h0/2 h0/2
2 h0/2

3 h0/2
4

ε0 = 1 1.28E-1 3.02E-2 7.45E-3 1.86E-3 4.64E-4

Order − 2.08 2.02 2.00 2.00

ε0/4 5.83e-1 1.52E-1 3.85E-2 9.65E-3 2.41E-3

Order − 1.93 1.99 2.00 2.00

ε0/4
2 2.13 6.54E-1 1.68E-1 4.20E-2 1.05E-2

Order − 1.70 1.97 2.00 2.00

ε0/4
3 3.06 1.34 5.72E-1 1.56E-1 3.98E-2

Order − 1.19 1.23 1.87 1.97

eτρ(t = 2) τ0 = 1/40 τ0/4 τ0/4
2 τ0/4

3 τ0/4
4

ε0 = 1 1.91E-1 1.13E-2 7.02E-4 4.42E-5 3.16E-6

Order − 2.04 2.00 1.99 1.90

ε0/4
2/3 1.71 1.92E-1 1.26E-2 7.93E-4 5.10E-5

Order − 1.58 1.96 2.00 1.98

ε0/4
4/3 3.65 3.24 2.40E-1 1.49E-2 9.34E-4

Order − 0.09 1.88 2.01 2.00

ε0/4
2 7.33 1.76 2.63 2.25E-1 1.42E-2

Order − 1.03 -0.29 1.77 2.00

5. Conclusion153

In this paper, we use four types of finite difference methods numerically to study the Dirac equation154

in the massless and nonrelativistic regime. The four finite difference methods, including the energy non-155

conservative/conservative and fully explicit/two semi-implicit/implicit numeric schemes, all have second156

order convergence in both space and time. In the massless and nonrelativistic regime, the corresponding157

stability conditions and error estimates of these discrete schemes are rigorously analyzed respectively.158

The error estimates suggest that the wave function, total density and current density of these four finite159

difference methods share the same ε-scalability as h = O(ε1/2) and τ = O(ε3/2). Extensive numerical160

results are exhibited to verify our error estimates. From the above analysis and numerical examples, it is161

clear that the computational cost of the CNFD method is the most expensive, while the LFFD method162

is the most efficient, but it has the most strict stability condition.163
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Table 6 Spatial and temporal error analysis of the current density eh,τ
J

(t = 2) for the SIFD2 method

eh
J
(t = 2) h0 = 1/32 h0/2 h0/2

2 h0/2
3 h0/2

4

ε0 = 1 4.67E-1 1.28E-1 3.21E-2 8.02E-3 2.01E-3

Order − 1.87 2.00 2.00 2.00

ε0/4 2.05 5.77E-1 1.38E-1 3.40E-2 8.47E-3

Order − 1.83 2.06 2.02 2.01

ε0/4
2 1.42 1.30 3.49E-1 8.67E-2 2.16E-2

Order − 0.13 1.89 2.01 2.01

ε0/4
3 3.08 2.38 2.43 6.52E-1 1.56E-1

Order − 0.37 -0.03 1.90 2.06

eτ
J
(t = 2) τ0 = 1/40 τ0/4 τ0/4

2 τ0/4
3 τ0/4

4

ε0 = 1 1.59E-1 1.00E-2 6.25E-4 3.95E-5 2.86E-6

Order − 2.00 2.00 1.99 1.89

ε0/4
2/3 1.87 1.23E-1 7.40E-3 4.62E-4 2.96E-5

Order − 1.97 2.03 2.00 1.98

ε0/4
4/3 1.70 9.65E-1 8.95E-2 5.74E-3 3.61E-4

Order − 0.41 1.72 1.98 2.00

ε0/4
2 2.98 6.78E-1 1.38 9.10E-2 5.64E-3

Order − 1.07 -0.51 1.96 2.01

was done when the authors visited the Institute for Mathematical Sciences at the National University of167

Singapore in 2019.168
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