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Abstract

We prove stability estimates for the spatially discrete, Galerkin solution of a fractional
Fokker–Planck equation, improving on previous results in several respects. Our main goal
is to establish that the stability constants are bounded uniformly in the fractional diffusion
exponent α ∈ (0, 1]. In addition, we account for the presence of an inhomogeneous term
and show a stability estimate for the gradient of the Galerkin solution. As a by-product,
the proofs of error bounds for a standard finite element approximation are simplified.

1 Introduction

We consider the stability of semidiscrete Galerkin methods for the time-fractional Fokker–
Planck equation [1, 2]

∂tu−∇ ·
(
∂1−α
t κ∇u− ~F ∂1−α

t u
)
= g for ~x ∈ Ω and 0 < t ≤ T ,

u = u0(~x) for ~x ∈ Ω when t = 0,

u = 0 for ~x ∈ ∂Ω and 0 < t ≤ T .

(1)

Here, Ω is a bounded Lipschitz domain in R
d (d ≥ 1), the fractional exponent satisfies 0 < α ≤ 1

and the fractional time derivative is understood in the Riemann–Liouville sense: ∂1−α
t = ∂t I

α

where the fractional integration operator Iα is defined as usual in (9) below. The diffusivity
κ ∈ L∞(Ω) is assumed independent of time, positive and bounded below: κ(~x) ≥ κmin > 0

for ~x ∈ Ω. The forcing vector ~F may depend both on ~x and t, and we assume that ~F , ∂t ~F ,
∇· ~F and ∇·∂t ~F are bounded on Ω× [0, T ]. Note that if α = 1 then ∂1−α

t φ = φ so the governing
equation in (1) reduces to a classical Fokker–Planck equation.

If ~F is independent of t, then by applying I1−α to both sides of the governing equation we
find that (1) is equivalent to

C∂α
t u−∇ ·

(
κ∇u− ~Fu

)
= I1−αg, (2)

where C∂α
t u = I1−α∂tu is the Caputo fractional derivative of order α. In this form, numerous

authors have studied the numerical solution of the problem, mostly for a 1D spatial domain Ω =
(0, L) and with g ≡ 0. For instance, Deng [4] considered the method of lines, Jiang and Xu [8]
proposed a finite volume method, Yang et al. [21] a spectral collocation method, and Duong
and Jin [5] a Wasserstein gradient flow formulation.
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For both continuous and discrete solutions to fractional PDEs, it is natural to expect sta-
bility constants to remain bounded as α → 1 if the limiting classical problem is stable. In
applications, the value of α is typically estimated from measurements, and this process might
be treated as an inverse problem. It would then be desirable that simulations of the forward
problem are uniformly stable in α, particularly if the diffusion turns out to be classical (α = 1)
or only slightly subdiffusive (α close to 1). Perhaps for these reasons, interest in the question
of α-uniform stability and convergence seems to be growing. Note that growth in the stability
constant as α → 0 is of less concern, since very small values of α have not been observed in
real physical systems.

In the special case ~F ≡ ~0 of fractional diffusion, Chen and Stynes [3] showed that as α
tends to 1 the solution of (2) tends to the solution of the classical diffusion problem, uniformly
in x and t. They also discussed several examples of numerical schemes for which the error
analysis leads to constants that remain bounded as α → 1 (said to be α-robust bounds), as
well as several for which the constants blow up (α-nonrobust bounds). Recent examples in
the former category include Jin et al. [9, see Remark 4], Huang et al. [6, see Section 5] and
Mustapha [17, Lemma 3.1, Theorem 3.5].

We work with the weak solution u : (0, T ] → H1
0 (Ω) of (1) characterized by

〈u′, v〉+ 〈∂1−α
t κ∇u,∇v〉 − 〈~F∂1−α

t u,∇v〉 = 〈g, v〉 for v ∈ H1
0 (Ω) (3)

and 0 < t ≤ T , with u(0) = u0, where u′ = ∂tu, 〈u, v〉 =
∫
Ω
uv and 〈~u,~v〉 =

∫
Ω
~u · ~v. Strictly

speaking, to allow minimal assumptions on the regularity of the data u0 and g, we define the
solution u by requiring that it satisfy the time-integrated equation

〈u, v〉+ 〈Iακ∇u,∇v〉 −
〈
~B1u,∇v

〉
= 〈f, v〉, (4)

where

( ~B1φ)(t) =

∫ t

0

(
~F ∂1−α

t φ
)
(s) ds and f(t) = u0 +

∫ t

0

g(s) ds. (5)

In previous work, we have established that this problem is well-posed [12, 16].
For a fixed, finite dimensional subspace X ⊆ H1

0 (Ω), the semidiscrete Galerkin solution uX :
[0, T ] → X is given by

〈uX, χ〉+
〈
Iακ∇uX,∇χ

〉
−

〈
~B1uX,∇χ

〉
= 〈fX, χ〉 for χ ∈ X, (6)

with fX(t) = u0X +
∫ t

0
g(s) ds and with uX(0) = u0X ∈ X a suitable approximation to u0.

Previously, we studied this problem in the particular case when X = Sh is a space of continuous,
piecewise-linear finite element functions corresponding to a conforming triangulation of Ω with
maximum element size h > 0. We showed that the Galerkin finite element solution uh(t) is
stable in the norm of L2(Ω) when g(t) ≡ 0, satisfying the bound [10, Theorem 4.5]

‖uh(t)‖ ≤ Cα‖u0h‖ for 0 ≤ t ≤ T and 0 < α < 1, (7)

where uh(0) = u0h ∈ Sh approximates u0. The method of proof relied on estimates for fractional
integrals [10, Lemmas 3.2–3.4] involving powers of (1−α)−1, leading to a stability constant Cα

that blows up as α → 1. However, in the limiting case α = 1 the semidiscrete finite element
method is easily seen to be stable [10, Remark 4.7], that is, (7) holds with C1 < ∞. In the

absence of forcing, that is, in the simple case ~F ≡ ~0 of fractional diffusion, the stability constant
equals one: ‖uh(t)‖ ≤ ‖u0h‖ for 0 < α ≤ 1.

Our primary aim in what follows is to improve the results of our earlier paper [10] via a
new analysis of (6) that yields a uniform stability constant for 0 < α ≤ 1, as well as allowing
a non-zero source term g. Recently, Huang et al. [6] have addressed the same question using
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a different analysis that requires 1/2 < α ≤ 1 and u0 ∈ H1(Ω), with a stability constant that
blows up as α → 1/2.

Throughout the paper, C denotes a generic constant that may depend of T , Ω, κ and ~F .
Dependence on any other parameters will be shown explicitly, and in particular, we write Cα to
show that the constant may also depend on α. After citing some technical lemmas in Section 2,
we present the stability proof in Section 3, stating our main result as Theorem 3.4. Using
similar arguments, Section 4 establishes an estimate for the gradient of uX in Theorem 4.4.
Combining these results gives, for 0 ≤ t ≤ T and 0 < α ≤ 1,

‖uX(t)‖+ tα/2‖∇uX(t)‖ ≤ C

(
‖u0X‖+

∫ t

0

‖g(s)‖ ds

)
+ C

(
1

t

∫ t

0

‖sg(s)‖2 ds

)1/2

≤ C

(
‖u0X‖+ t1/2

∫ t

0

‖g(s)‖2 ds

)
.

(8)

(Here, the second bound follows from the first by Lemma 3.5 with η = 1.) At the end of
Section 4, in Remark 4.5, we note that the exact solution u has the same uniform stability
property as the semidiscrete Galerkin approximation uX, that is, (8) holds with u and u0

replacing uX and u0X. Also, in Remark 4.6, we discuss briefly the implications of enforcing a
zero-flux boundary condition instead of the homogeneous Dirichlet one in problem (1). Section 5
applies our new stability analysis to the piecewise linear Galerkin finite element solution uh,
showing in Theorem 5.4 that ‖uh − u‖ = O(t−α(2−r)/2h2) and ‖∇uh − ∇u‖ = O(t−α(2−r)/2h).
These error bounds rely on a regularity assumption involving the parameter r ∈ [0, 2], which we
justify in Theorem 5.3. Finally, Section 6 considers the time discretization of (1) in the special

case ~F ≡ ~0 of plain fractional diffusion using the discontinuous Galerkin method, proving a
fully-discrete stability result in Theorem 6.1.

2 Preliminaries

This brief section introduces notations and gathers together results from the literature that we
will use in our subsequent analysis. Denote the fractional integral operator of order µ > 0 by

(Iµφ)(t) =

∫ t

0

ωµ(t− s)φ(s) ds for t > 0, where ωµ(t) =
tµ−1

Γ(µ)
, (9)

with I0φ = φ, and observe that (I1φ)(t) =
∫ t

0
φ(s) ds. If we denote the Laplace transform of φ

by φ̂(z) =
∫∞

0
e−ztφ(t) dt then (Îµφ)(z) = ω̂µ(z)φ̂(z) and ω̂µ(z) = z−µ. Hence, assuming φ is

real-valued with (say) compact support in [0,∞), we find that
∫ t

0

〈
φ, Iµφ

〉
ds =

πµ/2

π

∫ ∞

0

y−µ‖φ̂(iy)‖2 dy ≥ 0 if 0 < µ < 1. (10)

Our analysis relies on properties of Iµ stated in the next three lemmas.

Lemma 2.1. If 0 ≤ µ ≤ ν ≤ 1, then for t > 0 and φ ∈ L2

(
(0, t), L2(Ω)

)
,

∫ t

0

‖(Iνφ)(s)‖2 ds ≤ 2t2(ν−µ)

∫ t

0

‖(Iµφ)(s)‖2 ds.

Proof. See Le et al. [10, Lemma 3.1].

Lemma 2.2. If 0 < µ ≤ 1, then for t > 0 and φ ∈ L2

(
(0, t), L2(Ω)

)
,

∫ t

0

‖(Iµφ)(s)‖2 ds ≤ 2

∫ t

0

ωµ(t− s)

∫ s

0

〈
φ(q), (Iµφ)(q)

〉
dq.
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Proof. See McLean et al. [16, Lemma 2.2].

Lemma 2.3. Let 0 ≤ µ < ν ≤ 1. If φ : [0, T ] → L2(Ω) is continuous with φ(0) = 0, and if its
restriction to (0, T ] is differentiable with ‖φ′(t)‖ ≤ Ct−µ for 0 < t ≤ T , then

‖φ(t)‖2 ≤ 2ω2−ν(t)

∫ t

0

〈
φ′(s), (Iνφ′)(s)

〉
ds.

Proof. See McLean et al. [16, Lemma 2.3].

We will also require the following fractional Gronwall inequality involving the Mittag-Leffler
function Eµ(z) =

∑∞

n=0 z
n/Γ(1 + nµ).

Lemma 2.4. Let µ > 0 and assume that a and b are non-negative and non-decreasing functions
on the interval [0, T ]. If y : [0, T ] → R is an integrable function satisfying

0 ≤ y(t) ≤ a(t) + b(t)

∫ t

0

ωµ(t− s)y(s) ds for 0 ≤ t ≤ T ,

then
y(t) ≤ a(t)Eµ

(
b(t) tµ

)
for 0 ≤ t ≤ T .

Proof. See Dixon and McKee [7, Theorem 3.1] and Ye, Gao and Ding [22, Corollary 2].

We recall the definition of the linear operator ~B1 in (5), and introduce two other linear

operators M and ~B2, defined by

(Mφ)(t) = t φ(t) and ~B2φ =
(
M ~B1φ

)′
.

With the help of the identity
MIα − IαM = αIα+1 (11)

and using our assumption that ~F and ~F ′ are bounded, one can show the following technical
estimates.

Lemma 2.5. Let µ > 0. If φ : [0, T ] → L2(Ω) is continuous, and if its restriction to (0, T ] is
differentiable with ‖φ′(t)‖ ≤ Ctµ−1 for 0 < t ≤ T , then

∫ t

0

‖ ~B1φ‖
2 ds ≤ C

∫ t

0

‖Iαφ‖2 ds

and ∫ t

0

‖ ~B2φ‖
2 ds ≤ C

∫ t

0

(
‖Iα(Mφ)′‖2 + ‖Iαφ‖2

)
ds.

Proof. The estimate for ~B1 was proved by Le et al. [10, Lemma 4.1], who also proved the bound

for ~B2 (denoted there by B3) but with the extra term term C
∫ t

0
‖IαMφ‖2 ds. However, we may

omit this extra term because it is bounded by Ct2
∫ t

0
‖Iαφ‖2 ds, as one sees from Lemma 2.1

and (11).
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3 Stability analysis

To simplify the error analysis of Section 5 we will include an additional term on the right-hand
side of (6) and study the stability of uX : [0, T ] → X satisfying

〈uX, χ〉+
〈
κIα∇uX,∇χ

〉
−

〈
~B1uX,∇χ

〉
= 〈f1, χ〉+ 〈~f2,∇χ〉 for χ ∈ X, (12)

with uX(0) = u0X; the semidiscrete Galerkin solution is then given by the special case f1 =

fX and ~f2 = ~0. Our goal is to bound ‖uX(t)‖ pointwise in t, and for this purpose our
overall strategy is to apply Lemma 2.3 with φ = MuX, which in turn requires an estimate
for

∫ t

0

〈
Iα(MuX)

′, (MuX)
′
〉
ds. The technical details are worked out in Lemmas 3.1 and 3.2 be-

low, and the stability estimate itself is then obtained in Lemma 3.3 for (12), and in Theorem 3.4
for the original semidiscrete Galerkin problem (6).

Our method of proof begins by multiplying both sides of (12) by t and using the identity (11)
to obtain

〈MuX, χ〉+
〈
κIα(M∇uX) + ακIα+1∇uX −M ~B1uX,∇χ

〉
= 〈Mf1, χ〉+ 〈M~f2,∇χ〉.

Differentiating this equation with respect to time then yields

〈
(MuX)

′, χ
〉
+
〈
κ∂1−α

t (M∇uX) + ακIα∇uX − ~B2uX,∇χ
〉

= 〈(Mf1)
′, χ〉+ 〈(M~f2)

′,∇χ〉. (13)

Lemma 3.1. For i ∈ {0, 1} and 0 ≤ t ≤ T , the solution of (12) satisfies

∫ t

0

(∥∥Iα(MiuX)
∥∥2

+ tα
∥∥Iα(∇MiuX)

∥∥2
)
ds ≤ Ct2(α+i)

∫ t

0

(
‖f1‖

2 + t−α‖~f2‖
2
)
ds.

Proof. Choose χ = (IαuX)(t) in (12) so that

〈uX, I
αuX〉+ κmin‖I

α∇uX‖
2 ≤

〈
~f2 + ~B1uX, I

α∇uX

〉
+ 〈f1, I

αuX〉

≤ κ−1
min

(
‖~f2‖

2 + ‖ ~B1uX‖
2
)
+ 1

2
κmin‖I

α∇uX‖
2 + ‖f1‖‖I

αuX‖.

After cancelling 1
2
κmin‖I

α∇uX‖
2, integrating in time and applying Lemma 2.5, we deduce that

∫ t

0

(
〈uX, I

αuX〉+
1
2
κmin‖I

α∇uX‖
2
)
ds

≤ C0t
−α

∫ t

0

‖IαuX‖
2 ds+

∫ t

0

(
tα‖f1‖

2 + κ−1
min‖

~f2‖
2
)
ds, (14)

where C0 is a fixed constant depending on T , κmin and ~F . Apply Iα to both sides of (12) and
choose χ = IαuX(t) to obtain, for any η > 0,

‖IαuX‖
2 + 〈κIα(Iα∇uX), I

α∇uX〉 = 〈Iα(~f2 + ~B1uX), I
α∇uX〉+ 〈Iαf1, I

αuX〉

≤ η
(
‖Iα ~f2‖

2 + ‖Iα( ~B1uX)‖
2
)
+ 1

2
η−1‖Iα∇uX‖

2 + 1
2
‖Iαf1‖

2 + 1
2
‖IαuX‖

2.

Simplifying, integrating in time, and noting
∫ t

0
〈κIα(Iα∇uX), I

α∇uX〉 ds ≥ 0 by (10), we observe
that
∫ t

0

‖IαuX‖
2 ds ≤

∫ t

0

‖Iαf1‖
2 ds+ 2η

∫ t

0

(
‖Iα ~f2‖

2 + ‖Iα( ~B1uX)‖
2
)
ds+

1

η

∫ t

0

‖Iα∇uX‖
2 ds.
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By Lemmas 2.1 and 2.5,

∫ t

0

‖Iα( ~B1uX)‖
2 ds ≤ 2t2α

∫ t

0

‖ ~B1uX‖
2 ds ≤ Ct2α

∫ t

0

‖IαuX‖
2 ds,

and so, again with the help of Lemma 2.1,

∫ t

0

‖IαuX‖
2 ds ≤ 2t2α

∫ t

0

(
‖f1‖

2 + 2η‖~f2‖
2
)
ds+ Cηt2α

∫ t

0

‖IαuX‖
2 ds

+
1

η

∫ t

0

‖Iα∇uX‖
2 ds. (15)

However, by (14),

∫ t

0

‖Iα∇uX‖
2 ds ≤

2C0

κmin
t−α

∫ t

0

‖IαuX‖
2 ds+ C

∫ t

0

(
tα‖f1‖

2 + ‖~f2‖
2
)
ds,

and by Lemma 2.2,

∫ t

0

‖IαuX‖
2 ds ≤ 2

∫ t

0

ωα(t− s)

∫ s

0

〈
uX(q), (I

αuX)(q)
〉
dq ds . (16)

Inserting these two estimates in the right-hand side of (15) and choosing η = 4C0t
−α/κmin

yields

∫ t

0

‖IαuX‖
2 ds ≤ Ctα

∫ t

0

(
tα‖f1‖

2 + ‖~f2‖
2
)
ds+ Ctα

∫ t

0

ωα(t− s)

∫ s

0

〈
uX, I

αuX

〉
dq ds. (17)

Let y(t) =
∫ t

0

(
〈uX, I

αuX〉+ ‖Iα∇uX‖
2
)
ds, and deduce from (14) and (17) that

y(t) ≤ C

∫ t

0

(
tα‖f1‖

2 + ‖~f2‖
2
)
ds+ C

∫ t

0

ωα(t− s)y(s) ds. (18)

It follows by Lemma 2.4 that, for 0 ≤ t ≤ T ,

y(t) ≤ CEα

(
Ctα

) ∫ t

0

(
tα‖f1‖

2 + ‖~f2‖
2
)
ds ≤ C

∫ t

0

(
tα‖f1‖

2 + ‖~f2‖
2
)
ds. (19)

Together, (16) and (19) imply

∫ t

0

(
‖IαuX‖

2 + tα‖Iα∇uX‖
2
)
ds ≤ Ctα

∫ t

0

(
tα‖f1‖

2 + ‖~f2‖
2
)
ds+ Ctα

∫ t

0

ωα(t− s)y(s) ds,

and using (19) a second time gives

∫ t

0

ωα(t− s)y(s) ds ≤ C

(∫ t

0

ωα(t− s) ds

)∫ t

0

(
tα‖f1‖

2 + ‖~f2‖
2
)
ds

≤ Ctα
∫ t

0

(
tα‖f1‖

2 + ‖~f2‖
2
)
ds,

completing the proof for the case i = 0.
The identity (11) implies that

‖(IαMuX)(t)‖
2 ≤ 2t2‖(IαuX)(t)‖

2 + 2α2‖(Iα+1uX)(t)‖
2

6



so, using Lemma 2.1,

∫ t

0

‖IαMuX‖
2 ds ≤ 2t2

∫ t

0

‖IαuX‖
2 ds+ 4α2t2

∫ t

0

‖IαuX‖
2 ds ≤ 6t2

∫ t

0

‖IαuX‖
2 ds.

Similarly, ∫ t

0

‖IαM∇uX‖
2 ds ≤ 6t2

∫ t

0

‖Iα∇uX‖
2 ds,

so the case i = 1 follows from the already proven case i = 0.

The next lemma makes use of the identity

(∂1−α
t φ)(t) = (Iαφ)′(t) = φ(0)ωα(t) + (Iαφ′)(t). (20)

Lemma 3.2. For 0 ≤ t ≤ T , the solution of (12) satisfies

∫ t

0

(〈
(MuX)

′, Iα(MuX)
′
〉
+ ‖Iα(M∇uX)

′‖2
)
ds

≤ Ctα
∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2

)
ds+ C

∫ t

0

(
‖~f2‖

2 + ‖(M~f2)
′‖2

)
ds.

Proof. Rewriting (13) as

〈
(MuX)

′, χ
〉
+
〈
κ∂1−α

t (M∇uX),∇χ
〉
=

〈
(M~f2)

′+ ~B2uX−ακIα∇uX,∇χ
〉
+ 〈(Mf1)

′, χ〉, (21)

we note that the first term on the right is bounded by

1
2
κmin‖∇χ‖2 + 3

2
κ−1
min

(
‖(M~f2)

′‖2 + ‖ ~B2uX‖
2 + α2‖κIα∇uX‖

2
)
.

Choose χ = ∂1−α
t (MuX)(t) =

(
Iα(MuX)

)′
(t) and note that, since (MuX)(0) = 0, the identity

(20) implies χ = Iα(MuX)
′ so

〈(MuX)
′, Iα(MuX)

′〉+ 1
2
κmin‖I

α(M∇uX)
′‖2

≤ ‖(Mf1)
′‖ ‖Iα(MuX)

′‖+ C‖(M~f2)
′‖2 + C‖ ~B2uX‖

2 + C‖Iα∇uX‖
2.

Thus, by Lemma 2.5,

y(t) ≡

∫ t

0

(〈
(MuX)

′, Iα(MuX)
′
〉
+ ‖Iα(M∇uX)

′‖2
)
ds

≤ C

∫ t

0

(
tα‖(Mf1)

′‖2 + ‖(M~f2)
′‖2

)
ds

+ C

∫ t

0

(
‖Iα(∇uX)‖

2 + ‖IαuX‖
2
)
ds+ C0t

−α

∫ t

0

‖Iα(MuX)
′‖2 ds.

The second integral on the right is bounded by Ctα
∫ t

0

(
‖f1‖

2 + t−α‖~f2‖
2
)
ds via Lemma 3.1,

giving

y(t) ≤ Ctα
∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2

)
ds+ C

∫ t

0

(
‖~f2‖

2 + ‖(M~f2)
′‖2

)
ds

+ C0t
−α

∫ t

0

‖Iα(MuX)
′‖2 ds. (22)

7



Now apply Iα to both sides of (21), again with χ = ∂1−α
t (MuX)(t) = Iα(MuX)

′(t), to conclude
that

‖Iα(MuX)
′‖2 +

〈
κIα

(
Iα(M∇uX)

′
)
, Iα(M∇uX)

′
〉

≤
(
‖Iα(M~f2)

′‖+ ‖Iα( ~B2uX)‖+ ‖I2α∇uX‖
)
‖Iα(M∇uX)

′‖

+ 1
2
‖Iα(Mf1)

′‖2 + 1
2
‖Iα(MuX)

′‖2.

After cancelling the last term on the right we have, for any η > 0,

‖Iα(MuX)
′‖2 + 2

〈
κIα

(
Iα(M∇uX)

′
)
, Iα(M∇uX)

′
〉

≤ 3η
(
‖Iα(M~f2)

′‖2 + ‖Iα( ~B2uX)
2‖+ ‖I2α∇uX‖

2
)
+ η−1‖Iα(M∇uX)

′‖2 + ‖Iα(Mf1)
′‖2.

Since the integral over (0, t) of the second term on the left is non-negative, it follows using
Lemma 2.1 that

∫ t

0

‖Iα(MuX)
′‖2 ds ≤ 6ηt2α

∫ t

0

(
‖(M~f2)

′‖2 + ‖ ~B2uX‖
2 + ‖Iα∇uX‖

2
)
ds

+ η−1

∫ t

0

‖Iα(M∇uX)
′‖2 ds+ 2t2α

∫ t

0

‖(Mf1)
′‖2 ds.

By Lemmas 2.5 and 3.1,

∫ t

0

(
‖ ~B2uX‖

2 + ‖Iα(∇uX)‖
2
)
ds ≤ Ctα

∫ t

0

(
‖f1‖

2 + t−α‖~f2‖
2
)
ds

+ C

∫ t

0

(
‖Iα(MuX)

′‖2 + ‖IαuX‖
2
)
ds

≤ C

∫ t

0

‖Iα(MuX)
′‖2 ds+ C

(
tα + t2α

) ∫ t

0

(
‖f1‖

2 + t−α‖~f2‖
2
)
ds,

and consequently,

C0t
−α

∫ t

0

‖Iα(MuX)
′‖2 ds ≤ Ctα

∫ t

0

(
ηtα‖f1‖

2 + ‖(Mf1)
′‖2

)
ds

+Cηtα
∫ t

0

(
‖~f2‖

2+‖(M~f2)
′‖2

)
ds+Cηtα

∫ t

0

‖Iα(MuX)
′‖2 ds+

C0t
−α

η

∫ t

0

‖Iα(M∇uX)
′‖2 ds.

Choosing η = 2C0t
−α, we see from (22) that

y(t) ≤ Ctα
∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2

)
ds+ C

∫ t

0

(
‖~f2‖

2 + ‖(M~f2)
′‖2

)
ds

+ C

∫ t

0

‖Iα(MuX)
′‖2 ds.

The desired estimate follows after applying Lemma 2.2 to bound the last integral on the right
in terms of y, and then applying Lemma 2.4.

Lemma 3.3. For 0 < t ≤ T , the solution of (12) satisfies

‖uX(t)‖
2 ≤

C

t

∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2

)
ds+

C

t1+α

∫ t

0

(
‖~f2‖

2 + ‖(M~f2)
′‖2

)
ds.
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Proof. Apply Lemma 2.3, with φ = MuX, followed by Lemma 3.2, to conclude that

t2‖uX(t)‖
2 = ‖MuX(t)‖

2 ≤
2t1−α

Γ(2− α)

∫ t

0

〈
Iα(MuX)

′, (MuX)
′
〉
ds

≤ Ct

∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2

)
ds+ Ct1−α

∫ t

0

(
‖~f2‖

2 + ‖(M~f2)
′‖2

)
ds,

and then divide by t2.

Theorem 3.4. The semidiscrete Galerkin solution, defined by (6), satisfies

‖uX(t)‖ ≤ C

(
‖u0X‖+

∫ t

0

‖g(s)‖ ds

)
+ C

(
1

t

∫ t

0

‖sg(s)‖2 ds

)1/2

for 0 < t ≤ T , where the stability constant C depends on T , Ω, κ and ~F , but not on α ∈ (0, 1] or
the subspace X.

Proof. Apply Lemma 3.3 with f1 = fX and ~f2 = ~0, noting that

1

t

∫ t

0

‖fX‖
2 ds ≤ max

0≤s≤t
‖fX(s)‖

2 ≤

(
‖u0X‖+

∫ t

0

‖g(s)‖ ds

)2

and (MfX)
′ = fX +Mg.

The terms in g from the above estimate can be bounded as follows. In particular, by
choosing η = 1 we see that ‖uX(t)‖ ≤ C‖u0X‖+ Ct1/2‖g‖L2((0,T );L2(Ω)).

Lemma 3.5. For 0 < t ≤ T and 0 < η ≤ 1,

(∫ t

0

‖g(s)‖ ds

)2

+
1

t

∫ t

0

‖sg(s)‖2 ds ≤ (1 + η−1)tη
∫ t

0

s1−η‖g(s)‖2 ds.

Proof. Using the Cauchy–Schwarz inequality,

(∫ t

0

‖g(s)‖ ds

)2

=

(∫ t

0

s−(1−η)/2s(1−η)/2‖g(s)‖ ds

)2

≤

∫ t

0

sη−1 ds

∫ t

0

s1−η‖g(s)‖2 ds =
tη

η

∫ t

0

s1−η‖g(s)‖2 ds,

and furthermore,

1

t

∫ t

0

‖sg(s)‖2 ds ≤

∫ t

0

s‖g(s)‖2 ds ≤ tη
∫ t

0

s1−η‖g(s)‖2 ds.

4 Gradient bounds

A strategy similar to the one used in Section 3 will allow us to bound ‖∇uX(t)‖ pointwise
in t: we once again apply Lemma 2.3, this time with φ = M∇uX. The key result is stated as
Lemma 4.3 for the generalized problem (12), and as Theorem 4.4 for the semidiscrete Galerkin
equation (6). The proofs rely on the following estimates; cf. Lemma 2.5.
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Lemma 4.1. Let µ > 0. If φ : [0, T ] → H1(Ω) is continuous, and if its restriction to (0, T ] is
differentiable with ‖φ′(t)‖H1(Ω) ≤ Ctµ−1 for 0 < t ≤ T , then

∫ t

0

‖∇ · ( ~B1φ)‖
2 ds ≤ C

∫ t

0

(
‖Iαφ‖2 + ‖Iα∇φ‖2

)
ds

and
∫ t

0

‖∇ · ( ~B2φ)‖
2 ds ≤ C

∫ t

0

(
‖Iαφ‖2 + ‖Iα(Mφ)′‖2 + ‖Iα∇φ‖2 + ‖Iα(M∇φ)′‖2

)
ds.

Proof. Integration by parts gives ( ~B1φ)(t) = ~F (Iαφ)(t)−
∫ t

0
~F ′ Iαφ ds, so

∇ · ( ~B1φ) = (∇ · ~F )(Iαφ) + ~F · (Iα∇φ)−

∫ t

0

(
(∇ · ~F )′(Iαφ) + ~F ′ · (Iα∇φ)

)
ds,

implying the first estimate. Furthermore,

~B2φ = ~F ′
(
IαMφ+ αIα+1φ

)
+ ~F

(
Iα(Mφ)′ + αIαφ

)
− I1

(
~F ′ Iαφ

)
−M~F ′ Iαφ,

which implies the second estimate.

The next result builds on the estimates of Lemmas 3.1 and 3.2.

Lemma 4.2. The solution of (12) satisfies, for 0 ≤ t ≤ T ,

∫ t

0

(
‖(MuX)

′‖2 +
〈
κIα(M∇uX)

′, (M∇uX)
′
〉)

ds ≤ C

∫ t

0

‖uX‖
2 ds

+ C

∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2 + ‖~f2‖

2 + ‖(M~f2)
′‖2 + ‖∇ · ~f2‖

2 + ‖(M∇ · ~f2)
′‖2

)
ds.

Proof. Using the first Green identity, we deduce from (21) that

〈
(MuX)

′, χ
〉
+
〈
κ(IαM∇uX)

′,∇χ
〉
=

〈
(Mf1)

′ − (M∇ · ~f2)
′ −∇ · ( ~B2uX), χ

〉

− α
〈
κIα∇uX,∇χ

〉
,

and from (12) that
〈
κIα∇uX,∇χ

〉
=

〈
f1 −∇ · ( ~B1uX)−∇ · ~f2 − uX, χ

〉
, so

〈
(MuX)

′, χ
〉
+
〈
κ(IαM∇uX)

′,∇χ
〉
=

〈
f3 + α∇ · ( ~B1uX)−∇ · ( ~B2uX) + αuX, χ

〉

≤ 1
2
‖χ‖2 + 2

(
‖f3‖

2 + ‖∇ · ( ~B1uX)‖
2 + ‖∇ · ( ~B2uX)‖

2 + ‖uX‖
2
)
,

where f3 = (Mf1)
′ − αf1 − (M∇· ~f2)

′ + α∇ · ~f2. Choose χ = (MuX)
′, cancel the term 1

2
‖χ‖2,

and integrate in time to obtain
∫ t

0

(
‖(MuX)

′‖2 +
〈
κIα(M∇uX)

′, (M∇uX)
′
〉)

ds ≤ CJ(t) + C

∫ t

0

‖f3‖
2 ds (23)

where, by Lemma 4.1,

J(t) =

∫ t

0

(
‖IαuX‖

2 + ‖Iα∇uX‖
2 + ‖Iα(MuX)

′‖2 + ‖Iα(M∇uX)
′‖2 + ‖uX‖

2
)
ds.

If we let y(t) =
∫ t

0

〈
(MuX)

′, Iα(MuX)
′
〉
ds then, by Lemma 2.2,

∫ t

0

‖Iα(MuX)
′‖2 ds ≤ 2

∫ t

0

ωα(t− s)y(s) ds ≤ 2ωα+1(t) max
0≤s≤t

y(s),

10



and so, using Lemmas 3.1 and 3.2,

J(t) ≤ Ctα
∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2

)
ds+ C

∫ t

0

(
‖~f2‖

2 + ‖(M~f2)
′‖2

)
ds.

Since ∫ t

0

‖f3‖
2 ds ≤ 4

∫ t

0

(‖f1‖
2 + ‖(Mf1)

′‖2 + ‖∇ · ~f2‖
2 + ‖(M∇ · ~f2)

′‖2) ds,

the desired estimate now follows from (23).

Lemma 4.3. For 0 < t ≤ T ,

tα‖∇uX(t)‖
2 ≤

C

t

∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2

)
ds

+
C

t

∫ t

0

(
‖~f2‖

2 + ‖(M~f2)
′‖2 + ‖∇ · ~f2‖

2 + ‖(M∇ · ~f2)
′‖2

)
ds.

Proof. Since tα‖∇uX(t)‖
2 = tα−2‖M∇uX(t)‖

2, Lemmas 2.3 and 4.2 imply that

tα‖∇uX(t)‖
2 ≤

2ω2−α(t)

t2−α

∫ t

0

〈
Iα(M∇uX)

′, (M∇uX)
′
〉
ds ≤

C

t

∫ t

0

‖uX‖
2 ds

+
C

t

∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2 + ‖~f2‖

2 + ‖(M~f2)
′‖2 + ‖∇ · ~f2‖

2 + ‖(M∇ · ~f2)
′‖2

)
ds,

and it suffices to estimate
∫ t

0
‖uX‖

2 ds. Choose χ = uX(t) in (12) and use the first Green identity
to deduce that

‖uX‖
2 +

〈
κIα∇uX,∇uX

〉
=

〈
f1 −∇ · ~f2 −∇ · ~B1uX, uX

〉

≤ 1
2
‖uX‖

2 + 3
2

(
‖f1‖

2 + ‖∇ · ~f2‖
2 + ‖∇ · ~B1uX‖

2
)
.

After cancelling 1
2
‖uX‖

2, integrating in time and using (10), we have

∫ t

0

‖uX‖
2 ds ≤ 3

∫ t

0

(
‖f1‖

2 + ‖∇ · ~f2‖
2
)
ds+ 3

∫ t

0

‖∇ · ( ~B1uX)‖
2 ds,

and by Lemmas 3.1 and 4.1,

∫ t

0

‖∇ · ( ~B1uX)‖
2 ds ≤ C

∫ t

0

(
‖IαuX‖

2 + ‖Iα∇uX‖
2
)
ds ≤ Ctα

∫ t

0

(
‖f1‖

2 + t−α‖~f2‖
2
)
ds,

which completes the proof.

The main result for this section now follows easily; once again, the terms in g may be
estimated using Lemma 3.5.

Theorem 4.4. The semidiscrete Galerkin solution, defined by (6), satisfies

tα/2‖∇uX(t)‖ ≤ C

(
‖u0X‖+

∫ t

0

‖g(s)‖ ds

)
+ C

(
1

t

∫ t

0

‖sg(s)‖2 ds

)1/2

for 0 < t ≤ T , where the constant C depends on T , Ω, κ and ~F , but not on α ∈ (0, 1] or the
subspace X.
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Proof. Choose f1 = fX and f2 = 0 in Lemma 4.3, and estimate fX in terms of u0X and g using
the same steps as in the proof of Theorem 3.4.

Remark 4.5. The uniform stability estimate (8) for the semidiscrete Galerkin solution carries
over to the weak solution u of the continuous problem (1), that is,

‖u(t)‖+ tα/2‖∇u(t)‖ ≤ C

(
‖u0‖+

∫ t

0

‖g(s)‖ ds

)
+ C

(
1

t

∫ t

0

‖sg(s)‖2 ds

)1/2

.

Essentially, it suffices to repeat the steps in an earlier stability proof [16, Theorem 4.1] using
(8) as a drop-in replacement for an estimate [16, Theorem 3.3] in which the stability constant
was dependent on α.

Remark 4.6. By introducing a flux vector ~Qu = −∂1−α
t κ∇u + ~F∂1−α

t u we can write the
fractional Fokker–Planck equation (1) as a conservation law: ∂tu + ∇ · ~Qu = g. It is then
natural to consider a zero-flux boundary condition,

~n · ~Qu = 0 for ~x ∈ ∂Ω and 0 < t ≤ T , (24)

where ~n denotes the outward unit normal to Ω. (Notice that this boundary condition is non-
local in time.) In this case, the weak solution u : (0, T ] → H1(Ω) is again characterized by (3),
and hence satisfies (4), but with the test functions v now taken from the larger space H1(Ω).
We can then choose a finite dimensional subspace X ⊆ H1(Ω) and again define the Galerkin
solution uX : [0, T ] → X by (6). The analysis of Section 3 goes through with no change, and in
particular uX is again stable in L2(Ω). However, the first step in the proof of Lemma 4.2 fails
because boundary terms are introduced if one integrates by parts in space, so our analysis no
longer yields a bound for tα/2‖∇uX(t)‖.

5 Error estimates

We now decompose the error in the semidiscrete Galerkin solution as

uX − u = θX − ρX where θX = uX − RXu and ρX = u− RXu,

and where RX denotes the Ritz projector for the (stationary) elliptic problem

−∇ · (κ∇v) + v = g in Ω, with v = 0 on ∂Ω. (25)

Thus, RX : H1
0 (Ω) → X satisfies

〈κ∇RXv,∇χ〉+ 〈RXv, χ〉 = 〈κ∇v,∇χ〉+ 〈v, χ〉 for v ∈ H1
0 (Ω) and χ ∈ X, (26)

or in other words, RX : v 7→ vX where vX ∈ X is the Galerkin solution of the elliptic problem (25).
Note that, by including the lower-order term v, the Ritz projector RX : H1(Ω) → X would also
be well-defined for the zero-flux boundary condition (24).

It follows from (4), (6) and (26) that θX : [0, T ] → X satisfies

〈θX(t), χ〉+
〈
Iα(κ∇θX)− ~B1θX,∇χ

〉
= 〈f1, χ〉+ 〈~f2,∇χ〉 for χ ∈ X, (27)

where
f1 = (u0X − PXu0) + (ρX − IαρX), ~f2 = − ~B1ρX, (28)

and PX : L2(Ω) → X is the orthoprojector given by 〈PXv, χ〉 = 〈v, χ〉 for v ∈ L2(Ω) and χ ∈ X.
If u0 ∈ H1

0 (Ω) so that RXu0 exists, then 〈f1, χ〉 = 〈f̃1, χ〉 where

f̃1 = (u0X − RXu0) +
(
ρX − ρX(0)

)
− IαρX. (29)

We estimate θX in terms of ρX and the error in the discrete initial data u0X, as follows.
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Lemma 5.1. For 0 < t ≤ T ,

‖θX(t)‖
2 ≤ C‖u0X − PXu0‖

2 +
C

t

∫ t

0

(
‖ρX‖

2 + s2‖ρ′
X
‖2
)
ds.

Proof. Noting that (27) has the same form as (12), with θX playing the role of uX, we may
apply Lemma 3.3 and conclude that

‖θX(t)‖
2 ≤

C

t

∫ t

0

(
‖f1‖

2 + s2‖f ′
1‖

2
)
ds+

C

t1+α

∫ t

0

(
‖~f2‖

2 + s2‖~f ′
2‖

2
)
ds.

Since f ′
1 = ρ′

X
− ∂1−α

t ρX, we find with the help of Lemma 2.1 that

C

t

∫ t

0

(
‖f1‖

2 + s2‖f ′
1‖

2
)
ds ≤ C‖u0X − PXu0‖

2 +
C

t

∫ t

0

(
‖ρX‖

2 + s2‖ρ′
X
‖2 + s2‖∂1−α

s ρX‖
2
)
ds.

Using the identity (11) and noting that (MρX)(0) = 0,

s∂1−α
s ρX = s∂sI

αρX = ∂s(MIαρX)− IαρX = ∂s
(
IαMρX + αIα+1ρX

)
− IαρX

= Iα(MρX)
′ + (α− 1)IαρX = Iα

(
Mρ′

X
+ αρX

)
,

so by Lemma 2.1,

∫ t

0

s2‖∂1−α
s ρX‖

2 ds ≤ 2t2α
∫ t

0

∥∥sρ′
X
+ αρX

∥∥2
ds ≤ 4t2α

∫ t

0

(
‖ρX‖

2 + s2‖ρ′
X
‖2
)
ds,

and hence

C

t

∫ t

0

(
‖f1‖

2 + s2‖f ′
1‖

2
)
ds ≤ C‖u0X − PXu0‖

2 +
C

t

∫ t

0

(
‖ρX‖

2 + s2‖ρ′
X
‖2
)
ds. (30)

Recalling (5), we have f ′
2(t) = −(~F∂1−α

t ρX)(t) and therefore by Lemma 2.5,

C

t1+α

∫ t

0

(
‖~f2‖

2 + s2‖~f ′
2‖

2
)
ds ≤

C

t1+α

∫ t

0

‖IαρX‖
2 ds+

C

t1+α

∫ t

0

s2‖∂1−α
s ρX‖

2 ds,

which is bounded by the second term on the right-hand side of (30).

Two similar bounds hold for ∇θX, but now involving also ∇ρX and ∇ρ′
X
.

Lemma 5.2. For 0 < t ≤ T ,

tα‖∇θX(t)‖
2 ≤ C‖u0X − PXu0‖

2 +
C

t

∫ t

0

(
‖ρX‖

2 + s2‖ρ′
X
‖2
)
ds

+ Ct2α−1

∫ t

0

(
‖∇ρX‖

2 + s2‖∇ρ′
X
‖2
)
ds.

If u0 ∈ H1
0 (Ω), then we also have the alternative bound

tα‖∇θX(t)‖
2 ≤ C

∥∥u0X − RXu0

∥∥2
+

C

t

∫ t

0

(
‖ρX − ρX(0)‖

2 + s2‖ρ′
X
‖2
)
ds

+ Ct2α−1

∫ t

0

(
‖ρX‖

2 + ‖∇ρX‖
2 + s2‖∇ρ′

X
‖2
)
ds.
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Proof. With f1 and ~f2 given by (28), we apply Lemma 4.3 to (27) and bound tα‖∇θX(t)‖
2 by

C

t

∫ t

0

(
‖f1‖

2 + ‖(Mf1)
′‖2 + ‖~f2‖

2 + ‖(M~f2)
′‖2 + ‖∇ · ~f2‖

2 + ‖(M∇ · ~f2)
′‖2

)
ds.

The terms in f1 can be bounded as in (30), and since ~f2 = − ~B1ρX and (M~f2)
′ = − ~B2ρX we see

from Lemma 2.5 followed by Lemma 4.1 and then Lemma 2.1 that
∫ t

0

(
‖~f2‖

2 + ‖(M~f2)
′‖2 + ‖∇ · ~f2‖

2 + ‖(M∇ · ~f2)
′‖2

)
ds

≤ C

∫ t

0

(
‖IαρX‖

2 + ‖Iα(MρX)
′‖2 + ‖Iα∇ρX‖

2 + ‖Iα(M∇ρX)
′‖2

)
ds

≤ Ct2α
∫ t

0

(
‖ρX‖

2 + s2‖ρ′
X
‖2 + ‖∇ρX‖

2 + s2‖∇ρ′
X
‖2
)
ds,

which completes the proof of the first bound. If u0 ∈ H1
0 (Ω) then we can replace f1 with f̃1

from (29), and since f̃ ′
1 = f ′

1 the second bound follows easily via the arguments leading to (30)
(with RX replacing PX).

To obtain more explicit error bounds we will use the regularity properties stated in the next
theorem. The seminorm | · |r and norm ‖ · ‖r in the (fractional-order) Sobolev space Ḣr(Ω) is
defined in the usual way [20] via the Dirichlet eigenfunctions of the Laplacian on Ω, and this
spatial domain is assumed convex to ensure H2-regularity for the elliptic problem. The proof
relies on results [15, Lemma 2, Theorems 11–13] involving constants that blow up as α → 1.
Nevertheless, the estimates (31)–(33) hold in the limiting case α = 1, when the problem reduces
to the classical Fokker–Planck PDE; see Thomée [20, Lemmas 3.2 and 4.4] for a proof if M = 0.

Theorem 5.3. Assume that Ω is convex, 0 < α < 1, 0 ≤ r ≤ 2 and η > 0. If u0 ∈ Ḣr(Ω) and
if g : (0, T ] → L2(Ω) is continuously differentiable with ‖g(t)‖ + t‖g′(t)‖ ≤ Mtη−1, then the
weak solution of (1) satisfies, for 0 < t ≤ T ,

‖u(t)‖1 ≤ Cα,η

(
‖u0‖r t

−α(1−r)/2 +Mtη−α/2
)

if r ≤ 1, (31)

and
t−α/2‖u(t)− u0‖1 ≤ Cα,η

(
‖u0‖r t

−α(2−r)/2 +Mtη−α
)

if r ≥ 1, (32)

and
t1−α/2‖u′(t)‖1 + ‖u(t)‖2 + t‖u′(t)‖2 ≤ Cα,η

(
‖u0‖r t

−α(2−r)/2 +Mtη−α
)
. (33)

Proof. We showed [15, Theorem 11] that

‖u(t)‖1 ≤ Cα,η

(
‖u0‖t

−α/2 +Mtη−α/2
)

and [15, Theorem 12] that

‖u(t)− u0‖1 + t‖u′(t)‖1 ≤ Cα,η

(
‖u0‖1 +Mtη−α/2

)
.

Hence, ‖u(t)‖1 ≤ C
(
‖u0‖1+Mtη−α/2

)
and (31) follows by interpolation. The estimates (32) and

(33) were proved already [15, Theorems 12 and 13].

Now consider the concrete example in which X = Sh is the usual continuous piecewise-linear
finite element space for a triangulation of Ω ⊆ R

d with maximum element diameter h, and use
a subscript h instead of X, writing uh, θh, ρh etc. The error in the Ritz projection satisfies

‖ρh(t)‖+ h‖∇ρh(t)‖ ≤ Chr|u(t)|r for r ∈ {1, 2}, (34)

allowing us to prove the following error bounds for uh and ∇uh. Notice that if 0 < α < 1/2,
then the restriction α(2 − r) < 1 is satisfied for all r ∈ [0, 2], but if 1/2 ≤ α < 1 (and hence
0 ≤ 2− α−1 < 1) then we are limited to r ∈ (2− α−1, 2].
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Theorem 5.4. Let 0 ≤ r ≤ 2 with α(2 − r) < 1, and assume that the assumptions of Theo-
rem 5.3 are satisfied with η ≥ αr/2. Then, the semidiscrete finite element solution uh satisfies
the error bound

‖uh(t)− u(t)‖ ≤ C‖u0h − Phu0‖+ Cαh
2 t−α(2−r)/2

√
1− α(2− r)

(‖u0‖r +M),

and the gradient of uh satisfies

‖∇uh(t)−∇u(t)‖ ≤ Ct−α/2‖u0h −Qr,hu0‖+ Cαh
t−α(2−r)/2)√
1− α(2− r)

(‖u0‖r +M),

where Qr,h is either Ph if r ≤ 1, or else Rh if r ≥ 1.

Proof. For brevity, let Kr = (‖u0‖r +M)2. Using (34) followed by (33), we have

‖ρh(s)‖
2 + s2‖ρ′h(s)‖

2 ≤ Ch4
(
|u(s)|22 + s2|u′(s)|22

)
≤ CαKrh

4s−α(2−r),

so, because of the assumption α(2− r) < 1,

1

t

∫ t

0

(
‖ρh(s)‖

2 + s2‖ρ′h(s)‖
2
)
ds ≤ CαKrh

4 t−α(2−r)

1− α(2− r)
.

Since ‖uh − u‖ ≤ ‖θh‖ + ‖ρh‖ and ‖ρh(t)‖
2 ≤ CαKrt

−α(2−r)h4, the error bound for uh follows
by Lemma 5.1.

To estimate the error in ∇uh, we apply (34) and (31) to obtain

‖ρh(s)‖
2 + s2‖ρ′h(s)‖

2 ≤ Ch2
(
|u(s)|21 + s2|u′(s)|21

)
≤ CαKrh

2s−α(1−r) if r ≤ 1,

and (33) to obtain

‖∇ρh(s)‖
2 + s2‖∇ρ′h(s)‖

2 ≤ Ch2
(
|u(s)|22 + s2|u′(s)|22

)
≤ CαKrh

2s−α(2−r),

so
1

t

∫ t

0

(
‖ρh(s)‖

2 + s2‖ρ′h(s)‖
2
)
ds ≤ tαCαKrh

2 t−α(2−r))

1− α(1− r)
if r ≤ 1,

and

t2α−1

∫ t

0

(
‖∇ρh‖

2 + s2‖∇ρ′h‖
2
)
ds ≤

CαKrt
αrh2

1− α(2− r)
= t2αCαKrh

2 t−α(2−r)

1− α(2− r)
. (35)

Since ‖∇uh(t)−∇u(t)‖ ≤ ‖∇θh(t)‖ + ‖∇ρh(t)‖, the first estimate of Lemma 5.2 implies that
the error bound for ∇uh holds for the case r ≤ 1.

If r ≥ 1, then we see using (31)–(34) that

‖ρh(s)− ρh(0)‖
2 + s2‖ρ′h(s)‖

2 ≤ Ch2
(
‖u(s)− u(0)‖21 + s2‖u′(s)‖21

)
≤ sαCαKrh

2s−α(2−r)

and ‖ρh(s)‖
2 ≤ Ch2‖u(s)‖21 ≤ CαK1h

2 ≤ CαKrh
2, so

1

t

∫ t

0

(
‖ρh − ρh(0)‖

2 + s2‖ρ′h(s)‖
2
)
ds+ t2α−1

∫ t

0

‖ρh‖
2 ds ≤ tαCαKrh

2 t−α(2−r)

1− α(2− r)
.

Hence, using the second estimate of Lemma 5.2 and (35), the error bound for ∇uh follows also
for the case r ≥ 1.

Remark 5.5. If r = 2 then by choosing u0h = Rhu0 we obtain an error bound that is uniform
in time:

‖uh(t)− u(t)‖+ h‖∇uh(t)−∇u(t)‖ ≤ Cαh
2(‖u0‖2 +M) for 0 < t ≤ T .

Remark 5.6. As a consequence of Remark 4.6, if the zero-flux boundary condition (24) is
imposed then the proof of the error bound for uh in Theorem 5.4 remains valid, but not that of
the error bound for ∇uh.
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6 Discontinuous Galerkin time stepping when ~F ≡ ~0

We briefly consider a fully-discrete scheme for the fractional diffusion equation, that is, for
the problem (1) in the case ~F ≡ ~0. For time levels 0 = t0 < t1 < · · · < tN = T we denote
the nth time interval by In = (tn−1, tn) and the nth step size by kn = tn − tn−1. We choose
an integer pn ≥ 0 for each time interval In, and define the vector space W consisting of all
functions X :

⋃N
n=1 In → X such that the restriction X|In is a polynomial in t of degree at

most pn with coefficients in X. For any X ∈ W, write

Xn
+ = lim

ǫ↓0
X(tn + ǫ), Xn

− = lim
ǫ↓0

X(tn − ǫ), JXKn = Xn
+ −Xn

−,

then the discontinuous Galerkin (DG) solution U ∈ W is defined by requiring that [18]

〈
JUKn, Xn−1

+

〉
+

∫

In

〈∂tU,X〉 dt+

∫

In

〈∂1−α
t κ∇U,∇X〉 dt =

∫

In

〈g,X〉 dt (36)

for X ∈ W and 1 ≤ n ≤ N , with U0
− = u0X (so that JUK0 = U0

+ − u0X). To state a stability
estimate for this scheme, let CΩ denote the constant arising in the Poincaré inequality for Ω,

‖v‖2 ≤ CΩ‖∇v‖2 for v ∈ H1
0 (Ω), (37)

and define Ψ : (0, 1] → R by

Ψ(α) =
1

π1−α

(2− α)2−α

(1− α)1−α

1

sin(1
2
πα)

for 0 < α < 1.

Notice that Ψ(1) = limα→1Ψ(α) = 1 but Ψ(α) ∼ 8π−2α−1 blows up as α → 0. We will use the
inequality [13, Theorem A.1]

∫ T

0

〈
∂1−α
t v, v

〉
dt ≥

T 1−α

Ψ(α)

∫ T

0

‖v‖2 dt. (38)

Theorem 6.1. If 0 < α ≤ 1, then the DG solution of the fractional diffusion problem satisfies

‖Un
−‖

2 +

n−1∑

j=1

‖JUKj‖2 +

∫ tn

0

〈
∂1−α
t κ∇U,∇U

〉
dt ≤ ‖u0X‖

2 +
CΩΨ(α)

κmint1−α
n

∫ tn

0

‖g(t)‖2 dt

for 1 ≤ n ≤ N .

Proof. Let B(U,X) denote the bilinear form

〈U0
+, X

0
+〉+

N−1∑

n=1

〈JUKn, Xn
+〉+

N∑

n=1

∫

In

〈∂tU,X〉 dt+

∫ T

0

〈
∂1−α
t κ∇U,∇X

〉
dt,

and observe that the time-stepping equations (36) are equivalent to

B(U,X) = 〈u0X, X
0
+〉+

∫ T

0

〈g,X〉 dt for X ∈ W.

Taking X = U , we find by arguing as in the proof of Mustapha [18, Theorem 1] that

B(U, U) =
1

2

(
‖U0

+‖
2 + ‖UN

− ‖2 +

N−1∑

n=1

‖JUKn‖2
)
+

∫ T

0

〈
∂1−α
t κ∇U,∇X

〉
dt,
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and so

‖U0
+‖

2 + ‖UN
− ‖2 +

N−1∑

n=1

‖JUKn‖2 + 2

∫ T

0

〈
∂1−α
t κ∇U,∇U

〉
dt = 2〈u0X, U

0
+〉+ 2

∫ T

0

〈g, U〉 dt.

For any constant M > 0,

2〈u0X, U
0
+〉+ 2

∫ T

0

〈g, U〉 dt ≤ ‖U0
+‖

2 + ‖u0X‖
2 +M

∫ T

0

‖g‖2 dt+
1

M

∫ T

0

‖U‖2 dt,

and using (37) and (38),

1

M

∫ T

0

‖U‖2 dt ≤
CΩ

M

∫ T

0

‖∇U‖2 dt ≤
CΩΨ(α)

MκminT 1−α

∫ T

0

〈
∂1−α
t κ∇U,∇U

〉
dt.

Choosing M = CΩΨ(α)/(κminT
1−α) implies the estimate in the case n = N , which completes

the proof since T = tN .

Remark 6.2. If pn = 0 then we have ‖U(t)‖ ≤ ‖Un
−‖ for t ∈ IN , and likewise if pn = 1 then

‖U(t)‖ ≤ max(‖Un
−‖, ‖U

n−1
+ ‖) ≤ ‖Un

−‖+ ‖Un−1
− ‖+ ‖JUKn−1‖ for t ∈ In. Thus, for the piecewise

constant [14] and piecewise linear [19] DG schemes we can prove stability in L∞(L2), uniformly
for α bounded away from zero.

Remark 6.3. For the solution u of the continuous fractional diffusion problem we have the
analogous stability property

‖u(t)‖2 +

∫ t

0

〈
∂1−α
t κ∇u,∇u

〉
dt ≤ ‖u0‖

2 +
CΩΨ(α)

κmint1−α

∫ t

0

‖g(s)‖2 ds for 0 ≤ t ≤ T .

The proof follows the same lines as above, except that now

∫ T

0

〈∂tu, u〉 dt+

∫ T

0

〈
∂1−α
t κ∇u,∇u

〉
dt =

∫ T

0

〈g, u〉 dt

and ∫ T

0

〈∂tu, u〉 dt =
1
2

(
‖u(T )‖2 − ‖u0‖

2
)
.

Remark 6.4. Le et al. [11] proved stability and convergence of the DG scheme with general ~F ,
but only for the lowest-order (pn = 0) case and with no spatial discretization. Although the
constants are bounded as α → 1, they blow up as α → 1/2 and thus the fractional exponent
is restricted to the range 1/2 < α ≤ 1. Huang et al. [6] proved similar results for a slightly
modified scheme.
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