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Abstract
In order to construct an algorithm for homogeneous diffusive motion that lives on
a sphere, we consider the equivalent process of a randomly rotating spin vector of
constant length. By introducing appropriate sets of random variables based on cross
products, we construct families of methods with increasing efficacy that exactly
preserve the spin modulus for every realisation. This is done by exponentiating an
antisymmetric matrix whose entries are these random variables that are Gaussian in
the simplest case.

Keywords Brownian motion · Stochastic differential equations ·
Diffusion on a sphere

1 Introduction and background

We take a non-standard approach to diffusion on the surface of a sphere, starting with
an equation for a three-component spin vector written in Langevin form:

∂

∂t
S(t) = S(t) × η, where S(t) =

⎛
⎝

V (t)

Y (t)

Z(t)

⎞
⎠ , (1)

where η is a vector of independent white noises with magnitude σ . Here × denotes
the cross product—see Definition 1.
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We understand (1) as an Itô stochastic differential equation for the vector-valued
process

S(t) = (V (t), Y (t), Z(t))T .

Equation (1) can then be written as

dS(t) = −σ 2S(t)dt + σS(t) × dW(t), (2)

where W(t) = (W1(t), W2(t), W3(t))
T is a vector of independent Wiener processes.

Given the definition of the cross product ×, this can be written as

dV (t) = σ (Y (t)dW3(t) − Z(t)dW2(t)) − σ 2V (t)dt

dY (t) = σ (Z(t)dW1(t) − V (t)dW3(t)) − σ 2Y (t)dt

dZ(t) = σ (V (t)dW2(t) − Y (t)dW1(t)) − σ 2Z(t)dt .

In matrix form, we can write this as the linear Itô SDE

dS(t) = −σ 2IS(t)dt + σ

3∑
i=1

AiS(t)dWi(t), (3)

where I is the 3×3 identity matrix and

A1 =
⎛
⎝
0 0 0
0 0 1
0 −1 0

⎞
⎠ , A2 =

⎛
⎝
0 0 −1
0 0 0
1 0 0

⎞
⎠ , A3 =

⎛
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎠ . (4)

Another convenient representation of (3) is

dS = −σ 2Sdt + G(S)dW(t) (5)

where G(S) is the antisymmetric matrix

G(S) = σ

⎛
⎝

0 −S3 S2
S3 0 −S1

−S2 S1 0

⎞
⎠ . (6)

Based on (5), we can prove the following theorem.

Theorem 1 With S(t) the solution of (5) then

u(t) := S�(t)S(t) = S2
1(t) + S2

2(t) + S2
3(t) = S�(0)S(0), ∀t .

Proof The proof is by Itô’s Lemma—see for example Kloeden and Platen [1].
Consider the Itô SDE

dX = f (X)dt + G(X)dW(t), X ∈ R
N, W(t) ∈ R

d , G(X) ∈ R
d×d ,

where f and G are arbitrary functions satisfying appropriate integrability
conditions—see [1] for details. Suppose u = h(X) ∈ R, where h has continuous
first- and second-order partial derivatives. Then Itô’s Lemma states

du=
(

(∇h(X))�f (X)+ 1

2
Tr(G(X)G�(X)∇[∇h(X)]

)
dt+(∇h(X))�G(X)dW(t),
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where ∇[∇h(X)] is the matrix of second-order spatial derivatives of h. Now when
N = d = 3

u(S) = S2
1 + S2

2 + S2
3 ,

∇h(S) = 2(S1, S2, S3)
�

∇[∇h(S)] = 2I

and G(S) is given by (6).
Hence, du = 0 and so u(t) = S�(0)S(0).

As a consequence of Theorem 1, the vector S(t) lives on the unit sphere of radius
1 for all time.

In this paper, we will construct different classes of numerical methods that
preserve ||S(t)||22. The starting point is the Stratonovich form of (3) namely

dS = σ

3∑
i=1

AiSdWi, (7)

where the Ai are as in (4). This equation is linear, but non-commutative, and we can
write the solution as a Magnus expansion [2]:

S(t) = e�(t)S0, (8)

in terms of iterated commutators of the Ai and stochastic Stratonovich integrals with
respect to multiple Wiener processes.

Section 2 reviews the Magnus expansion in the general setting, but we also show
that for (8) �(t) can be represented as an antisymmetric matrix

�(t) =
⎛
⎝

0 ξ3(σ t) −ξ2(σ t)

−ξ3(σ t) 0 ξ1(σ t)

ξ2(σ t) −ξ1(σ t) 0

⎞
⎠ , (9)

where the ξi(σ t) are continuous random variables that are to be constructed. Given
(9) then by (8)

||S(t)||22 = S�
0 e�(t)�e�(t)S0

= S�
0 e�(t)�+�(t)S0

= ||S0||22,
and so this construction is norm-preserving. We also show in Section 3 that
a stepwise implementation by, for example, the Euler-Maruyama method is not
norm-preserving.

In Sections 3 and 4, we show how to construct the ξi(σ t) based on an expansion of
a weighted sum of increasing numbers of appropriate cross products. In Section 5, we
estimate these weights based on the following idea: as a particle wanders randomly on
the unit sphere, the steady-state distribution at z = cos θ is uniform as the curvature
near the pole balances the girth near the equator. We can therefore write down an Itô
SDE (2) for z(t) (= S3(t)), namely

dz = −σ 2zdt + σ
√
1 − z2dW(t). (10)
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This satisfies

E(z(t)) = −e−σ 2t z0, E(z2(t)) = 1

3
+ e−3σ 2t (z30 − 1

3
). (11)

We will use these weak forms to compare with S3(t) derived from (8) and (9). In
Section 6, we give some results and discussions, and in Section 7 give conclusions
on the novelty of this work.

Finally, we note that the problem of a particle diffusing on a sphere has been
studied in a number of settings. Yosida [3] in 1949 considered motion on a three-
dimensional sphere by solving a certain parabolic partial differential equation in
which the generating function of the right-hand side operator can be determined
explicitly and is the Laplacian operator in polar co-ordinates. Brillinger [4] looked
at this problem in terms of expected travel time to a cap. In a slightly different set-
ting, a number of variants of walks on N-spheres have been constructed for solving
the N-dimensional Dirichlet problem. Muller [5] constructed N-dimensional spher-
ical processes through an iterative process extending the ideas of Kakutani [6] who
used the exit locations of Brownian motion. Other approaches were introduced in [7,
8]. More recently, Yang et al. [9] showed how a constant-potential, time-independent
Schrödinger equation can be solved by a classical walk-on-spheres approach.

2 TheMagnusmethod

The form of the Magnus expansion of the solution for arbitrary matrices A1, A2, and
A3 was given in [2], as in Lemma 1.

Lemma 1

�(t) = σ

3∑
i=1

AiJi(t) + σ 2

2

3∑
i=1

3∑
j=i+1

[Ai, Aj ](Jji(t) − Jij (t))

+ σ 3
3∑

i=1

3∑
k=1

3∑
j=k+1

[Ai, [Aj , Ak]](1
3
(Jkji(t) − Jjki(t)) +

1

12
Ji(t)(Jjk(t) − Jkj (t))) + O(σ 4),

with Stratonovich integrals

Ji(t) = Wi(t)

Jij (t) =
∫ t

0

∫ s

0
dWi(s1) dWj (s)

Jijk(t) =
∫ t

0

∫ s

0

∫ s1

0
dWi(s2) dWj (s1) dWk(s).

In fact for any positive integer p, the σp term in the expansion will include iter-
ated commutators of order p that are summed over p summations and multiplied by
complicated expressions involving Stratonovich integrals over p Wiener processes.
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Theorem 2 With the Ai as in (4), then �(t) is the anti-symmetric matrix

�(t) =
3∑

i=1

Aiξi(σ t) =
⎛
⎝

0 ξ3(σ t) −ξ2(σ t)

−ξ3(σ t) 0 ξ1(σ t)

ξ2(σ t) −ξ1(σ t) 0

⎞
⎠ . (12)

Proof Given (4), then

[A1, A2] = −A3, [A2, A3] = −A1, [A3, A1] = −A2

1

2
(A2

1 + A2
2 + A2

3) = −I . (13)

This means that all high-order commutators of any order p will collapse down to one
of A1, A2, or A3. To illustrate this up to σ 3, we apply (13) to the expansion in Lemma
1. This gives

A1(σJ1 + σ 2

2
(J23 − J32) + σ 3

12
(J2(J12 − J21) + J3(J31 − J13))

+ σ 3

3
(J212 − J122 + J133 − J313))

+A2(σJ2 + σ 2

2
(J31 − J13) + σ 3

12
(J1(J21 − J12) + J3(J23 − J32))

+ σ 3

3
(J121 − J211 + J323 − J233))

+A3(σJ3 + σ 2

2
(J12 − J21) + σ 3

12
(J1(J31 − J13) + J2(J32 − J23))

+ σ 3

3
(J131 − J311 + J232 − J322)) + O(σ 4).

Here, we have dropped the dependence on t for ease of notation. Clearly the form for
�(t) is as in (12).

Remarks

• The ξi(σ t) are complicated expansions in σ of high-order Stratonovich inte-
grals. However, these are extremely computationally intensive to simulate [1].
Instead, we will approximate them as continuous stochastic processes in some
weak sense—see (26).

• Clearly, the simplest approximation to the ξ(σ t) is to take

ξ(σ t) = (ξ1(σ t), ξ2(σ t), ξ3(σ t))� = σJ (t) = σW(t), (14)

where W(t) is a three-vector of independent Wiener processes. This idea will be
the basis of our first algorithm presented in Section 3.
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3 Stepwise implementations

Before presenting our first method, we show that the Euler-Maruyama method is an
inappropriate method in that it does not preserve ||S(t)||22, the spin norm. In fact, the
mean drifts and the distribution of values grow rapidly wider with increasing time.
An improved algorithm (without Itô correction) can narrow the distribution of values
of the norm but will still have a mean that drifts. To see the behaviour of the EM
method applied to (3), we have

Sk+1 = ((1 − σ 2h)I + σ
√

hNk) Sk .

where, as before,

Nk =
⎛
⎝

0 N3k −N2k
−N3k 0 N1k
N2k −N1k 0

⎞
⎠ . (15)

Hence, with Nk + N�
k = 0,

||Sk+1||2 = S�
k ((1 + σ 4h2 − 2σ 2h) I + σ 2hN�

k Nk) Sk .

Note N1k, N2k, N3k, k = 1, · · · , m are independent Normal random variables with
mean 0 and variance 1. Now

N�
k Nk = −N2

k

=
⎛
⎝

N2
3k + N2

2k −N1kN2k −N1kN3k

−N2kN1k N2
3k + N2

1k −N2kN3k

−N3kN1k −N3kN2k N2
1k + N2

2k

⎞
⎠ .

Thus
E(N�

k Nk) = 2I

and so
E(||Sk+1||2 | ||Sk||2) = (1 + σ 4h2) E(||Sk||2).

Similarly,
E(||Sk+1||4 | ||Sk||4) = (1 + 6σ 4h2) E(||Sk||4).

Therefore, if (3) is solved on the time interval (0, T ) with m steps h = T/m

starting with ||S0||2 = 1 then, as m → ∞ (h → 0), the value of ||S(t)||2 obtained is
a random variable with

E(||S(t)||2) = exp
(
(σ 4h) t

)
= 1 +

(
σ 4h

)
t + O(t2)

and (
E(||S(t)||4) − E(||S(t)||2

) 1
2 = 2σ 2 (h)

1
2

√
t + . . . .

Thus, the spin modulus is not conserved and the mean error grows linearly with t .
More importantly, the variance can be very large so that if the procedure described
above is repeated numerous times, the standard deviation of the ensemble of values
of ||S(T )||2 obtained is proportional to

√
T . In fact, the probability density function

of log(||S(t)||2) is Gaussian. This means that, while more than half of the values
of ||S(t)||2 obtained will be less than 1, rare large values of ||S(t)||2 dominate the
statistics.
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In order to construct a simple method that preserves the spin norm, it will be based
on (8), (9), and (14), which leads to

S(t) = exp(σ�(t)) S0, (16)

with

�(t) =
⎛
⎝

0 Ĵ3(t) −Ĵ2(t)

−Ĵ3(t) 0 Ĵ1(t)

Ĵ2(t) −Ĵ1(t) 0

⎞
⎠ (17)

where in the first instance we take J (t) = (Ĵ1(t), Ĵ2(t), Ĵ3(t))
� =

(W1(t), W2(t), W3(t))
�.

Our construction is based on Rodrigues’ formula [10]. Let

A =
⎛
⎝

0 a3 −a2
−a3 0 a1
a2 −a1 0

⎞
⎠ and r =

√
a21 + a22 + a23.

Then A3 = −r2A, so that

exp (σA) = I + A

(
σ − 1

6
σ 3r2 + . . .

)
+ A2

(
1
2σ

2 − 1

24
σ 4r2 + . . .

)

= I + A
sin (σ r)

r
+ A2 1 − cos (σ r)

r2
.

Hence from (16) and (17)

S(t) = (I + �(t)
sin(σ r(t))

r(t)
+ �2(t)

(1 − cos(σ r(t)))

r2(t)
) S0

r(t) = ||J (t)||2. (18)

Now let T = mh; then we can write

Ĵi (T ) = √
h

m∑
k=1

Nik .

This allows us to write a step-by-step method

Sk+1 = exp(σ
√

hNk) Sk,

where Nk is given in (15),
and hence a step-by-step method is, from (18),

Sk+1 = (I + f (h) Nk + g(h) N2
k ) Sk

f (h) = sin(σ
√

hrk)

rk
, g(h) = 1 − cos(σ

√
hrk)

r2k

rk =
√

N2
1k + N2

2k + N2
3k .

Note that this step-by-step method will only be strong order 0.5.
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4 A class of Magnus-typemethods

A stepwise approach, as constructed previously, will not yield a method that has more
than strong order 0.5 and weak order 1 so we will attempt to approximate the ξi(σ t)

to obtain a better weak order approximation. We will first consider the behaviour of
the composition of the Magnus operator over two half steps and require this to be the
same as the Magnus approximation over a full step up to some power of the stepsize
h. This will give us a clue as to how to choose the ξj (t). In order to simplify the
discussion, we will, wolog, take σ = 1.

Let Āξ denote the matrix

Āξ =
⎛
⎝

0 ξ3 −ξ2
−ξ3 0 ξ1
ξ2 −ξ1 0

⎞
⎠ (19)

with ξ = (ξ1, ξ2, ξ3)
�.

Suppose on the two half steps, we assume that the random variables behave as

ξ̂ =
√

h

2
N1 + h

2
P1 + O(h

3
2 )

ξ̃ =
√

h

2
N2 + h

2
P2 + O(h

3
2 )

and on the full step

ξ = √
h N + h P + O(h

3
2 ),

where N1, N2, N and P1, P2, P are 3 vectors of independent random variables that
are to be determined in some manner. Furthermore, the matrices generated by these
vectors through (19) will be denoted by N̄1, N̄2, P̄1, P̄2.

So from (12) and (16) and setting the composition over two half steps to be equal
to the Magnus operator up to the h term implies(

I +
√

h

2
N̄1 + h

2
(P̄1 + 1

2
N̄2
1 )

) (
I +

√
h

2
N̄2 + h

2
(P̄2 + 1

2
N̄2
2 )

)

= I + √
hN̄ + h(P̄ + 1

2
N̄2) + O(h

3
2 ).

Hence

N̄ = 1√
2
(N̄1 + N̄2) (20)

and

P̄ + 1

2
N̄2 = 1

2
(P̄1 + P̄2 + 1

2
(N̄2

1 + N̄2
2 + N̄1N̄2)).

Hence from (20) and after some simple algebra

P̄ = 1

2
(P̄1 + P̄2) − 1

4
[N̄2, N̄1]. (21)

Now with N̄1 and N̄2 generated by the vectors N1 and N2, via (19) it is easy to
show that [N̄2, N̄1] generates a matrix of the form (19) in which the corresponding

1584 Numerical Algorithms (2022) 91:1577–1596



vector ξ that generates Āξ is N1 × N2, where the cross product is given through the
following definition.

Definition 1 Given vectors B = (B1, B2, B3)
�, D = (D1, D2, D3)

� then

B × D = (B2D3 − B3D2, B3D1 − B1D3, B1D2 − B2D1)
�.

Consequences of Definition 1 are the following well-known results:

Lemma 2 Given two three-vectors B and D, the following results on cross products
hold.

B × D + D × B = 0

B × B = 0

A × (B × C) = B(A�C) − C(A�B).

Proof Trivial use of Definition 1.

Thus, in the vector setting, (20) and (21) and Lemma 2 give

N = 1√
2
(N1 + N2) (22)

P = 1

2
(P1 + P2) + 1

4
N1 × N2. (23)

Equation (22) suggests that we take N1 and N2 to be independent N(0, 1)
3-vectors, so that N is also a 3-vector with independent N(0, 1) components.

Furthermore, if we let u1, u2, v1 and v2 be independent N(0, 1) 3-vectors and we
take

N1 = 1√
2
(u1 + u2), N2 = 1√

2
(v1 + v2)

P1 =
√
2

4
u1 ×

(
u2 + v2√

2

)
, P2 =

√
2

4
v1 ×

(
u2 + v2√

2

)

then from (23) and Lemma 2 we have

P =
√
2

4
l

(
u1 + v1√

2

)
×

(
u2 + v2√

2

)
+ 1

4
N1 × (

√
2N − N1)

=
√
2

4

(
u1 + v1√

2

)
× N −

√
2

4

(
u1 + u2√

2

)
× N

=
√
2

4

(
v1 − u2√

2

)
× N .

Hence N, N1, and N2 have the same distributions as do P, P1, and P2, respec-
tively.
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Continuing this line of thought, this suggests that we base our choice of the ξ(t)

on a cross product formulation. Thus, we will take for ξ(t) the expansion

ξ(t) =
r∑

j=1

djAj (t), (24)

where the dj are chosen appropriately and

Aj+1(t) = J2(t) × Aj(t), j = 1, 2, · · · , r − 1

A1(t) = J1(t) (25)

d1 = 1.

We can choose any positive integer value for r in (24). But we will see in Section 5
when we attempt to estimate the dj that they become overly sensitive for values of
r > 5, and so we will take a specific value of r , namely r = 5.

This will lead to methods that we will denote by M(1, d2, d3, d4, d5). For clarity,
we give the form of the ξ(t):

ξ(t) = J1(t) + d2J2(t) × J1(t) + d3J2(t) × (J2(t) × J1(t))

+d4J2(t) × (J2(t) × (J2(t) × J1(t)))

+d5J2(t) × (J2(t) × (J2(t) × (J2(t) × J1(t)))). (26)

We will show in Section 5 how to calibrate the parameters d2, d3, d4, d5 appropri-
ately, in order to get good performance.

Note if we wish to simulate ξ(t) at some time point t = T , then we generate
an equidistant time mesh with stepsize h = T

m
. We then simulate two sequences

of vectors of length m consisting of independent N(0, 1)-3 vectors: G1i , G2i , i =
1, · · · , m. We then approximate

J1(T ) ≈ √
h

m∑
i=1

G1i

J2(T ) ≈ √
h

m∑
i=1

G2i

and generate ξ(T ) by using (26) and the definition of the cross product and related
results in Lemma 1.

5 Model calibration

As a particle wanders randomly on a sphere, the steady-state distribution at latitude,
z = cos θ , is uniform as the curvature near the poles balances the greater girth near
the equator (see also [4])—by symmetry, the same is true of x and y; see Fig. 1.

If we write the SDE for z alone, we find

dz(t) = −σ 2z(t)dt + σ
√
1 − z(t)2dW(t). (27)
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Fig. 1 Numerical distribution of x, y, and z

Hence, using the property of Itô SDEs

E(z(t)) = e−σ 2t z0. (28)

Furthermore, we can show via Itô’s Lemma that with u(t) = z2(t) then u satisfies

du = σ 2(1 − 3u) dt + 2σ
√

u − u2 dW(t).

Hence

E(z2(t)) = 1

3
+ e−3σ 2t

(
z20 − 1

3

)
. (29)

Now we saw that the solution S(t) to (2) is given in (18). Assume S0 = (0, 0, 1)�,
σ = 1 and let z(t) be the third component of S(t); then

z(t) = cos(r(t)) + 1 − cos(r(t))

r2(t)
ξ23 (t)

=
∞∑

j=0

(−1)j

(2j)! (r2j (t) − ξ23 (t)r2j−2(t)),

where ξ(t) = (ξ1(t), ξ2(t), ξ3(t))
� is to be determined and

r2(t) = ξ21 (t) + ξ22 (t) + ξ23 (t).
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Let u2(t) = ξ21 (t) + ξ22 (t), then

z(t) = 1 +
∞∑

j=1

(−1)j

(2j)!

⎛
⎝

j−1∑
k=0

(
j − 1

k

)
ξ
2(j−1−k)

3 (t) u2(k+1)(t)

⎞
⎠ .

Since u2(t) is independent from ξ3(t) then with z̄(t) = E(z(t)),

z̄(t) = 1 +
∞∑

j=1

(−1)j

(2j)!

⎛
⎝

j−1∑
k=0

(
j − 1

k

)
E(ξ

2(j−1−k)

3 (t))E(u2(k+1)(t))

⎞
⎠ . (30)

We will compare z̄(t) with (28) in order to construct effective methods from the
class M(1.d2, d3, d4, d5). To commence this, we now analyse the error for method
M(1,0,0,0,0) (M1), so that ξ(t) = J1(t). Now for any of the 3 components of ξ(t),
say ξ1(t), we know, from the properties of the Normal distribution,

E(ξ
2p
1 (t)) = (2p − 1)(2p − 3) · · · 1 tp

= (2p)!
p! 2p

tp. (31)

Substituting (31) into (30), we find after some manipulation

z̄(t) = 1 +
∞∑

j=1

(−1)j tj

(2j)!
(
2

3

(2j + 1)!
2j j !

)

= 1 + 2

3

∞∑
j=1

(−1)j ( t
2 )

j

j ! (2j + 1)

= 1

3
+ 2

3
(1 − t)e−t/2

= 1 − t + 1

2
t2 − 1

12
t2 + O(t3).

Hence

z̄(t) − e−t = − 1

12
t2 + O(t3) (32)

= 1

3
(1 + 2(1 − t)e− t

2 − 3e−t ). (33)

A plot of this error in (33) is given in Fig. 2. We see that (32) is only accurate for
modest values of time. So this is a word of caution in using a truncated error estimate
for too large a value of t .

We will now consider the behaviour of the general class of methods given by
M(1, d2, d3, d4, d5) in terms of (30) where ξ(t) is given in (26). It will prove too
difficult to get analytical results for the error in (33) so we will have to use a truncated
error estimate. First, we will expand z̄(t) in (30) up to and including the t4 term. It
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Fig. 2 Plots of the mean error (solid) and truncated mean error (dotted) for method M1

can be shown with some simple expansions that

z̄(t) = −1

2
G1 + 1

4!G2 − 1

6!G3 + 1

8!G4 + higher order terms

where

G1 = E(ξ21 + ξ22 )

G2 = E(u2ξ23 + u4)

G3 = E(u2ξ43 + 2u4ξ23 + u6)

G4 = E(u2ξ63 + 3u4ξ43 + 3u6ξ23 + u8).

In order to calculate these expectations, we note the following Lemma, where the
product of vectors is considered component-wise.

Lemma 3 With the Aj(t) defined previously and ξ(t) given by (26)

E(Ap(t) · Aq(t)) = 0, p + q odd

E(Ap(t) · Aq(t)) = Cp,q t
p+q
2 e, p + q even

e = (1, 1, 1)�.
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Proof Without loss of generality we will assume p ≥ q = p − r and consider two
cases: r = 2k + 1 and r = 2k, (k = 0, 1, 2, · · · ). Let us consider the odd case first.
Now

Ap · Ap−1 = (J2 × Ap−1) · Ap−1

Ap · Ap−3 = (J2 × (J2 × (J2 × Ap−3))) · Ap−3

= (J2 × (J2(J
�
2 Ap−3) · Ap−3(J

�
2 J2))) · Ap−3 (Lemma 2)

= −(J�
2 J2)((J2 × Ap−3) · Ap−3) (Lemma 2)

Ap · Ap−5 = (J2 × (J2 × (J2 × (J2 × (J2 × Ap−5))))) · Ap−5

= −(J�
2 J2)(J2 × (J2 × (J2 × Ap−5)) · Ap−5) from above

= −(J�
2 J2)(J2 × ((J�

2 Ap−5)J2 − (J�
2 J2)Ap−5) · Ap−5) (Lemma 2)

= (J�
2 J2)

2((J2 × Ap−5) · Ap−5) (Lemma 2).

It is easy to show by induction that

Ap · Ap−(2k+1) = (−1)k(J�
2 J2)

k((J2 × Ap−(2k+1)) · Ap−(2k+1)). (34)

Now, by definition of the cross product, the i th component of J2 × Ap−(2k+1) does
not have a corresponding component from Ap−(2k+1) and since the powers of J2
appearing in (34) are odd, then

E(Ap · Ap−(2k+1)) = 0, ∀k = 0, 1, 2, · · · . (35)

Now let us consider the even case.

Ap · Ap−2 = (J2 × (J2 × Ap−2)) · Ap−2

= (J�
2 Ap−2)(J2 · Ap−2) − (J�

2 J2)(Ap−2 · Ap−2) (Lemma 2)

Ap · Ap−4 = (J2 × (J2 × (J2 × (J2 × Ap−4)))) · Ap−4

= (J2 × (J2 × ((J�
2 Ap−4)J2 − (J�

2 J2)Ap−4))) · Ap−4 from above

= −(J�
2 J2)((J2 × (J2 × Ap−4)) · Ap−4) (Lemma 2)

= (J�
2 J2)((J

�
2 J2)(Ap−4 · Ap−4)−(J�

2 Ap−4)(J2 · Ap−4)) from above.

Similarly to the odd case, then by induction, for k = 1, 2, · · ·
Ap·Ap−2k = (−1)k−1(J�

2 J2)
k−1((J�

2 Ap−2k)(J2·Ap−2k)−(J�
2 J2)(Ap−2k ·Ap−2k)).

Clearly, in each of the 3 components of the vectors on the right-hand side, there will
be terms that have even powers in J2 and Ap−2j and the power of t will behave as
k+p−2k = p−k. Furthermore, each of the 3 components will have the same form.
Hence

E(Ap · Ap−2k) = Cp,kt
p−ke, as required.

Some algebra and calculations of moments allow us to write

z̄ = 1 − t + t2(
1

2
+ c2) − t3

(
1

6
+ c3

)
+ t4

(
1

24
+ c4

)
+ O(t5),
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where c2, c3, c4 can be considered to be the error terms when comparing z̄(t) to e−t .
It can be shown that

c2 = −2

(
d2
2 − 2d3 + 1

24

)

c3 = 10d2
3 − 5

3

(
d2
2 − 2d3 + 1

24

)

−2d2d4E(A2(t) · A4(t))i − 2d5E(A1(t) · A5(t))i

c4 = 10

3
d2
3 + 2d4

2 + 2

3
(d2

2 − 2d3)
2 − 7

12
(d2 − 2d3) − 5

192
−d2

4E(A4(t))
2
i − 2d3d5E(A3(t) · A5(t))i . (36)

These results hold true for any component of ξ , i = 1, 2, or 3. Some of the expecta-
tions in (36) have already been calculated, but we now show the analysis in Lemma
4 for some of the more complicated terms in (36).

Lemma 4 For any i = 1, 2 or 3

(i) E(A2(t) · A4(t))i = 10t3

(ii) E(A1(t) · A5(t))i = 10t3

(iii) E(A4(t)
2)i = 70t4

(iv) E(A3(t) · A5(t))i = −70t4.

Proof We will drop the dependence on t for ease of notation.

(i) As a consequence of Lemma 2 and (34),

A2 · A4 = (J2 × J1) · (J2 × (J2 × (J2 × J1)))

= (J2 × J1) · (J2 × (J2(J
�
2 J1) − J1(J

�
2 J2)))

= −(J2 × J1) · (J2 × J1)(J
�
2 J2).

With J2 = (B1, B2, B3)
�, J1 = (N1, N2, N3)

� then

J2 × J1 = (B3N2 − B2N3, B3N1 − B1N3, B2N1 − B1N2)
�.

Take any component of the vectors, say the first component, then

(A2 · A4)1 = (B3N2 − B2N3)
2(B2

1 + B2
2 + B2

3 ).

Using results on expectation of normals

E(A2 · A4)1 = 1 + 1 + 1 + 3 + 3 + 1 = 10t3.

(ii) From (34) and Lemma 2

A1 · A5 = J1 · (J2 × A4)

= −J1 · (J2 × (J2 × J1)) (J�
2 J2)

= −(J�
2 J2)J1 · (J2(J

�
2 J1) − J1(J

�
2 J2)).
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Look at, say, the first component, then

(A1 · A5)1 = (B2
1 + B2

2 + B2
3 )

2N2
1 − (B2

1 + B2
2 + B2

3 )(B1N1

+B2N2 + B3N3)N1B1

E(A1 · A5)1 = 3 + 3 + 3 + 2 + 2 + 2 − (3 + 1 + 1).

So E(A1A5)1 = 10t3.
(iii) From Lemma 2 and (34)

A2
4 = (J�

2 J2)
2((J2 × J1) · (J2 × J1))

(A2
4)1 = (B2

1 + B2
2 + B2

3 )
2(B3N2 − B2N3)

2

E(A2
4)1 = 70t3.

(iv) From (34) and Lemma 2

A3 · A5 = −(J2 × (J2 × J1)) · (J2(J
�
2 J1) − J1(J

�
2 J2))(J

�
2 J2)

= −(J2(J
�
2 J1) − J1(J

�
2 J2))

2(J�
2 J2).

Look at the first component say, then

(A3 · A5)1 = −B2
1 (B

2
1 + B2

2 + B2
3 )(B1N1 + B2N2 + B3N3)

2

−N2
1 (B2

1 + B2
2 + B2

3 )
3

+2B1N1(B
2
1 + B2

2 + B2
3 )

2(B1N1 + B2N2 + B3N3)

E(A3 · A5)1 = −35 − 105 + 70 = −70.

From Lemma 4 and (36)

c2 = −2

(
d2
2 − 2d3 + 1

24

)

c3 = 10d2
3 − 5

3

(
d2
2 − 2d3 + 1

24

)
− 20d2d4 − 20d5

c4 = 10

3
d2
3 + 2d4

2 + 2

3
(d2

2 − 2d3)
2 − 7

12
(d2 − 2d3) − 5

192
−70d2

4 + 140d3d5. (37)

We now consider the behaviour of the error constants as a function of the classes of
methods.

Let M2 denote M(1, d2, 0, 0, 0); then clearly c2 and c3 are minimised if d2 = 0,
and this reduces to M1 : M(1, 0, 0, 0, 0). However, if we allow d2 to be imaginary,
then the most effective method within the class M2 is when d2

2 + 1
24 = 0, that is

M(1, 1√
24

i, 0, 0, 0).

Let M3 denote M(1, d2, d3, 0, 0); then

c2 = 0 ⇐⇒ d2
2 = 2

(
d3 − 1

48

)
(38)
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in which case from (37)

c3 = 10d2
3

c4 = 1

3

(
34d2

3 − d3 + 15

1728

)
> 0 if d3 is real.

We now assume (38) holds and choose d3 such that c4 = 1
4c3 (since the expo-

nential solution for the mean has this property—and it turns out this ansatz is more
effective than trying to make some of the error constants equal to zero). This leads to
the quadratic

53d2
3 − 2d3 + 5

288
= 0

or

d3 = 1

53

(
1 + 1

12

√
23

2

)
.

Thus, an effective method is M3 = M(1,
√
2d3 − 1

24 ,
1
53 (1 + 1

12

√
23
2 ), 0, 0). That is,

M3 = M(1,

√
1

12

(√
46 − 5

106

)
,
1

53

(
1 + 1

12

√
23

2

)
, 0, 0).

For the class M4 = M(1, d2, d3, d4, 0), then applying the same ansatz as for M3,
with c4 = 1

4c3 then (37) leads to

70

(
d4 − 1

28
d2

)2

= 53

6
d2
3 − 13

84
d3 − 5

6048
.

Taking the negative square root of the right-hand side gives

d4 = 1

28
d2 −

√
1

70

(
53

6
d2
3 − 13

84
d3 − 5

6048

)
, (39)

where d2 is determined from (38). Thus, d3 is a free parameter, but with the caveat
that the term under the square root in (39) must be positive, and from (38), d3 > 1

48 .

6 Results and discussion

We now present results for a set of methods, with just up to 4 terms—we do
not consider M5; see Remark 5. These methods are M1(1, 0, 0, 0), M2(1, d2, 0, 0)

(d2 > 0), M∗
2 (1, 1√

24
i, 0, 0), M3(1,

√
1
12 (

√
46 − 5

106 ),
1
53 (1 + 1

12

√
23
2 )),

M4(1, 0.099716, 0.025805, −3.33310−4), M∗
4 (1, 0.081984, 0.024194, 1.36610−6).

These last two methods were found after a parameter sweep over d3—see Remark 4
below.

In all cases, we give the error in z (E1) and the error in z2 (E2) at T = 1 with 500
steps and 400,000 (1st column) or 1,000,000 (second column) simulations (Table 1).

We can make the following remarks.
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Table 1 Simulation results
E1 E2

M1 0.0330 0.0338 0.0073 0.0078

M∗
2 0.0036 0.0029 0.0032 0.0027

M3 0.000693 2.4(−6) 0.0020 0.0014

M4 4(−7) 7.0(−4) 0.0020 0.0011

M∗
4 0.000696 3.3(−8) 0.0020 0.0014

1. Although we do not show the results, M1 is always more accurate than the class
M2 for any real value of d2 > 0.

2. If we choose d2 = 1√
24

i then M∗
2 is much more accurate than M1. However, in

the case of M∗
2 the components of S are complex. Nevertheless they still satisfy

S2
1(t) + S2

2(t) + S2
3(t) = 1, ∀t . Letting Sj = αj + i βj , j = 1, 2, 3 and writing

α = (α1, α2, α3)
�, β = (β1, β2, β3)

�,

then this conservation property is equivalent to

||α||2 − ||β||2 = 1, α�β = 0. (40)

Thus, rather than having a spherical-like structure, the solution to (2) is more
akin to a hyperbolic structure.

3. Compared with M1, method M3 performs very well. The error, E1, is approxi-
mately 50 times smaller than M1 with 400,000 simulations and much less with
1,000,000 simulations. The errors are also considerably less for E2 and we note
that we did not attempt to optimise the parameters for the second moment. How-
ever, we do note that there is considerable variation between the results for
400,000 and 1,000,000 simulations.

4. The above remark brings us to the results forM4 andM∗
4 . In finding these results,

we did a parameter sweep over the free parameter d3 and we present the best
results based on 400,000 and 1,000,000 simulations. M4 is more accurate than
M3 with 400,000 simulations (but less accurate with 1,000,000 simulations),
while M∗

4 behaves in the converse with respect to M3. For both M4 and M∗
4 the

corresponding optimal d4 is quite small and so these results are subject to the
quality of the normal random number stream.

5. This last point explains why we do not go further and consider M5. Some of the
optimal parameters will likely be very small, as is already the case for the values
of d4, and the results will be even more sensitive to the normal random number
stream.

7 Conclusions

It turns out that a Magnus method given by (16), where the antisymmetric matrix
�(t) in (17) depends just on the three Wiener processes, guarantees that the solution
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stays on the surface of the sphere. However, this approach says nothing about the
accuracy of the trajectories on the surface.

The novelty of this work is that we construct the continuous random variables
ξ1(t), ξ2(t), and ξ3(t) that guarantee that the trajectories lie on the surface but also
give good accuracy in a weak sense. This is done by considering a one-dimensional
model (27) in which we note that the steady-state distribution of the third variable
at z = cos θ is uniform as the curvature near the pole balances the girth near the
equator. From (27), we can get exact formulations for the first and second moments.

The additional novelty is that we now construct the ξj (t) in terms of a linear
combination of iterated cross products (see (26)). We then find the weights dj by
comparing the Magnus solution with the above moments. This results in a family of
methods with very small weak errors. We describe these methods to be effective in
the sense of the above characterisation. This is important for making sure that the
paths on the surface of the sphere are highly accurate. It turns out that method M3
is the simplest and the most robust of the methods constructed. The final aspect of
innovation is that these ideas can be extended to diffusion on higher dimensional
spherical surfaces [11] and we hope to do this in a following paper.
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