
https://doi.org/10.1007/s11075-022-01254-6

ORIGINAL PAPER

A class of C2 quasi-interpolating splines free of Gibbs
phenomenon

Sergio Amat1 ·David Levin2 · Juan Ruiz-Álvarez1 · Juan C. Trillo1 ·
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Abstract
In many applications, it is useful to use piecewise polynomials that satisfy cer-
tain regularity conditions at the joint points. Cubic spline functions emerge as good
candidates having C2 regularity. On the other hand, if the data points present dis-
continuities, the classical spline approximations produce Gibbs oscillations. In a
recent paper, we have introduced a new nonlinear spline approximation avoiding the
presence of these oscillations. Unfortunately, this new reconstruction loses the C2

regularity. This paper introduces a new nonlinear spline that preserves the regularity
at all the joint points except at the end points of an interval containing a discontinuity,
and that avoids the Gibbs oscillations.
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1 Introduction

A spline can be defined as any function constructed from one or more polynomial
pieces that are joined together satisfying given differentiability requirements. There
exist different types of splines (see, e.g., [9]) which can be classified depending on
the restrictions introduced (see, e.g., [21]). C2-splines are used in the industry in very
different kind of applications. The most familiar is computer-aided design, where
splines are used to represent geometric entities (see, e.g., [7, 8, 12, 23]) or image pro-
cessing (see, e.g., [10, 18, 27]). Another example is computer-aided manufacturing,
where splines are involved in the modeling of geometric parts or used in the repre-
sentation paths for machine tool cutters (see, e.g., [24, 28]). They are also used in
the reconstruction of field data in many areas of engineering. Other kinds of splines
are used to create approximations to the solution of ordinary differential equations,
partial differential equations, integral equations, etc. using the finite element method
(see, e.g., [6, 7, 17, 22]).

However, when the data contains real or numerical discontinuities, classical inter-
polation algorithms are not satisfactory. Recently, some new techniques have been
developed in order to recover discontinuous functions, for example using Radial
Bases Functions (RBF), see [5, 20]. In these cases, standard splines suffer from Gibbs
oscillations, this phenomenon is first detected in the context of truncated Fourier
expansions, [13], and it has been widely analyzed (see, e.g., [11, 14, 19]). In our
paper [3], we introduced a nonlinear procedure that modifies a given spline in order
to avoid these oscillations. However, this recent reconstruction loses the C2 regular-
ity. The goal of the present work is to present a new spline combining both properties:
the C2 regularity and the adaptation to discontinuities.

This article is organized as follows: Section 2 describes the framework that we will
use, explains how classical splines are obtained and how to adapt them to the presence
of discontinuities. Section 3 introduces and analyzes the properties of a new nonlinear
weighted mean that is used to construct a new class of splines adapted to the presence
of jump discontinuities having C2 regularity. Section 4 studies the approximation
properties of the new class of splines close to discontinuities and a specific example
is considered in Section 5. In Section 6, we analyze how the new spline avoids the
Gibbs oscillations. Section 7 presents some numerical experiments where it is shown
how the new nonlinear splines perform close to jump discontinuities with uniform
grid spacing. Finally, Section 8 presents some conclusions.

2 Classical cubic splines versus nonlinear cubic splines

In this section, we recall the classical cubic interpolation and analyze the nonlin-
ear modification introduced by Amat, Ruiz, Shu and Trillo in [3]. We will prove
that this new type of spline is not necessarily C2, i.e., the continuity is sacrificed
to avoid the presence of Gibbs oscillations. In order to obtain C2 regularity adapted
to discontinuities, we slightly change the points of interpolation, i.e., we construct
a quasi-interpolatory spline approximations using the same technique developed
in [3].
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Following the notation described in [3], let us consider the set of piecewise con-
tinuous functions in the interval [a, b], and let X be a non-uniform partition of the
interval [a, b] into m subintervals,

X = (xi)
m
i=0, x0 = a, hi = xi − xi−1.

Then, we can define the point-values discretization as the values of a function at these
points,

yi = y(xi), i = 0, · · · , m.

The spline g(x) in the interval [a, b] depends of the m + 1 pairs of values
(xi, yi), i = 0, · · · , m and in each subinterval [xi, xi+1] it is a cubic polynomial
gi(x). More precisely, g(x) = gi(x), x ∈ [xi, xi+1], where

gi(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di, (1)

subjected to the following conditions

gi−1(xi) = yi, g′
i−1(xi) = g′

i (xi ), gi(xi) = yi, g′′
i−1(xi) = g′′

i (xi ), 1 ≤ i ≤ m − 1, (2)

and

g0(x0) = y0,

gm−1(xm) = ym.

This way, a cubic spline that is at least C2 is obtained. If we solve the previous
equations, we get that,

ai = hi+1Di+1 + Dihi+1 + 2yi − 2yi+1

h3
i+1

,

bi = −hi+1Di+1 + 2Dihi+1 + 3yi − 3yi+1

h2
i+1

, ci = Di, di = yi, (3)

where Di stands for the first derivative at every interior knot. We obtain a system of
equations for the Dis replacing the conditions for the spline (1) in (2),

Di−1

hi

+ 2

(
1

hi

+ 1

hi+1

)
Di + Di+1

hi+1
= 3

(
yi+1 − yi

h2
i+1

+ yi − yi−1

h2
i

)
. (4)

If we take the natural boundary conditions, i.e., g′′
0 (x0) = 0 and g′′

m−1(xm) = 0, from
(1), the left boundary condition implies the equation,

2D0 + D1 = 3

(
y1 − y0

h1

)
,

and for the right boundary we obtain,

Dm−1 + 2Dm = 3

(
ym − ym−1

hm

)
. (5)

Denoting

λi = 1

hi

, i = 1, . . . , m, (6)
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we get the system:

⎡
⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0
λ1 2(λ1 + λ2) λ2 0 · · · 0 0
0 λ2 2(λ2 + λ3) λ3 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 2(λm + λm−1) λm

0 0 0 0 · · · 1 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

D0
D1
D2
· · ·
Dm−1
Dm

⎤
⎥⎥⎥⎥⎥⎦

= 3·

⎡
⎢⎢⎢⎢⎢⎣

δ1
λ2δ2 + λ1δ1
λ3δ3 + λ2δ2
· · ·
λmδm + λm−1δm−1
δm

⎤
⎥⎥⎥⎥⎥⎦

,

(7)

with δi = yi−yi−1
hi

for i = 1, . . . , m.
Denoting:

αi = λi

λi + λi−1
, βi = λi−1

λi + λi−1
, i = 1, . . . , m,

the previous system can be also written as AD = 3f, with

A =

⎡
⎢⎢⎢⎣

2 1 0 0 · · · 0 0
β2 2 α2 0 · · · 0 0
0 β3 2 α3 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 2 αm
0 0 0 0 · · · 1 2

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎣

D0
D1
D2· · ·
Dm−1
Dm

⎤
⎥⎥⎥⎦ , f =

⎡
⎢⎢⎢⎣

δ1
Mα2,β2(δ2, δ1)
Mα3,β3(δ3, δ2)· · ·
Mαm,βm(δm, δm−1)
δm

⎤
⎥⎥⎥⎦ ,

(8)
where Mα,β(x, y) is a weighted mean depending on two constants 0 < α, β < 1
such that α + β = 1 and are functions Mα,β : R × R → R defined as Mα,β(x, y) =
αx + βy.

As mentioned in the introduction, it is not difficult to check that linear C2 splines
produce Gibbs phenomenon at zones close to the discontinuities. For this reason, in
[3], the authors construct a new nonlinear spline that we present in the following
subsection.

Remark 2.1 Throughout, the paper we define h = max(h)mi=1, and we consider
approximation orders in powers of h as h ↘ 0. By the notation e = O(hα) we mean
|e| ≤ Chα where C is independent of h.

2.1 A class of nonlinear cubic splines

In order to design the nonlinear spline, we defined a nonlinear weighted mean. Thus,
we present the following definition.

Definition 1 (Non-linear weighted mean) Let 0 < α, β < 1, α + β = 1 be two
constants and R

+ = {x ∈ R : x > 0}. A nonlinear weighted mean, H̃+
α,β : R+ ×

R
+ → R

+, will be a function which satisfies the following five properties:

1) min{x, y} ≤ H̃+
α,β(x, y) ≤ max{x, y}, for all x, y ∈ R

+.

2) H̃+
α,β(x, x) = x, for all x ∈ R

+.

3) Commutative (C) property. H̃+
α,β(x, y) = H̃+

β,α(y, x), for all x, y ∈ R
+.
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4) Order of accuracy (OA) property. There exist p ≥ 1 and h > 0 such that if
x = O(1), y = O(1), x · y > 0 and |x − y| = O(h), then

∣∣∣H̃+
α,β(x, y) − Mα,β(x, y)

∣∣∣ = O(hp). (9)

5) Adaptation to discontinuities (AD) property. There exists p ≥ 1 such that for all
x, y ∈ R:

|H̃+
α,β(x, y)| ≤ p min{|x|, |y|}.

We extend this definition for all (x, y) ∈ R
2 as:

H̃α,β(x, y) =
{

sign(x)H̃+
α,β(|x|, |y|) x · y > 0,

0 x · y ≤ 0,

where

sign(x) =
⎧⎨
⎩

1, x > 0,

0, x = 0,

−1, x < 0.

However, we will lose order of accuracy at critical points, i.e., when x = O(1),
y = O(1) and |x − y| = O(h) but x · y ≤ 0. In order to solve this problem Amat
et al. propose in [3] the following nonlinear weighted mean:

H
Tε

α,β(x, y) = H̃α,β(x + Tε(x, y), y + Tε(x, y)) − Tε(x, y), (10)

where Tε : R2 → R is a function defined as:

Tε(x, y) =
{

sign(y)(|x| + ε(x, y)), xy < 0,

sign(y)ε(x, y), xy ≥ 0,
(11)

being ε(x, y) > 0 a function defined for all (x, y) ∈ R
2. This function depends on the

data at each interval. For simplicity, in the rest of the paper, we denote Hα,β = H
Tε

α,β .
If we choose a convenient function ε(x, y) (see Section 5 or [3]), it is possible to

prove that the (C), (OA) and (AD) properties are satisfied by Hα,β for all the points
in the plane R

2.
Using the same reasoning showed in [3], denoting as Hαi,βi

(δi, δi−1) = Hi , i =
2, ..., m, we redefine the system (8) changing the vector f by

f̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1
Hα2,β2(δ2, δ1)

Hα3,β3(δ3, δ2)

· · ·
Hαm,βm(δm, δm−1)

δm

⎤
⎥⎥⎥⎥⎥⎥⎦

=:

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1
H2
H3
· · ·
Hm

δm

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12)
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Thus, the new system is AD̃ = 3f̃ where A is the matrix defined in (8). Then, the
coefficients of this nonlinear spline are given by:

ãi = hi+1D̃i+1 + D̃ihi+1 + 2yi − 2yi+1

h3
i+1

,

b̃i = −hi+1D̃i+1 + 2D̃ihi+1 + 3yi − 3yi+1

h2
i+1

, c̃i = D̃i, di = yi, (13)

By a direct computation it is easy to check that g̃′
i−1(xi) = g̃′

i (xi) = D̃i , so the non-

linear spline has at least C1-regularity. However, the values D̃ = (D̃i)
m
i=0 obtained

solving this system are not necessarily equal to the values D obtained in (8). This
fact causes the spline to lose its C2 regularity because the new approximation to the
derivatives, (D̃i), does not satisfy (4). In particular, in [3], this system is obtained for
a specific nonlinear mean.

In order to generate a spline that is C2 continuous, we propose to change the values
that we use to interpolate. Thus, the resulting approximation is not interpolatory.

3 Construction of C2-cubic splines adapted to discontinuities

The idea of this new type of spline is to obtain new data (ŷi)
m
i=0 such that the asso-

ciated linear system (7) agrees with the nonlinear splines defined using the modified
right hand side in (12). Thus, by construction the spline will have C2 regularity at
the modified points. In order to obtain values close to the original ones, we cannot
introduce modifications at the slopes defined by the points whose intervals contain
discontinuities. In particular, at these points we cannot expect C2 regularity.

We define the new values, ŷi , implicitly by

δ̂i = ŷi − ŷi−1

hi

, i = 1, . . . , m,

such that their weighted arithmetic means coincide with the weighted nonlinear
means used at the right hand side of the system (12). Thus, we define:

{
δ̂i = −βi

αi
δ̂i−1 + Gαi ,βi

(δi ,δi−1,δ̂i−1,hi )

αi
, i = 2, . . . , m, being δ̂1 = δ1,

ŷi = hi · δ̂i + ŷi−1, i = 1, . . . , m, being ŷ0 = y0,
(14)

where

Gα,β(x, y, z, h) =
{

Hα,β(x, y), if |x − y| ≤ hη,

αx + βz, if |x − y| > hη.
(15)

being 0 < η < 1 a constant. The function G is defined taking into account that in
smooth regions |δi −δi−1| = O(h) and close to the discontinuity |δi −δi−1| = O(1).

With this modification, the slope generated by the pairs of values defining an inter-
val that contains a discontinuity is not modified and the other values remain at a
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distance of O(hp) from the original data values. In all the paper, we assume that the
parameter h is sufficiently small.

The associated spline will be C2 except between the pairs of values defining an
interval that contains a discontinuity, but the spline becomes only quasi-interpolatory.
In any case, we will prove that the order of approximation is the same in both
nonlinear schemes.

Lemma 3.1 Let j0, j1 be natural numbers with 1 ≤ j0 < j1; (xi, yi)
j1
i=j0

, j1 −j0 +1

points, h = max(hi)
j1
i=j0

, (δi)
j1
i=j0

the values defined as δi = yi−yi−1
hi

, for all j0 ≤
i ≤ j1, and (δ̂i )

j1
i=j0

defined in (14) with δ̂j0−1 = δj0−1, being Hα,β(x, y) a nonlinear
weighted mean satisfying the (OA) property with p ≥ 1. If |δi − δi−1| = O(h), for
all i = j0 + 1, . . . , j1, then

|δi − δ̂i | = O(hp), i = j0 − 1, . . . , j1.

Proof By induction, we start with i = j0 since δj0−1 = δ̂j0−1, then as αj0 = O(1)

and |δj0 − δj0−1| = O(h), by (14), (15), and (OA) property, we get

|δj0 − δ̂j0 | =
∣∣∣∣∣δj0 −

(
−βj0

αj0

δ̂j0−1 + Gαj0 ,βj0
(δj0 , δj0−1, δ̂j0−1, hj0 )

αj0

)∣∣∣∣∣ =
∣∣∣∣δj0 −

(
−βj0

αj0

δ̂j0−1 + Hj0

αj0

)∣∣∣∣
= 1

αj0

∣∣(αj0 δj0 + βj0 δj0−1) − Hj0

∣∣ = O(hp),

we suppose that |δi−1 − δ̂i−1| = O(hp), for i − 1 < j1 and prove the case i. As
αi = O(1) and |δi − δi−1| = O(h), then:

|δi − δ̂i | =
∣∣∣∣δi −

(
−βi

αi

δ̂i−1 + Hi

αi

)∣∣∣∣ = 1

αi

∣∣∣(αiδi + βi δ̂i−1) − Hi

∣∣∣
= 1

αi

∣∣∣(αiδi + βi δ̂i−1) + (βi δ̂i−1 − βiδi−1) − Hi

∣∣∣
≤ 1

αi

∣∣∣(αiδi + βi δ̂i−1) − Hi

∣∣∣ + βi |δi−1 − δ̂i−1| = O(hp).

Corollary 3.2 Let j0, j1 be natural numbers with 1 ≤ j0 < j1; (xi, yi)
j1
i=j0

, j1 −
j0 + 1 points, h = max(hi)

j1
i=j0

, (δi)
j1
i=j0

the values defined as δi = yi−yi−1
hi

, for

all j0 ≤ i ≤ j1, and (δ̂i)
j1
i=j0

defined in (14) with δ̂j0−1 = δj0−1 and ŷj0−1 =
yj0−1 + O(hp+1), being Hα,β(x, y) a nonlinear weighted mean satisfying the (OA)
property with p ≥ 1. If |δi − δi−1| = O(h), for all i = j0 + 1, . . . , j1, then

|yi − ŷi | = O(hp+1), i = j0 − 1, . . . , j1.
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Proof By induction, we start with i = j0 since yj0−1 = ŷj0−1+O(hp+1), by Lemma
3.1

|yj0 − ŷj0 | = |yj0 − (hj0 · δ̂j0 + ŷj0−1)| = |hj0δj0 + yj0−1 − (hj0 · δ̂j0 + ŷj0−1)|
= hj0 |δj0 − δ̂j0 | + |yj0−1 − ŷj0−1| = O(hp+1),

we suppose that |yi−1 − ŷi−1| = O(hp+1), for i − 1 < j1, then

|yi − ŷi | = |yi − (hi · δ̂i + ŷi−1)| = |hiδi + yi−1 − (hi · δ̂i + ŷi−1)| ≤ hi |δi − δ̂i |
+|yi−1 − ŷi−1| = O(hp+1).

We suppose that there exists an isolated discontinuity (similar for k disconti-
nuities) between two consecutive values denoted by i0 ∈ {1, . . . , m − 1} and
i0 − 1.

Using these results, if we take j0 = 1 and j1 = i0 − 1, we have

|ŷi − yi | = O(hp+1), i = 0, . . . , i0 − 1.

We do not change the values δi at the interval where there exists a discontinuity
since |δi0 − δi0−1| > h

η
i0

, (15). Then, by (15), we get:

δ̂i0 = −βi0

αi0

δ̂i0−1 + Gαi0 ,βi0
(δi0 , δi0−1, δ̂i0−1, hi0 )

αi0

= −βi0

αi0

δ̂i0−1 + αi0δi0

αi0

+ βi0 δ̂i0−1

αi0

= δi0 . (16)

Yet, the values yi are changed at an interval which is close to a discontinuity since:

ŷi0 = hi0 · δ̂i0 + ŷi0−1 = hi0 · δi0 + ŷi0−1 = hi0

(
yi0 − yi0−1

hi0

)
+ ŷi0−1 = yi0

+(yi0−1 − ŷi0−1) = yi0 + O(hp+1). (17)

Analogously, for i0 + 1, as |δi0+1 − δi0 | > h
η
i0+1, we have

δ̂i0+1 = −βi0+1

αi0+1
δ̂i0 + Gαi0+1,βi0+1 (δi0+1, δi0 , δ̂i0 , hi0+1)

αi0+1
= −βi0+1

αi0+1
δ̂i0 + αi0+1δi0+1

αi0+1
+ βi0+1δ̂i0

αi0+1
= δi0+1,

(18)

then:

ŷi0+1 = hi0+1·δ̂i0+1+ŷi0 = hi0+1·δi0+1+ŷi0 = hi0+1

(
yi0+1 − yi0

hi0+1

)
+yi0 +O(hp+1) = yi0+1+O(hp+1).

(19)

If i0+2 ≤ i ≤ m, we again have |δi−δi−1| = O(hi), and |yi0+1−ŷi0+1| = O(hp+1)

by (19). We have the hypotheses of Corollary 3.2 with j0 = i0 + 2 and j1 = m

|ŷi − yi | = O(hp+1), i = i0 + 1, . . . , m. (20)
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With these new values, it is clear that δ̂m is not necessarily equal to δm. In order to
obtain exactly the system (12), we will suppose as boundary condition that satisfies

ĝ′′
m−1(xm) = 6

(
δm − δ̂m

hi

)
.

We define then the piecewise spline ĝ(x) by

ĝi (x) = âi (x − xi)
3 + b̂i (x − xi)

2 + ĉi (x − xi) + d̂i , (21)

at each interval [xi, xi+1], i = 0, . . . , m, with

âi = hi+1D̂i+1 + D̂ihi+1 + 2ŷi − 2ŷi+1

h3
i+1

,

b̂i = −hi+1D̂i+1 + 2D̂ihi+1 + 3ŷi − 3ŷi+1

h2
i+1

, ĉi = D̂i, d̂i = ŷi , (22)

where D̂i are the values obtained solving the system (12) except at the interval where
the discontinuity is placed.

We can summarize this result in the following theorem.

Theorem 3.3 Let (xi, yi)
m
i=0 be m + 1 points, hi = xi − xi−1, h = max(hi)

m
i=0,

λi = h−1
i ,

αi = λi

λi + λi−1
, βi = λi−1

λi + λi−1
, i = 1, . . . , m.

We suppose 1 ≤ i0 ≤ m − 1 such that there exists a discontinuity of y(x) at the
interval [xi0−1, xi0] and Gα,β(x, y, z, h) is the function introduced in (15) being
Hα,β(x, y) a nonlinear weighted mean satisfying the (OA) property with p ≥ 1. If we
define:

δ̂i = −βi

αi

δ̂i−1 + Gαi,βi
(δi, δi−1, δ̂i−1, hi)

αi

, i = 2, . . . , m, being δ̂1 = δ1,

ŷi = hi · δ̂i + ŷi−1, i = 1, . . . , m, being ŷ0 = y0,

and ĝ(x) such that

ĝi (x) = âi (x − xi)
3 + b̂i (x − xi)

2 + ĉi (x − xi) + d̂i ,

at each interval [xi, xi+1], i = 0, . . . , m, with

âi = hi+1D̂i+1 + D̂ihi+1 + 2ŷi − 2ŷi+1

h3
i+1

,

b̂i = −hi+1D̂i+1 + 2D̂ihi+1 + 3ŷi − 3ŷi+1

h2
i+1

, ĉi = D̂i, d̂i = ŷi ,
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then, the associated linear system used to calculate D̂i , which satisfies the conditions
in (2) with

ĝ0(x0) = y0, ĝ′′
0 (x0) = 0, ĝm−1(xm) = ŷm, ĝ′′

m−1(xm) = 6

(
δm − δ̂m

hi

)
,

is AD̂ = 3f̂, being A defined in (8) and

f̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ̂1

α2δ̂2 + β2δ̂1

α3δ̂3 + β3δ̂2
· · ·
αi0−1δ̂i0−1 + βi0−2δ̂i0−2

αi0 δ̂i0 + βi0−1δ̂i0−1

αi0+1δ̂i0+1 + βi0 δ̂i0

αi0+2δ̂i0+2 + βi0+1δ̂i0+1
· · ·
αmδ̂m + βmδ̂m−1

δ̂m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1
H2
H3
· · ·
Hi0−1
αi0δi0 + βi0−1δi0−1
αi0+1δi0+1 + βi0δi0

Hi0+2
· · ·
Hm

δm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Finally, mixing the conditions of the linear and nonlinear splines, (13) and (22),
we define a new approximating spline, u(x) := ˜̂g(x), as:

˜̂gi(x) = ˜̂ai(x − xi)
3 + ˜̂

bi(x − xi)
2 + ˜̂ci(x − xi) + ˜̂

di (24)

at each interval [xi, xi+1], i = 0, . . . , m, with

˜̂ai = hi+1D̃i+1 + D̃ihi+1 + 2ŷi − 2ŷi+1

h3
i+1

,

˜̂
bi = −hi+1D̃i+1 + 2D̃ihi+1 + 3ŷi − 3ŷi+1

h2
i+1

, ˜̂ci = D̃i,
˜̂
di = ŷi , (25)

where D̃i are the values that approximate the derivatives obtained solving the system
(12) and the ŷi are defined using (14). We can prove the following theorem.

Theorem 3.4 Using identical notation as before, let 2 < i0 < m − 1 be an integer
such that there exists a discontinuity of y(x) at the interval [xi0−1, xi0]. Then the

spline u(x) = ˜̂g(x) defined in (24) and (25) is C2([x0, xm] \ {xi0−1, xi0 , xi0+1}).

Proof Let 2 ≤ i < i0, the D̃i are the solutions of the system (12), and βi = λi−1
λi+λi−1

,
then we get:

βiD̃i−2 + 2D̃i−1 + αiD̃i = 3Hi = 3αi δ̂i + 3βi δ̂i−1 →
λi−1

λi−1 + λi

D̃i−2 + 2D̃i−1 + λi

λi−1 + λi

D̃i = 3λi

λi−1 + λi

δ̂i + 3λi−1

λi−1 + λi

δ̂i−1 →
λi−1D̃i−2 + 2(λi−1 + λi)D̃i−1 + λiD̃i = 3λi δ̂i + 3λi−1δ̂i−1. (26)
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Using this relation we can see that:

˜̂g′′
i−2(xi−1)

2
= D̃i−2 + 2D̃i−1

hi−1
− 3

ŷi−1 − ŷi−2

h2
i−1

= λi−1D̃i−2 + 2λi−1D̃i−1 − 3λi−1δ̂i−1

= (λi−1D̃i−2 + 2(λi−1 + λi)D̃i−1 + λiD̃i ) − 3λi−1δ̂i−1 − 2λiD̃i−1 − λiD̃i

= 3λi δ̂i + 3λi−1δ̂i−1 − 3λi−1δ̂i−1 − 2λiD̃i−1 − λiD̃i = 3λi δ̂i − 2λiD̃i−1 − λiD̃i

= 3
ŷi − ŷi−1

hi

− 2D̃i−1 + D̃i

hi

=
˜̂g′′
i−1(xi−1)

2
. (27)

Analogously for i0 + 1 < i ≤ m − 1.

4 On the order of accuracy

Let us start with the special case when the function is sufficiently smooth. In this
case, we expect to obtain similar approximations as the original linear spline, i.e.,
that the distance between the new spline and the original linear spline is of the order
introduced by the (OA) property, (9). We prove two auxiliary lemmas that we will
use throughout the section. They consist of proving that having an estimate of the
order of the approximation for the derivative values, we can estimate the order of
approximation of the associated spline.

Lemma 4.1 Let (xi, yi)
m
i=0 be a set of points with hi = xi − xi−1, being h =

max(hi)
m
i=1 < 1 and let g(x) be the linear spline defined by (1) and (3), being g̃(x)

defined by (13) and u(x) the new spline defined by (24) and (25) with Hα,β(x, y) a
nonlinear weighted mean which satisfies the (OA) property with p ≥ 1 in both cases.
Let ŷi be defined by (14), and let D̃i = g̃′(xi). If there exists j0 such that

|yi − ŷi | = O(hp+1), i = j0, j0 + 1,

|Di − D̃i | = O(hp), i = j0, j0 + 1, (28)

then

|g(x) − g̃(x)| = O(hp+1), x ∈ [xj0, xj0+1],
|g(x) − u(x)| = O(hp+1), x ∈ [xj0, xj0+1].

Proof By (3), (13), and (28), we get

|dj0 − d̃j0 | = |yj0 − yj0 | = 0,

|cj0 − c̃j0 | = |Dj0 − D̃j0 | = O(hp), (29)

|bj0 − b̃j0 | ≤ hj0+1|Dj0+1 − D̃j0+1| + 2|Dj0 −D̃j0 |hj0+1 + 3|yj0 − yj0 | + 3|yj0+1 − yj0+1|
h2

j0+1

= O(hp−1),

|aj0 − ãj0 | ≤ hj0+1|Dj0+1 − D̃j0+1| + |Dj0 − D̃j0 |hj0+1 + 2|yj0 − yj0 | + 2|yj0+1 − yj0+1|
h3

j0+1

= O(hp−2).

61



Numerical Algorithms (2022) 91:51–79

Analogously, by (3), (25), and (28), we have

|dj0 − ˜̂
dj0 | = |yj0 − ŷj0 | = O(hp+1),

|cj0 − ˜̂cj0 | = |Dj0 − D̃j0 | = O(hp), (30)

|bj0 − ˜̂
bj0 | ≤ hj0+1|Dj0+1 − D̃j0+1| + 2|Dj0 −D̃j0 |hj0+1 + 3|yj0 − ŷj0 | + 3|yj0+1 − ŷj0+1|

h2
j0+1

= O(hp−1),

|aj0 − ˜̂aj0 | ≤ hj0+1|Dj0+1 − D̃j0+1| + |Dj0 − D̃j0 |hj0+1 + 2|yj0 − ŷj0 | + 2|yj0+1 − ŷj0+1|
h3

j0+1

= O(hp−2).

Finally, if x ∈ [xj0 , xj0+1],
|g(x) − g̃(x)| = |gj0(x) − g̃j0(x)| ≤ |aj0 − ãj0 ||x − xj0 |3 + |bj0 − b̃j0 ||x − xj0 |2

+|cj0 − c̃j0 ||x − xj0 | + |dj0 − d̃j0 |
= O(hp+1),

|g(x) − u(x)| = |gj0(x) − uj0(x)| ≤ |aj0 − ˜̂aj0 ||x − xj0 |3 + |bj0 − ˜̂
bj0 ||x − xj0 |2

+|cj0 − ˜̂cj0 ||x − xj0 | + |dj0 − ˜̂
dj0 |

= O(hp+1).

Lemma 4.2 Let (xi, yi)
m
i=0 be a set of points with hi = xi − xi−1, being h =

max(hi)
m
i=1 < 1 and let g(x) be the linear spline defined by (1) with (3), g̃(x) defined

by (13) and u(x) the new spline defined by (25) with Hα,β(x, y) a nonlinear weighted
mean which satisfies the (OA) property with p ≥ 1 in both cases. If there exists j0
such that

|yi − ŷi | = O(hp+1), i = j0, j0 + 1,

|Di − D̃i | = O(hp), i = j0, j0 + 1, (31)

and q ≥ 1 such that |y(x) − g(x)| = O(hq) with x ∈ [xj0 , xj0+1], then

|y(x) − g̃(x)| = O
(
hmin(p+1,q)

)
, |y(x) − u(x)| = O

(
hmin(p+1,q)

)
, x ∈ [xj0 , xj0+1].

Proof The proof is straightforward using Lemma 4.1. If x ∈ [xj0, xj0+1] then

|y(x) − g̃(x)| = |y(x) − g(x) + g(x) − g̃(x)| ≤ |y(x) − g(x)| + |g(x)

−g̃(x)| = O(hq) + O(hp+1) = O(hmin(p+1,q)),

|y(x) − u(x)| = |y(x) − g(x) + g(x) − u(x)| ≤ |y(x) − g(x)| + |g(x)

−u(x)| = O(hq) + O(hp+1) = O(hmin(p+1,q)).

Now, with these lemmas, we can calculate the order of approximation.

62



Numerical Algorithms (2022) 91:51–79

Proposition 4.3 Let (xi, yi)
m
i=0 be a set of points with hi = xi − xi−1, being h =

max(hi)
m
i=0 < 1 and let g(x) be the linear cubic spline defined by (1) with (3), g̃(x)

defined by (13) and u(x) the new spline defined by (25) with Hα,β(x, y) a nonlinear
weighted mean which satisfies the (OA) property with p ≥ 1 in both cases, then for
all x ∈ [a, b]:

|g(x) − g̃(x)| = O(hp+1),

|g(x) − u(x)| = O(hp+1).

Proof The proof follows by verifying the conditions of Lemma 4.1 for all i =
0, . . . , m − 1. Using systems (8) and (12), we obtain:

AD − AD̃ = f − f̃ → D − D̃ = A−1(f − f̃), (32)

where ‖A−1‖∞ = O(1) and by (OA) property we have that ‖f − f̃‖∞ = O(hp).
Then ‖D − D̃‖∞ = O(hp), and by Corollary 3.2, we get

|yi − ŷi | = O(hp+1), i = 0, . . . , m.

In the following corollary, we prove that if the data are values that come from the
discretization of a smooth function by point values, then the new spline has the same
order of accuracy as the linear one.

Corollary 4.4 Let y(x) be a function in C4([a, b]), and X = (xi)
m
i=0, x0 = a, hi =

xi − xi−1, a partition of [a, b], h = max(hi)
m
i=0 and g(x) the linear spline defined

by (1) with (3), g̃(x) defined by (13) and u(x) the new spline defined by (25) with
Hα,β(x, y) a nonlinear weighted mean which satisfies the (OA) property with p ≥ 1
in both cases. Given x ∈ [a, b], if there exists q ≥ 1 such that |y(x)−g(x)| = O(hq),
then

|y(x) − g̃(x)| = O
(
hmin(p+1,q)

)
, |y(x) − u(x)| = O

(
hmin(p+1,q)

)
.

Proof It is direct by Lemma 4.2 and Prop. 4.3.

Therefore, at the smooth zones, since the classical cubic spline is of order q = 4,
if we take a nonlinear average satisfying the (OA) property with p = 3, then the new
spline will reach maximum order of accuracy.

Now, we will study the case with jump discontinuities. For this case, we calculate
the distance between D and D̃. We bound the norm of the inverse matrix, A−1 using
the following lemma proved in [15] and [16] and used, for example, in [4].

Lemma 4.5 [15, 16] If the elements of A−1 are denoted by (a−1
j,k)

m
j,k=0 then

|a−1
j,k | ≤ 2

3
· γ −|j−k|, 0 ≤ j, k ≤ m, with: γ =

{
2, hi 
= hi+1,

2 + √
3, hi = hi+1 = h.

(33)
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If there exists a discontinuity at the interval [xi0−1, xi0] with 1 ≤ i0 ≤ m − 1, then
(f − f̃)i0−1 = fi0−1 − f̃i0−1 = O(1) and (f − f̃)i0 = fi0 − f̃i0 = O(1) from

(f − f̃)i = fi − f̃i =
{

0, i = 0, m,

Mαi+1,βi+1(δi+1, δi) − Hαi+1,βi+1(δi+1, δi), 1 ≤ i ≤ m − 1,

(34)
thus, if j = 0, . . . , m, we can calculate that

|Dj − D̃j | = |(A−1(f − f̃))j | =
∣∣∣∣∣

m∑
k=0

a−1
j,k(fk − f̃k)

∣∣∣∣∣ ≤
m∑

k=0

∣∣∣a−1
j,k

∣∣∣ ∣∣∣fk − f̃k

∣∣∣

≤
i0−2∑
k=1

∣∣∣a−1
j,k

∣∣∣
∣∣∣fk − f̃k

∣∣∣ +
∣∣∣a−1

j,i0−1

∣∣∣
∣∣∣fi0−1 − f̃i0−1

∣∣∣ +
∣∣∣a−1

j,i0

∣∣∣
∣∣∣fi0 − f̃i0

∣∣∣

+
m−1∑

k=i0+1

∣∣∣a−1
j,k

∣∣∣ ∣∣∣fk − f̃k

∣∣∣

≤
i0−2∑
k=1

2

3
· γ −|j−k|O(hp) +

∣∣∣a−1
j,i0−1

∣∣∣ ∣∣∣fi0−1 − f̃i0−1

∣∣∣+∣∣∣a−1
j,i0

∣∣∣ ∣∣∣fi0 − f̃i0

∣∣∣

+
m−1∑

k=i0+1

2

3
· γ −|j−k|O(hp)

≤
∣∣∣a−1

j,i0−1

∣∣∣ ∣∣∣fi0−1 − f̃i0−1

∣∣∣ +
∣∣∣a−1

j,i0

∣∣∣ ∣∣∣fi0 − f̃i0

∣∣∣ + O(hp) (35)

≤ 2

3
· γ −|j−i0+1|

∣∣∣fi0−1 − f̃i0−1

∣∣∣ + 2

3
· γ −|j−i0|

∣∣∣fi0 − f̃i0

∣∣∣ + O(hp),

since
∑m−1

k=1
2
3 ·γ −|j−k| ≤ 2, for all j = 1, . . . , m−1. In order to obtain γ −|j−i0+1| ≤

hp, we have to impose that

0 ≤ j ≤ i0 − 1 + p
log(h)

log(γ )
or i0 − p

log(h)

log(γ )
≤ j ≤ m, (36)

supposing that h < 1. We can summarize this result in Proposition 4.6.

Remark 4.1 It is clear that by (36) depending on values p, h and γ , the number of
points m, and the location of the discontinuity i0 have to satisfy:

0 ≤ i0 − 1 + p
log(h)

log(γ )
≤ i0 − p

log(h)

log(γ )
≤ m.

Thus, we assume that the previous expression is satisfied in the following results.

Proposition 4.6 Let X = (xi)
m
i=0, x0 = a, hi = xi − xi−1, be a partition of [a, b],

h = max(hi)
m
i=1 < 1. We suppose that there exists 1 ≤ i0 ≤ m − 1 such that y(x) is

a function in C4([a, xi0−1]∪ [xi0 , b]), let AD = f and AD̃ = f̃ be the systems defined
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in (8) and (12) respectively with Hα,β(x, y) satisfying the (OA) property with p ≥ 1,
then:

|Dj − D̃j | = O(hp), 0 ≤ j ≤ i0 − 1 + p
log(h)

log(γ )
or i0 − p

log(h)

log(γ )
≤ j ≤ m,

being γ = 2 + √
3 if hi = hi−1 for all 1 ≤ i ≤ m, γ = 2 otherwise.

Proof We obtain the result because if

0 ≤ j ≤ i0 − 1 + p
log(h)

log(γ )
or i0 − p

log(h)

log(γ )
≤ j ≤ m,

then γ −|j−i0+1| ≤ hp and by (35).

Finally, we prove that at intervals placed sufficiently far away from the disconti-
nuities, the order of approximation obtained by the nonlinear splines is maximal.

Corollary 4.7 Let X = (xi)
m
i=0, x0 = a, hi = xi − xi−1, be a partition of [a, b],

h = max(hi)
m
i=0 < 1. We suppose that there exists 1 ≤ i0 ≤ m − 1 such that y(x) is

a function in C4([a, xi0−1]∪ [xi0 , b]), let g(x) be the linear spline defined by (1) and
(3), g̃(x) defined by (13) and u(x) the new spline defined by (25) with Hα,β(x, y) a
nonlinear weighted mean which satisfies the (OA) property with p ≥ 1 in both cases,
if there exists qi ≥ 1 such that |yi(x) − gi(x)| = O(hqi ), i = 0, . . . , m. Then:

|y(x) − g̃(x)| = O
(
hmin(qj ,p+1)

)
, x ∈ [xj , xj+1],

|y(x) − u(x)| = O
(
hmin(qj ,p+1)

)
, x ∈ [xj , xj+1],

where

0 ≤ j ≤ i0 − 2 + p
log(h)

log(γ )
or i0 − p

log(h)

log(γ )
≤ j ≤ m − 1,

with γ = 2 + √
3 if hi = hi−1 for all 1 ≤ i ≤ m, γ = 2 otherwise.

Proof The proof directly follows since by Lemma 4.1 and Prop. 4.6, we have

|g(x) − g̃(x)| = O(hp+1), x ∈ [xj , xj+1],
|g(x) − u(x)| = O(hp+1), x ∈ [xj , xj+1],

with

0 ≤ j ≤ i0 − 2 + p
log(h)

log(γ )
or i0 − p

log(h)

log(γ )
≤ j ≤ m − 1,

with γ = 2 + √
3 if hi = hi−1 for all 1 ≤ i ≤ m, γ = 2 otherwise.
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5 On a specific example of a nonlinear weightedmean

In order to define a particular nonlinear weighted mean that satisfies the (C), (OA)
and (AD) properties for any p, we need two principal components: a new limiter and
a nonlinear translation. We take the new mean introduced in [3]. Thus, let 0 < α, β <

1 be two constants with α + β = 1, and p ≥ 1, we define

˜HWp,α,β(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

sign(x)+sign(y)
2 (αx + βy)

(
1 −

∣∣∣β x−y
αx+βy

∣∣∣p)
, |y| ≥ |x|,

sign(x)+sign(y)
2 (αx + βy)

(
1 −

∣∣∣α x−y
αx+βy

∣∣∣p)
, |x| > |y|,

0, x = y = 0.
(37)

These means are a generalization of the means introduced in [25] and reduce to them
for uniform grid spacing. The new limiter satisfies the properties presented in the
following proposition. The proof is trivial and is not included for brevity.

Proposition 5.1 The ˜HWp,α,β(x, y) mean is a nonlinear weighted mean, Def. 1.
Also, for all (x, y) ∈ R

2, it satisfies

1. ˜HWp,α,β(−x, −y) = − ˜HWp,α,β(x, y).
2. ˜HWp,α,β(x, y) = 0, if xy ≤ 0.
3. ˜HWp,α,β(x, y) = ˜HWp,β,α(y, x).
4. If xy > 0, x = O(1), y = O(1), |x − y| = O(h),∣∣∣(αx + βy) − ˜HWp,α,β(x, y)

∣∣∣ = O(hp). (38)

5. | ˜HWp,β,α(x, y)| ≤ p min(|x|, |y|).

In order to obtain the maximal approximation order, as we have seen in Section 4,
we choose p = 3, i.e., ˜HW 3. In particular, if we are working with a uniform grid
spacing, hi = hi+1 for all i = 1, . . . , m − 1 then αi = βi = 1/2 and the nonlinear
weighted means introduced in the previous Subsection transform into de p-power
means introduced in [25]. The p-power mean has the general expression,

H̃p(x, y) = sign(x) + sign(y)

2

|x + y|
2

(
1 −

∣∣∣∣x − y

x + y

∣∣∣∣
p)

. (39)

The most important properties that make the power means appropriate are (see
[1, 25] for more details):

Proposition 5.2 For all (x, y) ∈ R
2, the H̃p(x, y) mean satisfies

1. H̃p(−x, −y) = −H̃p(x, y).
2. H̃p(x, y) = 0 if xy ≤ 0.
3. H̃p(x, y) = H̃p(y, x).
4. If x = O(1), y = O(1), |y − x| = O(h) and xy > 0 then | x+y

2 − H̃p(x, y)| =
O(hp).

5. |H̃p(x, y)| ≤ p min (|x|, |y|) (related to the adaption to the singularities).
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6. |H̃p(x, y)| ≤ max (|x|, |y|).

Finally, to define Tε we only have to determine the function ε : R2 → R
+. In [3],

it is suggested a nonlinear ε(x, y) based on the smoothness indicators proposed in
[26], that is defined as:

εj := h4

|ISj | + h4
, (40)

where ISj is a smoothness indicator that satisfies that is O(1) close to a jump dis-
continuity and O(h2) at smooth parts. It is clear that at a jump discontinuity εj is
O(h4) and if |x| < |y|, we get

|HW
Tε

p,β,α(x, y)| < p|x| + (p + 1)O(h4), (41)

then the translation does not affect the adaption attained at jump discontinuities
unless a change of sign in the first derivative is placed exactly at the discontinuity
but it is adapted to the presence of critical points in the sense that is O(1) at critical
points (and around them) and that goes to zero away from them. In order to measure
the smoothness of our function, we will use the smoothness indicator designed by
Jiang and Shu in [26]. The proposed expression for a non-uniform grid spacing is,

ISj =
r−1∑
l=1

h2l−1
j

∫ x
j+ 1

2

x
j− 1

2

(
dl

dxl
pj (x)

)2

dx, (42)

where r is the degree of the polynomial pj (x). We have chosen the smoothness indi-
cators in the point values for r = 2 that result from (42). They have the following
expression for a uniform grid-spacing,

ISj = 13

12
(fj−1 − 2fj + fj+1)

2 + (1/14)(fj−1 − 4fj + 3fj+1)
2, (43)

ISj+1 = 13

12
(fj − 2fj+1 + fj+2)

2 + (1/14)(fj+2 − fj )
2. (44)

If we choose a smoothness indicator with a wider stencil the results are similar. With
this choice, it is proved that smoothness indicators are O(1) at a jump discontinuity
and O(h2) at smooth parts (see [2] for more details).

6 Analysis of the Gibbs phenomenon for nonlinear cubic splines

Let us consider the elimination of the Gibbs phenomenon for jump discontinuities.
First of all, let’s remember the definition of the Gibbs phenomenon introduced by
D. Gottlieb and C.W. Shu in [11]. Given a punctually discontinuous function f and
its sampling f h defined by f h

n = f (nh), the Gibbs phenomenon deals with the
convergence of the approximation gh based on f h towards f when h goes to 0. It
can be characterized by two features [11]:

1. Away from the discontinuity the convergence is rather slow and for any point x,

|f (x) − gh(x)| = O(h).
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2. There is an overshoot, close to the discontinuity, that does not diminish with the
reduction of h. Thus,

max |f (x) − gh(x)| does not tend to zero with h.

Following the ideas introduced in [3] it is easy to check that the new nonlinear
spline does not suffer from the Gibbs phenomenon.

Theorem 6.1 The nonlinear spline obtained through (24) and (25) does not present
Gibbs oscillations.

Proof Let us analyze the right hand side of the system in (12). If we remember now
that δi and δi−1 are divided differences, we know that they are O(1/h) in the presence
of a jump discontinuity. Taking into account property 5 of Proposition 5.2, we know
that the right hand side of (12) will be,

||f̃||∞ = O (1) .

Then, the vector of derivatives D̃ that results from solving (12) will be,

||D̃||∞ = ||A−1f̃||∞ = O(1).

At smooth zones ŷi+1 − ŷi = O(h) so,

˜̂gi(x) = ˜̂ai(x − xi)
3 + ˜̂

bi(x − xi)
2 + ˜̂ci(x − xi) + ˜̂

di = O

(
1

h2

)
O

(
h3

)

+O

(
1

h

)
O

(
h2

)
+ O (h) + ŷi = ŷi + O(h). (45)

This means that the perturbation introduced by the nonlinear spline is O(h) except at
the interval that contains the discontinuity.

Now we can try to prove that the nonlinear spline provides a prediction that is in
the interval [ŷi , ŷi+1] when h goes to zero. In order to do so, we express the equation
of the spline (1), using the change of variables s = x−xi

h
, as

˜̂gi(x) = ŷi +
(
s2(3 − 2s)

)
(ŷi+1 − ŷi ) +

(
s3 − 2s2 + s

)
hD̃i +

(
s3 − s2

)
hD̃i+1,

(46)
where the first two terms of (46) amount to a dilation and a translation of the element
s2(3 − 2s), that has a minimum at s = 0 and a maximum at s = 1, so it can not
introduce Gibbs phenomenon. Let us analyze the third and fourth terms of (46). We
can see that s3 − 2s2 + s and s3 − s2 are oscillating functions so the apparition
of Gibbs phenomenon can be explained due to the presence of large coefficients
accompanying these two elements. In the case of the nonlinear spline in (12) we have
already analyzed that D̃i = O(1). If this is the case, the two last terms in (46) go to
zero when h → 0. Thus, there can not be Gibbs oscillation.

7 Numerical experiments

The splines proposed are a modification of those introduced in [3] in order to main-
tain a regularity C2. In this numerical section, we are interested in checking that
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the new splines own the good properties of the splines presented in [3] concerning
order of approximation and elimination of Gibbs-like oscillations. Moreover, we are
interested in proving that the algorithm is robust with respect to the presence of per-
turbations in the data, for this reason we will present experiments where we perturb
the functions with additive white Gaussian noise. In addition, we would like to con-
firm that the intervals affected by a discontinuity verify Proposition 4.6. In particular,
that we always maintain at least order 1, which is not verified in the case of linear
splines causing Gibbs-like oscillations, and that the order increases as we move away
from the discontinuity until we recover the maximum order of accuracy.

We perform some numerical tests in order to validate the theoretical results. In par-
ticular, we divide this section in three parts: Firstly, we analyze the distance obtained
when we apply the function G, (15) with η = 1/8 (we take this constant for all
the examples) on the points {yi}mi=0 to get {ŷi}mi=0, system given in (14). We will
use a uniform grid depending on the parameter h and we will approximate the order
obtained. In the second part of this section, we will analyze the Gibbs phenomenon
and we will prove that the resulting spline has similar behaviour as that of the splines
designed in [3]. Finally, in third part, we study the order of accuracy checking the
theoretical results obtained in Section 4. We use the following two functions:

f (x) =
⎧⎨
⎩

sin
(

17
8 πx

)
if x ≤ 0,

1
2 sin

(
17
8 πx

)
+ 10 if x > 0,

(47)

and

l(x) =
{ 1

2x5 − x2 if x ≤ 0,

x6 − x4 + x2 − 2 if x > 0,
(48)

presented in Fig. 1.

Fig. 1 Functions in (47) and (48) used for the experiments presented in this section
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7.1 Distance between the original and the new data

For our first experiment, we discretize the functions f (x) and l(x) in the interval

[−1, 1] using 2k points, hk = 2
2k−1

to get the data (yk
i )2k−1

i=0 and we apply the algo-

rithm introduced in (14) to obtain (ŷk
i )2k−1

i=0 . We compute 
∞-norm to the left of the
discontinuity, i.e.,

Ek = max
i=0...,2k−1−1

|yk
i − ŷk

i |,

and the numerical approximation order which is:

ok = log2

(
Ek

Ek+1

)
. (49)

As we can see in Table 1, the numerical order of accuracy converges to 3 when hk

decreases.

7.2 Numerical experiments using a uniform-grid

In this subsection, we reproduce the experiments presented in [3] but introducing the
modification proposed in previous sections. We start from a sampling of the func-
tions in (47) and (48) with 8192 points in [−1, 1]. We subsample the original data to
512 points and subdivide this data to obtain 8192 samples using the proposed spline
(modifying the low resolution original data as a preprocessing through (14) and (15))
and the linear spline (7) (without modifying the low resolution original data) over
data with and without noise. Then we compare the result with the original data at
the highest resolution. In Figs. 2 and 3, the original subsampled data has been repre-
sented with red filled circles, the original high resolution data with blue crosses and
the reconstruction with black points. All the numerical experiments presented use a

Table 1 Experiment 1 with hk = 2(2k − 1)−1 (uniform grid spacing) and estimated orders ok =
log2(Ek/Ek+1), 7 ≤ k ≤ 13

f (x) l(x)

hk Ek ok Ek ok

1.5748e-02 2.1837e-04 2.3039e-05

7.8431e-03 1.1310e-04 0.95 2.9640e-06 2.96

3.9139e-03 1.3624e-05 3.05 3.7570e-07 2.98

1.9550e-03 1.7344e-06 2.97 4.7287e-08 2.99

9.7704e-04 1.9279e-07 3.17 5.9310e-09 3.00

4.8840e-04 2.3413e-08 3.04 7.4264e-10 3.00

2.4417e-04 2.9091e-09 3.01 9.2891e-11 3.00
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Fig. 2 Top left, function in (47) reconstructed with an adapted cubic spline. Top right, a zoom around the
discontinuity. The low resolution discretization (red filled circles) has 512 points and the reconstruction
(black points) 8192 points.The original high resolution data has been represented with blue crosses. At
the middle row, we can see the reconstruction obtained through the linear spline (7) and a zoom around
the discontinuity. We can observe the Gibbs phenomenon that appears close to the discontinuity. At the
bottom, we can see the nonlinear reconstruction but in this case we have added to the low resolution data
white gaussian noise of amplitude 0.5

uniform grid spacing. The results for the non linear spline have been done using the
nonlinear translated mean (10) with the translation defined in (11) and the ε defined
in (40). For the experiments with noise, we have chosen additive white gaussian noise
of amplitude 0.1 for the function in (48) and 0.5 for the function in (47) (Fig. 3).
We can see that the results are similar to the ones obtained in [3] from a quantita-
tive point of view, but in this case the new spline has been proved theoretically to
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Fig. 3 Top left, function in (48) reconstructed with an adapted cubic spline. Top right, a zoom around the
discontinuity. The low resolution discretization (red filled circles) has 512 points and the reconstruction
(black points) 8192 points.The original high resolution data has been represented with blue crosses. At
the middle row, we can see the reconstruction obtained through the linear spline (7) and a zoom around
the discontinuity. We can observe the Gibbs phenomenon that appears close to the discontinuity. At the
bottom, we can see the nonlinear reconstruction but in this case we have added to the low resolution data
white gaussian noise of amplitude 0.1

maintain C2 regularity, an important qualitative property for applications as we
mentioned in Section 1.

7.3 Accuracy close to the discontinuity

In this subsection, we check the spatial distribution of the accuracy attained by the
spline close to the discontinuity. In order to do so, we measure the error in the infinity
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norm between the nodes of the splines obtained for the function in (48) in an exper-
iment of subdivision similar to the ones presented in Section 7.2. We will start from
a low resolution data of m = 513 nodes, i.e., h = 2

512 and then construct a linear
and a nonlinear spline, computed at 15 interior points between the original nodes.
Then we divide h by two in order to perform a grid refinement analysis. In partic-
ular, we center our attention at the 17 intervals (between the original nodes) to the
left of x = 0 that are closer to the discontinuity, we denote the error at the inter-
val (−nh, −(n − 1)h) as e−nh, n = 1, . . . , 17. Dividing the mesh size by two and
applying the order formula, (49), we obtain an approximation of the order of accu-
racy attained in each interval denoting the orders by o−nh. Since [xi0−1, xi0] = [0, h]
is the interval where the discontinuity is contained, then

[xi0−1−n, xi0−n] = [−nh, −(n − 1)h].
Therefore, we can use Prop. 4.6 to calculate the theoretical interval where the order
p + 1 is recovered, which is:

−n0 = p
log(h)

log(γ )
,

where γ = 2 + √
3 because in this example the grid is uniform. In Table 2, we show

these constants for every h.
It is interesting to notice that the theoretical values are slightly worse than the

numerical ones. In Table 2 we can see that for h =1.95e-03 the value −n0 = −14.21
and in Table 3, order of accuracy p = 4 is recovered in the interval [−8h, −7h],
(o−8h = 4.09), i.e., there exists an error of 6 intervals where the optimal order is
reached. Analogously, for all h, the optimal order 4 is reached in previous inter-
vals (marked in bold in Table 3) to the theoretical interval achieved using Prop. 4.6
(Table 2, column 2). This phenomenon occurs because in Lemma 4.5 and in (35), we
use some manipulations in the inequalities that may be unnecessary in some cases.
Also, in the results shown in Fig. 4, we can see how the order grows as we get away
from the discontinuity.

Fig. 4 Order of accuracy obtained through a grid refinement analysis in the closest intervals to left of
x = 0 using the function in (48). To the left, the linear spline. To the right, the nonlinear spline
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Finally, we compare the order of accuracy obtained using linear splines. Tables 4
and 5 show the order of accuracy obtained for the linear splines. Comparing with the
results shown in Tables 2 and 3, we can observe that in the nonlinear case, at least
order 1 is maintained in all the intervals.

8 Conclusions

In this paper, we have included a new nonlinear spline avoiding the Gibbs oscillations
near discontinuities and preserving the C2 regularity crucial for some applications.
Some theoretical results related to the order of approximation and to the elimination
of the Gibbs oscillations have been proved. The numerical results presented confirm
the good properties of this new spline.
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