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Abstract

In this paper we derive a Toeplitz-structured closed form of the unique positive semi-definite stabilizing solution
for the discrete-time algebraic Riccati equations, especially for the case that the state matrix is not stable. Based
on the found form and fast Fourier transform, we propose a new algorithm for solving both discrete-time and
continuous-time large-scale algebraic Riccati equations with low-rank structure. It works without unnecessary
assumptions, complicated shift selection strategies, or matrix calculations of the cubic order with respect to the
problem scale. Numerical examples are given to illustrate its features. Besides, we show that it is theoretically
equivalent to several algorithms existing in the literature in the sense that they all produce the same sequence
under the same parameter setting.
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1 Introduction

Consider a continuous-time algebraic/limiting Riccati equation (CARE)

ATX +XA−XBBTX + CTC = 0, (1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n. The CAREs arise in various models related to control theory, such as linear-
quadratic optimal regulator design, and H2 and H∞ controller design for linear systems, see, e.g., [35, 3]. They
also arise in nonlinear systems, like nonlinear controller design by state-dependent Riccati equations [13], or solving
differential Riccati equations by implicit integration schemes [17, 8]. Usually (1.1) has infinite many solutions, but in
many applications including those mentioned above only the so-called c-stabilizing solution is hoped to be computed.
Here a solution X is called c-stabilizing if A − BBTX is stable, namely all the eigenvalues of A − BBTX lie in
the open left half complex plane C−. Its existence and uniqueness are guaranteed by the assumption that the pairs
(A,BBT) and (AT, CTC) are c-stabilizable, or equivalently, rank(

[
A− λI BBT

]
) = rank(

[
AT − λI CTC

]
) = n

for any λ ∈ C \ C−.
During many years, people have developed many numerical methods to find out the c-stabilizing solution of (1.1).

Reader are referred to [12] to obtain an overview. In this paper, we are focusing on a special case that A is large-scale
and sparse, and B,C are low-rank, namely m, l� n. The existing methods are categorized into four classes:

1. projection methods, including extended Krylov subspace method [23], rational Krylov subspace method [18],
tangential rational Krylov subspace method [19], global extended Krylov subspace method [27], etc.;

2. non-projective iterations, including quadratic ADI [45], Cayley transformed Hamiltonian subspace iteration
[38], RADI [5], etc.;

3. Newton-type methods, including the Galerkin projected variant of Newton-Kleinman ADI [9] and its inexact
line-search variant [6], etc.;

4. methods adopted from those suited for small-scale problems, including structure-preserving doubling algorithm
(SDA) [14, 36], and Hamiltonian stable subspace methods [1, 4], etc..
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Many more methods and references can be listed if we bring in more details. Interested readers are encouraged to
look through a comparison paper [11] and the references therein.

The methods in the former three classes use a lot of shifts in the calculation process, so a shift selection strategy
rather than several pre-chosen shifts is needed. Different shifts or strategies usually affect the convergence speed
significantly. Moreover, the convergence of those methods usually relies on more assumptions, for example, A is stable.
To deal with the problems without the guarantee, the preprocessing is necessary and costs not little calculations.
On the opposite, the methods in the latter class, like SDA, only use one shift (or a few shifts if the incorporation
technique is adopted), which helps decrease the calculation that is not directly related to the solution.

On the other hand, the methods in the former three classes only use matrix-vector multiplication and inverse-
vector multiplication (that is actually done by linear system solvers), while SDA uses matrix-matrix and inverse-matrix
multiplication (also done by linear system solvers), which implies that SDA consumes much more time than those in
the former classes.

In this paper, first we contribute a Toeplitz-structured closed form of the d-stabilizing solution of discrete-time
algebraic Riccati equations (DAREs) by theoretical analysis, which naturally induces a new algorithm named FFT-
based Toeplitz-structured approximation (FTA) to solve DAREs. The proposed FTA method exploits the fast Fourier
transform (FFT) to reduce the time complexity. Then using a Cayley transformation that transforms CAREs
to DAREs, the FTA is successfully adopted to solve CAREs, where the incorporation technique (a.k.a. defect
correction) is applied to deal with the case that the truncated approximation does not provide enough accuracy. The
FTA solves DAREs and CAREs without more assumptions, shift selection strategies, or matrix-matrix/inverse-matrix
multiplications. As a by-product, we show that FTA, SDA, and many other methods like RADI are equivalent under
the same parameter setting including the same initial guess 0 and the same consistent shift, in the sense that they
all produce the same sequence (or subsequence).

The rest of the paper is organized as follows. First, some notations are used. In Section 2 we present a detailed
form of the inverse of special matrices of the form I + TTT where T is block-Toeplitz, whose proof, not an easy
consequence of the theory on Toeplitz matrices, is put in Appendix A for readability. Section 3 generalizes the idea
on the Toeplitz operator in the associated discrete-time dynamic systems under good conditions to those without
good conditions, and then naturally induces a closed form of the d-stabilizing solution of DAREs, where the special-
structured matrices are involved, which suggests us to develop the FTA method to solve DAREs. As is shown in
Section 4, an variant of FTA for CAREs is obtained with the help of Cayley transformation that transforms CAREs to
DAREs. Numerical tests and discussions are given in Section 5. Some concluding remarks are provided in Section 6.

Notation. Throughout this paper, In (or simply I if its dimension is clear from the context) is the n×n identity
matrix. Given a vector or matrix X, XT, XH, ‖X‖, ‖X‖F, ρ(X) are its transpose, conjugate transpose, spectral
norm, Frobenius norm, and spectral radius respectively. By X ⊗ Y denote the Kronecker product of X and Y . By
<α denote the real part of a complex number α.

We use X � 0 (X � 0) to indicate that X is symmetric positive (semi-)definite, and X ≺ 0 (X � 0) if −X � 0
(−X � 0). Some easy identities are given:

U(I + V TU) = (I + UV T)U, U(I + V TU)−1 = (I + UV T)−1U. (1.2)

Here is the Sherman-Morrison-Woodbury formula:

(M + UDV T)−1 = M−1 −M−1U(D−1 + V TM−1U)−1V TM−1. (1.3)

The inverse sign in (1.2) and (1.3) indicates invertibility. Both will be applied occasionally.
In addition, all the discussions below are based on the field R. They are also valid on the field C, with all (·)T

replaced by (·)H.

2 Preliminary

The block-Toeplitz matrices appear in the subsequent sections and play an important role in the proposed algorithms.
Since 1970s, people have known that fast and superfast algorithms are valid for Toeplitz matrices, due to its low
displacement rank, see, e.g., [32, 30, 31, 33, 20]. However, to keep algebraic Riccati equations in mind, here we
only introduce the notations related to block-Toeplitz matrices, and give a lemma that is used in the discussions on
algebraic Riccati equations, while its proof is placed in Appendix A.
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Given A0, A1, . . . , Am−1 ∈ Rp1×p2 , we will use

Lp1×p2




A0

A1

...
Am−1


 =



A0

A1 A0

A2 A1
. . .

...
. . .

. . .
. . .

...
. . . A1 A0

Am−1 · · · · · · A2 A1 A0


∈ Rp1m×p2m.

For ease, Lp1×p2(A) = Lp1×p2




A0

A1

...
Am−1


 if A =


A0

A1

...
Am−1

, and this notation makes no confusion for the subscript

·p1×p2 demonstrates how the matrix is composed. Similarly,

Up1×p2




A0

A1

...
Am−1


 =



Am−1 · · · · · · A2 A1 A0

Am−1
. . . A2 A1

. . .
. . . A2

. . .
. . .

...

Am−1
...

Am−1


∈ Rp1m×p2m.

Besides,

Lp2×p1
([
A0 A1 · · · Am−1

]T)T
= Up1×p2



Am−1
...
A1

A0


 ,

Up2×p1
([
A0 A1 · · · Am−1

]T)T
= Lp1×p2



Am−1
...
A1

A0


 .

The following lemma will be used several times later.

Lemma 2.1. Given Y ∈ Rp1×p2 , Dt−1 ∈ Rp1(t−1)×p2 , let

Tt = Lp1×p2
([

Y
Dt−1

])
=

[
Y 0

Dt−1 Tt−1

]
∈ Rp1t×p2t.

Then

(Ip1t + TtT
T
t )−1 = Up1×p1

([
Q2

Q1

])
(It ⊗Q1)−1 Up1×p1

([
Q2

Q1

])T

+ Up1×p2
([
Q3

0

])
(It ⊗

[
W +WY TYW

]
)−1 Up1×p2

([
Q3

0

])T

,

(2.1a)

where Q1, Q2, Q3 are solutions to the following equations respectively, and Q1,W +WY TYW are nonsingular:(
Ip1(t−1) +Dt−1D

T
t−1 + Tt−1T

T
t−1
)
Q3 = Dt−1, W = Ip1 −QT

3Dt−1, (2.1b)

(Ip1t + TtT
T
t )

[
Q2

Q1

]
=

[
0
Ip1

]
, Q1 ∈ Rp1×p1 . (2.1c)

3 DARE

Given a linear time-invariant control system in discrete-time:

x0 is given,

xk+1 = Axk +Buk, k = 0, 1, 2, . . . ,

yk = Cxk,

(3.1)
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where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n. Suppose the following condition holds through out this section:

(A,B) is d-stabilizable and (C,A) is d-detectable,

or equivalently, rank(
[
A− λI BBT

]
) = rank(

[
AT − λI CTC

]
) = n for any λ ∈ C \ D, where D is the open unit

disk.
Its linear-quadratic optimal control can be expressed as

arg min
{uk}

1

2

∞∑
k=0

(yTk yk + uTk uk) =
{
uk = −(I +BTX?B)−1BTX?Axk

}
, (3.2)

where X? is the unique symmetric positive semi-definite d-stabilizing solution of the DARE [12, 15, 34, 40]:

−X +ATX(I +BBTX)−1A+ CTC = 0. (3.3)

Here a solution X is called d-stabilizing, if the closed loop matrix AX = (I + BBTX)−1A is d-stable, namely all of
its eigenvalues lie in the open unit disk D, or equivalently, ρ(AX) < 1.

3.1 In the operator view

In this section, we briefly state the existence and uniqueness of X? shown by the operator theory, which is based on
the monograph [26].

In order to make things simple, first we assume that A is d-stable. Write x = {xk}k∈N,u = {uk}k∈N,y = {yk}k∈N.
Let `2,n+ denote the Hilbert space of norm-square summable Rn-valued series.

Suppose u ∈ `2,m+ and consider the cost functional (a.k.a. restricted quadratic index)

J(u) =

+∞∑
k=0

[
xk
uk

]T [
Q L
LT R

] [
xk
uk

]
=

〈[
x
u

]
,

[
Q L
LT R

] [
x
u

]〉
`2,n+ ×`2,m+

,

where x satisfies (3.1). Here for any matrix U and any series z = {zk}k∈N, Uz is understood as Uz := {Uzk}k∈N.
In fact x = Fx0 + Lu ∈ `2,n+ , where F : Rn → `2,n+ , (Fx0)k = Akx0, k ≥ 0, and L : `2,m+ → `2,n+ , (Lu)0 =

0, (Lu)k =
∑k−1
i=0 A

k−i−1Bui, k ≥ 1. Clearly F and L are bounded linear operators. Also, it is not difficult to find
L is a Toeplitz operator. Hence

J(u) =

〈[
x
u

]
,

[
Q L
LT R

] [
x
u

]〉
=

〈[
F L

I

] [
x0
u

]
,

[
Q L
LT R

] [
F L

I

] [
x0
u

]〉
=

〈[
x0
u

]
,

[
Po P
P∗ R

] [
x0
u

]〉
(A ∗ is the adjoint of operator A )

where Po = F ∗QF ,P = F ∗(QL +L),R = R+LTL + L ∗L+ L ∗QL . Then the unique symmetric d-stabilizing
solution X? of the DARE (3.3) is given by

X? = Po −PR−1P∗. (3.4)

Clearly, Po,P,R are bounded linear operators. [26, Theorem 4.7.1] tells that the DARE (3.3) has a unique d-
stabilizing solution, if and only if the Toeplitz-like operator R has a bounded inverse.

In the following, we derive the (infinite) matrix representation of (3.4), which is not provided in [26]. Here we
only show a simple case that Q = CTC,L = 0, R = I. Obviously, the matrix representations of F ,L , still denoted
by F ,L , are

F =


I
A
A2

A3

...

 , L =


0
B 0
AB B 0
A2B AB B 0
...

. . .
. . .

. . .
. . .

 .
Hence

X? = F ∗QF −F ∗(QL + L)(R+ LTL + L ∗L+ L ∗QL )−1(L ∗QT + LT)F
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= F ∗CTCF −F ∗CTCL (I + L ∗CTCL )−1L ∗CTCF

= F ∗CT
[
I − CL (I + L ∗CTCL )−1L ∗CT

]
CF

(1.3)
= F ∗CT(I + CL L ∗CT)−1CF .

Write

V = CF =


C
CA
CA2

CA3

...

 , T = CL =


0
CB 0
CAB CB 0
CA2B CAB CB 0
...

. . .
. . .

. . .
. . .

 , (3.5)

and then V : Rn → `2,l+ ,T : `2,m+ → `2,l+ , (I + T T ∗)−1 : `2,l+ → `2,l+ are bounded linear operators, and T is also a
Toeplitz operator. Thus

X? = V ∗(I + T T ∗)−1V , (3.6)

which is a closed form of the d-stabilizing solution.
For the case that A is not d-stable, does a similar closed form of the d-stabilizing solution exist? In this case,

the operators F ,L are no longer bounded linear operators and the series involved may not converge. In the next
subsection, we will show (3.6) is also the d-stabilizing solution of the DARE (3.3) even for the unstable case.

3.2 In the matrix view

It is well known that X? = limt→∞Xt, where Xt is generated by the difference Riccati equation (DRE):

X0 = 0, Xt+1 = D(Xt) := CTC +ATXt(I +BBTXt)
−1A, (3.7)

which can be recognized as a variant of fixed point iteration for (3.3).
Based on the fixed point iteration, in 1970s, people have developed the doubling algorithm to solve DAREs (3.3)

and CAREs. Anderson [2] proposed a variant, which is recently usually called SDA and has three iterative recursions:

Ak+1 = Ak(In +GkHk)−1Ak, (3.8a)

Gk+1 = Gk +Ak(In +GkHk)−1GkA
T
k , (3.8b)

Hk+1 = Hk +AT
kHk(In +GkHk)−1Ak, (3.8c)

provided that all matrix inversions are feasible (i.e., In + GkHk are nonsingular for k = 0, 1, · · · ). The initial terms
are usually set by

A0 = A, G0 = BBT, H0 = CTC.

It has been shown that for those initial terms, In + GkHk are nonsingular for k ≥ 0, and Ak → 0, Gk → Y? (the
solution to the dual DARE) and Hk → X?, all quadratically [40] except for the critical case [25].

In [2], it is stated clearly that Hk = X2k , implying that the iteration for Hk can be treated as an acceleration
of (3.7), because it only computes the terms X1, X2, X4, . . . , X2k , . . . . Moreover, [2] also argued that (3.7) with any
initial X0 � 0 leads Xt → X? in usual situation (but did not mention which situation satisfies).

Questions arise naturally, of which two are:

1. can we even only compute less terms in the sequence {Xt}, namely accelerate (3.7) even further?

2. how things go when arbitrary initial terms are set?

Before we begin the analysis, a simple property of the DRE (3.7) is given.

Lemma 3.1. The operator D is monotonic on the set consisting of all positive semi-definite matrices with respect to
the partial order “�”. In details, if Z1 � 0, Z2 � 0, then

Z1 � Z2 ⇒ D(Z1) � D(Z2).

Proof. First suppose Z2 � 0 and thus Z2 is nonsingular. Then

Z1 � Z2 ⇔ Z−11 � Z−12 ⇔ (Z−11 +BBT)−1 � (Z−12 +BBT)−1

⇔ Z1(I +BBTZ1)−1 � Z2(I +BBTZ2)−1 ⇒ D(Z1) � D(Z2).

If Z2 is singular, then Z2 + εI � 0 for any ε > 0. Thus, taking limits yields

Z1 � Z2 ⇔ Z1 + εI � Z2 + εI ⇒ D(Z1 + εI) � D(Z2 + εI)⇒ D(Z1) � D(Z2).
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Then we may ensure the validity of (3.6).

Theorem 3.1. Write

Vt =



C
CA
CA2

...

...
CAt−1


, Tt =



0
CB 0

CAB CB
.. .

...
. . .

. . .
... CB 0

CAt−2B · · · · · · CAB CB 0


, (3.9)

T1 = 0. Then the terms of the sequence {Xt} generated by the DRE (3.7) are given by

Xt = V T
t (I + TtT

T
t )−1Vt, t = 1, 2, . . . . (3.10)

Moreover, {Xt} is monotonically nondecreasing, and Xt → X?, the d-stabilizing solution of DARE (3.3).

Proof. Clearly X0 = 0, X1 = CTC. Using some calculations, we have

X2 = CTC +ATCTC(I +BBTCTC)−1A

= CTC +ATCT(I + CBBTCT)−1CA

=

[
C
CA

]T [
I

I + CBBTCT

]−1 [
C
CA

]

=

[
C
CA

]T(
I +

[
0
CB 0

] [
0
CB 0

]T)−1 [
C
CA

]
.

Now (3.10) is correct for t = 1, 2. Assuming (3.10) is correct for t, we are going to prove it is also correct for t+ 1.
By the DRE (3.7),

Xt+1 = CTC +ATV T
t

(
I + TtT

T
t

)−1
Vt

(
I +BBTV T

t

(
I + TtT

T
t

)−1
Vt

)−1
A

(1.2)
= CTC +ATV T

t

(
I + TtT

T
t

)−1 (
I + VtBB

TV T
t

(
I + TtT

T
t

)−1)−1
VtA

= CTC +ATV T
t

(
I + TtT

T
t + VtBB

TV T
t

)−1
VtA

=

[
C
VtA

]T [
I

I + TtT
T
t + VtBB

TV T
t

]−1 [
C
VtA

]

=

[
C
VtA

]T(
I +

[
0
VtB Tt

] [
0
VtB Tt

]T)−1 [
C
VtA

]
= V T

t+1(I + Tt+1T
T
t+1)−1Vt+1.

Then we illustrate the monotonicity of the sequence.
Since X1 � X0 = 0, by Lemma 3.1, X2 = D(X1) � D(X0) = X1. Similarly 0 = X0 � X1 � X2 � · · · � Xt � · · · ,

namely the sequence {Xt} generated by (3.7) is monotonic. On the other hand, the d-stabilizing solution X? is
also the unique symmetric positive semi-definite solution. Thus, X? � 0 = X0, and X? = D(X?) � D(X0) = X1.
Similarly X? � Xt for any t, namely the sequence {Xt} is bounded. As a result, Xt converges. Write Xt → X∞, and
then X∞ is a symmetric positive semi-definite solution to the DARE (3.3). Then the uniqueness of the symmetric
positive semi-definite solution forces X? = X∞. In other words, it holds that Xt → X?.

It is not difficult to discover that Theorem 3.1 coincides with the decoupled formulae of the dSDA for DAREs
introduced in [21] at t = 2k, which is actually guaranteed by the fact that the sequence {Hk} generated by SDA
(3.8c) is a subsequence of {Xt}.

One can easily find (3.10) is the truncated form of (3.6), a Toeplitz-structured closed form of X?, whose validity
for the d-stable case has been proved by the operator theory in Section 3.1. Note that under the assumption that
A is d-stable, Vt and Tt, treated as the truncations of V and T , converges to V and T respectively, by the fact
that V ,T are bounded linear operators. With the help of operator theory, Xt → X?. To the opposite, for the case
that A is not d-stable, V and T are no longer bounded, and it would be difficult to show Xt → X? by the operator
theory. However, the matrix analysis reveals that Xt → X?, which implies X? indeed has the closed form (3.6) in the
unstable case.
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3.3 Efficient method

Now we acquire the non-iterative form (3.10) of Xt, which allows us to compute the terms Xt directly for arbitrary
t. In the following, we will work on an efficient method to compute Xt for any given t.

Using the notations for Toeplitz matrices in Section 2, we have

Tt = Ll×m
([

0
Vt−1B

])
=

[
0 0

Ll×m(Vt−1B) 0

]
=

[
0 0

Vt−1B Tt−1

]
.

Thus,
Ll×m(Vt−1B)Ll×m(Vt−1B)T = Tt−1T

T
t−1 + Vt−1BB

TV T
t−1,

and
Xt = CTC +ATV T

t−1
[
I + Ll×m(Vt−1B)Ll×m(Vt−1B)T

]−1
Vt−1A. (3.11)

Clearly Ll×m(Vt−1B) is block-Toeplitz. Hence the results in Section 2 can be applied.
By Lemma 2.1, Xt can be computed by solving only l +m rather than n equations, shown in Theorem 3.2.

Theorem 3.2. Let (
I(t−1)l + Ll×m(Vt−1B)Ll×m(Vt−1B)T

) [Q2

Q1

]
=

[
0
Il

]
, Q1 ∈ Rl×l, (3.12a)

(
I(t−1)l + Ll×m(Vt−1B)Ll×m(Vt−1B)T

) [Q4

Q3

]
= Vt−1B, Q4 ∈ Rl×m, (3.12b)

and W = Im −
[
Q4

Q3

]T
Vt−1B. Then the sequence Xt defined by (3.10) can be generated by

Xt =

CΞ1

Ξ2

T Il (It−1 ⊗Q1)−1

(It−1 ⊗W )−1

CΞ1

Ξ2

 , (3.13)

where

Ξ1 = U l×l
([
Q2

Q1

])T

Vt−1A ∈ R(t−1)l×n, Ξ2 = U l×m
([
Q3

0

])T

Vt−1A ∈ R(t−1)m×n.

Proof. By Lemma 2.1 with Y ← 0, Dt−1 ← Vt−1B, we have

(I + TtT
T
t )−1 = U l×l

([
Q̃2

Q1

])
(I ⊗Q1)−1 U l×l

([
Q̃2

Q1

])T

+ U l×m
([
Q̃3

0

])
(I ⊗W )−1 U l×m

([
Q̃3

0

])T

,

where (
I + Ll×m(Vt−1B)Ll×m(Vt−1B)T

)
Q̃3 = Vt−1B, W = I − Q̃T

3 Vt−1B,

(I + TtT
T
t )

[
Q̃2

Q1

]
=

[
0
Il

]
, Q1 ∈ Rl×l.

Note that

(I + TtT
T
t )−1 =

[
I (

I + Ll×m(Vt−1B)Ll×m(Vt−1B)T
)−1] .

Hence Q̃2 =

[
0l×l
Q2

]
where (

I + Ll×m(Vt−1B)Ll×m(Vt−1B)T
) [Q2

Q1

]
=

[
0
Il

]
.

Write Q̃3 =

[
Q4

Q3

]
where Q4 ∈ Rl×m, and then it follows that

(
I + Ll×m(Vt−1B)Ll×m(Vt−1B)T

)−1
= U l×l

([
Q2

Q1

])
(I ⊗Q1)−1 U l×l

([
Q2

Q1

])T

+ U l×m
([
Q3

0

])
(I ⊗W )−1 U l×m

([
Q3

0

])T

.

(3.14)

Then the result is a direct consequence of (3.11).
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Theorem 3.2 suggests a new algorithm, Algorithm 1, to approximate the solution of DAREs. The key is how to
fast compute Q∗,∗, or equivalently solve the linear systems (3.12), and compute the products of U∗(∗)TVt−1A. Both
are related to the manipulations on block Toeplitz matrices. It is well known that the fast Fourier transform (FFT)
can be used to accelerate the calculation with Toeplitz matrices involved, see, e.g., [44, 28, 29] and the references
therein.

Algorithm 1 FFT-based Toeplitz-structured Approximation (FTA) for DAREs

Input: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and t.
1: Compute sequentially C ·A,CA ·A, . . . , CAt−3 ·A,CAt−2 ·A, and form Vt−1 ∈ R(t−1)l×n by stacking C and the

first t− 2 terms vertically in order, and form Vt−1A by stacking the t− 1 terms vertically in order.
2: Compute Vt−1B ∈ R(t−1)l×m.
3: Use Preconditioned Conjugate Gradient (PCG) method to solve (3.12).

4: Compute W = Im −
[
Q4

Q3

]T
Vt−1B and then the Cholesky factorizations of Q1 = LQL

T
Q and W = LWL

T
W .

5: Use fast multiplication to obtain S1 = U l×l
([
Q2

Q1

]
L−T
Q

)T

Vt−1A ∈ R(t−1)l×n and S2 =

U l×m
([
Q3

0

]
L−T
W

)T

Vt−1A ∈ R(t−1)m×n, and form S =

CS1

S2

 ∈ R(tl+(t−1)m)×n.

Output: S which satisfies STS ≈ X? ∈ Rn×n.

Some remarks are given below to illustrate the algorithm.

Parameter and output

1. In order to use FFT, t is usually chosen as powers of 2, namely t = 2k. There is no strategy to determine a proper
t in advance. In practice, we may choose a heuristic k, for example 5–8. If the output is a good approximation
of the solution, then we stop here; otherwise, we use the output as a new initial guess, and run another round
to achieve a better approximation; the process is repeated until convergence, namely some criterion is satisfied.
The details and the validity of implementing a new initial guess are discussed in Section 3.4.

2. Note that rank(S) = rank(V2k). Numerically V2k probably has rank much less than 2kl. An obvious clue is that
V2k contains a power series of A performing on C, and as k goes larger and larger, the terms in it become more
and more likely to be linearly dependent. This implies that (3.13) is not a compact form. To deal with this,
some compression technique may be brought in. This idea needs more discussions on the convergence, which is
given in Section 3.4.

3. In step 3, we use PCG to solve (3.12). To make calculation least, the preconditioner can be chosen as the
diagonal part of the linear system. We will use it in the Experiments part below. Other preconditioners may
also be considered. In practice, the number of steps of PCG is fixed on an integer M . One reason is that if
the condition number of the system is not too large, then the PCG would converge fast; another reason is that
stopping in the midway will not hurt the outer convergence on X?, which is implied by Lemma 3.2 below.

4. In the output, we do not give an approximation of X? directly but its factor, namely a tl × n matrix S. If
some compression technique is used during the process, an approximation of S would have relatively small low
row rank, say r � n. Then in practice we only need the products of X and other matrices, for example, in
obtaining the optimal control (3.2). The setting r < n makes multiplication with X?’s factor save time and
space. This is also considered in many literatures, e.g., [11].

Time complexity Complexity for S, the factor of Xt:

1. Step 1, compute Vt−1A, namely CA,CA2, . . . , CAt−1, in (t− 1)(2n− 1)nl flops.

2. Step 2, compute Vt−1B in (t− 1)(2n− 1)lm flops.

3. Step 3, use M -step PCG (suppose one-step PCG is done in Ntl ln l flops for fast multiplication where N is a
constant), to compute Q∗,∗, in O(MNtl[ln2 t+ ln(tl)](l +m)) flops.

4. Step 4, compute W in (2tl − 1)m(m+1)
2 +m flops, and LQ, LW , D̃Q, D̃W in 2

3 l(l − 1)(l + 4) flops.

5. Step 5, compute

[
Q2

Q1

]
L−T
Q ,

[
Q3

0

]
L−T
W in tl3 + (t− 1)lm2 flops; compute S1, S2 in O(2Nntl ln l) flops.
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6. To sum up, assuming l � n,m � n and omitting lower order terms, the total complexity is 2ln2t + 2lmnt +
O(MNl(l +m)t ln2 t+ 2Nltn ln l) = O

(
t(n2 + ln2 t)

)
flops.

7. Suppose A is sparse, and the number of nonzero entries is nnz(A). Only Step 1 is different, and the total
complexity is O(ltnnz(A) + lmnt+MNl(l +m)t ln2 t+ 2Nltn ln l) = O

(
t(nnz(A) + n+ ln2 t)

)
flops.

Space complexity

1. Step 1, store Vt−1A in (t− 1)nl units.

2. Step 2, store Vt−1B in (t− 1)lm units.

3. Step 3, store Q∗,∗ in (t− 1)l(l +m) units.

4. Step 4, store W and then LW , LQ in part of the storage for Vt−1B. (The storage is enough and no extra units
are needed because the three matrices need in total m(m+ 1)/2 + l(l+ 1)/2 units, which is less than (t− 1)lm.)

5. Step 5, store S2 in the storage for Vt−1B and additional storage, consuming in total (t− 1)ln units; store S1 in
the storage for Vt−1A.

6. to sum up, the total storage is (t− 1)l(2n+ l +m) = O(tn) units.

3.4 Arbitrary initial term

In this subsection, we consider (3.7) with an arbitrary initial X0 = ΓTΓ � 0 with Γ ∈ Rl̃×n:

X0 = ΓTΓ, Xt+1 = D(Xt) = CTC +ATXt(I +BBTXt)
−1A. (3.15)

Note that (3.15) is the same iteration as (3.7) with a different initial matrix.

Theorem 3.3. Write
Υt =

[
At−1B · · · AB B

]
.

Then the sequence {Xt} generated by (3.15) is given by

Xt =

[
Vt
ΓAt

]T(
I +

[
Tt
ΓΥt

] [
Tt
ΓΥt

]T)−1 [
Vt
ΓAt

]
, (3.16)

where Vt, Tt is defined by (3.9).

Remark 3.1. Note that (3.16) coincides with (3.10) at Γ = 0.

Proof. First examine X1.[
C
ΓA

]T(
I +

[
0
ΓB

] [
0
ΓB

]T)−1 [
C
ΓA

]
= CTC +ATΓT(I + ΓBBTΓT)−1ΓA

= CTC +ATΓTΓ (I +BBTΓTΓ )−1A = X1.

Then examine the recursion.

CTC +ATXt(I +BBTXt)
−1A

= CTC +AT

[
Vt
ΓAt

]T(
I +

[
Tt
ΓΥt

] [
Tt
ΓΥt

]T)−1 [
Vt
ΓAt

]I +BBT

[
Vt
ΓAt

]T(
I +

[
Tt
ΓΥt

] [
Tt
ΓΥt

]T)−1 [
Vt
ΓAt

]−1A
(1.2)
= CTC +AT

[
Vt
ΓAt

]T(
I +

[
Tt
ΓΥt

] [
Tt
ΓΥt

]T
+

[
Vt
ΓAt

]
BBT

[
Vt
ΓAt

]T)−1 [
Vt
ΓAt

]
A

=

 C
VtA
ΓAt+1

T I
I +

[
Tt
ΓΥt

] [
Tt
ΓΥt

]T
+

[
VtB
ΓAtB

] [
VtB
ΓAtB

]T−1  C
VtA
ΓAt+1



=

[
Vt+1

ΓAt+1

]TI +

 0 0
VtB Tt
ΓAtB ΓΥt

 0 0
VtB Tt
ΓAtB ΓΥt

T

−1 [

Vt+1

ΓAt+1

]
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=

[
Vt+1

ΓAt+1

]T(
I +

[
Tt+1

ΓΥt+1

] [
Tt+1

ΓΥt+1

]T)−1 [
Vt+1

ΓAt+1

]
= Xt+1.

Theorem 3.4. Let Q1, Q2, Q3, Q4,W,Ξ1, Ξ2 as in Theorem 3.2. Then the sequence Xt defined by (3.16) can be
generated by

Xt =


C
Ξ1

Ξ2

ΞΓ


T 

Il
(It−1 ⊗Q1)−1

(It−1 ⊗W )−1

W−1Γ



C
Ξ1

Ξ2

ΞΓ

 ,
where

WΓ = Il̃ + ΓΥtΥ
T
t Γ

T −ΞT
1,Γ (I ⊗Q1)−1Ξ1,Γ −ΞT

2,Γ (I ⊗W )−1Ξ2,Γ ,

ΞΓ = ΓAt −ΞT
1,Γ (I ⊗Q1)−1Ξ1 −ΞT

2,Γ (I ⊗W )−1Ξ2 ∈ Rl̃×n,

and

Ξ1,Γ = U l×l
([
Q2

Q1

])T

Ll×m(Vt−1B)ΥT
t−1A

TΓT ∈ R(t−1)l×l̃,

Ξ2,Γ = U l×m
([
Q3

0

])T

Ll×m(Vt−1B)ΥT
t−1A

TΓT ∈ R(t−1)m×l̃.

Proof. By (3.16),

Xt =

[
Vt
ΓAt

]T [
I + TtT

T
t TtΥ

T
t Γ

T

ΓΥtT
T
t I + ΓΥtΥ

T
t Γ

T

]−1 [
Vt
ΓAt

]
= (∗)T

[
I + TtT

T
t

I + ΓΥtΥ
T
t Γ

T − ΓΥtTT
t (I + TtT

T
t )−1TtΥ

T
t Γ

T

]−1 [
I

−ΓΥtTT
t (I + TtT

T
t )−1 I

] [
Vt
ΓAt

]
=

[
Vt
ΞΓ

]T [
I + TtT

T
t

I + ΓΥtΥ
T
t Γ

T − ΓΥtTT
t (I + TtT

T
t )−1TtΥ

T
t Γ

T

]−1 [
Vt
ΞΓ

]
= V T

t (I + TtT
T
t )−1Vt +ΞT

Γ

(
I + ΓΥtΥ

T
t Γ

T − ΓΥtTT
t (I + TtT

T
t )−1TtΥ

T
t Γ

T
)−1

ΞΓ ,

where ΞΓ = ΓAt−ΓΥtTT
t (I+TtT

T
t )−1Vt and ∗ is used to indicate the same part limited by the symmetry. Similarly

to (3.11), by (3.14), writing L = Ll×m(Vt−1B), it can be simplified to

Xt = CTC +ATV T
t−1
(
I + LLT

)−1
Vt−1A

+ΞT
Γ

(
I + ΓΥtΥ

T
t Γ

T − ΓAΥt−1 LT(I + LLT)−1 LΥT
t−1A

TΓT
)−1

ΞΓ

= CTC +ΞT
1 (I ⊗Q1)−1Ξ1 +ΞT

2 (I ⊗W )−1Ξ2

+ΞT
Γ

(
I + ΓΥtΥ

T
t Γ

T −ΞT
1,Γ (I ⊗Q1)−1Ξ1,Γ −ΞT

2,Γ (I ⊗W )−1Ξ2,Γ

)−1
ΞΓ ,

where

ΞΓ = ΓAt − ΓAΥt−1 LT(I + LLT)−1Vt−1A = ΓAt −ΞT
1,Γ (I ⊗Q1)−1Ξ1 −ΞT

2,Γ (I ⊗W )−1Ξ2.

Note that the product of two lower triangular block-Toeplitz matrices is still a lower triangular block-Toeplitz

matrix. Hence writing Ξ1 =

[
Ξ1,c

Ξ1,b

]
where Ξ1,b ∈ Rl×n,

U l×l
([
Q2

Q1

])T

Ll×m(Vt−1B) = U l×l
([
Q2

Q1

])T [
It−1 ⊗ (CB) + Ll×m

([
0

Vt−2A

])
It−1 ⊗B

]
= U l×l

([
Q2

Q1

])T

It−1 ⊗ (CB) + Ll×n
([

0
Ξ1,c

])
It−1 ⊗B,

= U l×l
(

(CB)T
[
Q2

Q1

])T

+ Ll×m
([

0
Ξ1,c

]
B

)
.
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Similarly, writing Ξ2 =

[
Ξ2,c

Ξ2,b

]
where Ξ2,b ∈ Rl×n,

U l×l
([
Q3

0

])T

Ll×m(Vt−1B) = U l×l
(

(CB)T
[
Q3

0

])T

+ Ll×m
([

0
Ξ2,c

]
B

)
.

These can be used to reduce calculations for Ξ1,Γ and Ξ2,Γ .
Which choice of the initial matrix Γ makes the iteration (3.15) converge? Lemma 3.2 gives an easy sufficient

condition, which can be immediately applied to Algorithm 1, and used to deal with the situation where t must keep
small, as is declared in the illustration on the parameter and output for Algorithm 1 in Section 3.3.

Lemma 3.2. The unique positive semi-definite d-stabilizing solution X? of the DARE (3.3) is an attractor (i.e.,
asymptotically stable fixed point) of the DRE (3.7) or (3.15). Moreover, any symmetric matrix X satisfying one of
the two following condition lies in its attraction basin:

1. 0 � X � X?;

2. ‖X −X?‖ ≤ 1−η‖AX?‖
2

‖B(I+BTX?B)−1BT ‖ for some η ∈ [0, 1) and some norm ‖·‖ satisfying ‖I‖ = 1, ‖AX?‖ < 1.

As a result, (3.15) with the matrix above as its initial term converges to X?.

Proof. First calculate the differentials.

dD(X) = AT dX(I +BBTX)−1A+ATX d
(
(I +BBTX)−1

)
A

= AT dX(I +BBTX)−1A−ATX(I +BBTX)−1BBT dX(I +BBTX)−1A

= AT
[
I −X(I +BBTX)−1BBT

]
dX(I +BBTX)−1A

= AT(I +XBBT)−1 dX(I +BBTX)−1A

= AT
X dXAX ,

where AX is the closed loop matrix. In order to avoid the appearance of 4th-order tensor, we use vectorization to
obtain

d(vec D(X)) = AT
X ⊗AT

X d(vecX) and
d(vec D(X))

d(vecX)
= AT

X ⊗AT
X .

Since X? is d-stabilizing, ρ(AX?) < 1 and thus the Fréchet derivative at X? has norm less than 1, which guarantees
X? is an attractor.

For the first kind of matrices, by Lemma 3.1, X? = D t(X?) � D t(X) � D t(0)→ X?, which forces D t(X)→ X?.
For the second one, Writing X −X? = ∆,

‖AX‖ = ‖(I +BBTX)−1A‖
= ‖[I + (I +BBTX?)

−1BBT∆]−1(I +BBTX?)
−1A‖

≤ ‖[I +B(I +BTX?B)−1BT∆]−1‖‖(I +BBTX?)
−1A‖

≤ 1

1− ‖B(I +BTX?B)−1BT∆‖
‖(I +BBTX?)

−1A‖

≤ ‖AX?‖
1− ‖B(I +BTX?B)−1BT‖‖∆‖

≤ η

‖AX?
‖
.

Then we consider

D(X)−X? = D(X)−D(X?)

= ATX(I +BBTX)−1A−AT (I +X?BB
T )−1X?A

= AT (I +X?BB
T )−1(X −X?)(I +BBTX)−1A

= ATX?
(X −X?)AX ,

which implies ‖D(X)−X?‖ ≤ η‖X −X?‖. Thus, D t(X)→ X? by reasoning in the same way consecutively.

According to Lemma 3.2, the compression technique can be used in Algorithm 1 without breaking its convergence.
We roughly describe the process here: after performing Algorithm 1 for a small/mid t, a truncation technique (e.g.,
SVD/QR) is used on S to produce S′X = Γ ; then (3.16) is used to generate a new approximation; repeat this process
until convergence. To decrease the number of calculations, the same t is used in each outer iteration.
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4 CARE

Given a linear time-invariant control system in continuous-time:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n. Suppose the following condition holds through out this section:

(A,B) is c-stabilizable and (C,A) is c-detectable,

or equivalently, rank(
[
A− λI BBT

]
) = rank(

[
AT − λI CTC

]
) = n for any λ ∈ C \C−, where C− is the open left

half complex plane.
Its linear-quadratic optimal control can be expressed as

arg min
u(t)

∫ ∞
0

[
y(t)Ty(t) + u(t)Tu(t)

]
dt = −BTX?x(t),

where X? is the unique symmetric positive semi-definite c-stabilizing solution X of the CARE [12, 14, 34, 40]:

C (X) := ATX +XA−XBBTX + CTC = 0. (4.1)

Here a solution X is called c-stabilizing, if the closed loop matrix AX = A − BBTX is c-stable, namely all of its
eigenvalues lie in the open left half complex plane C−.

4.1 FTA and its equivalence to many other methods

Many numerical methods to solve CAREs are based on performing Cayley transformation on the associated Hamil-
tonian matrix

H =

[
A BBT

CTC −AT

]
.

For example, the SDA (3.8) for DAREs is also valid for CAREs. If the initial terms are set by

A0 = I + 2γK−T
γ , G0 = 2γÂ−1γ BBTK−1γ , H0 = 2γK−1γ CTCÂ−1γ ,

where Âγ = A − γI, γ > 0 and Kγ = ÂT
γ + CTCÂ−1γ BBT, then In + GkHk are nonsingular for k ≥ 0, and it holds

that Ak → 0, Gk → Y? (the solution to the dual CARE) and Hk → X?, all quadratically [37]. The special forms of
terms A0, G0, H0 are given by the Cayley transformation H 7→ (H+γI)(H−γI)−1 in order to generate a structured
symplectic matrix pair, see, e.g., in [24, Section 5.3].

Since the recursion of SDAs for DAREs and CAREs are the same, comparing the initial terms, it is clear that the
SDA for CAREs is calculating a subsequence generated by this DRE:

X0 = 0, Xt+1 = H0 +AT
0Xt (I +G0Xt)

−1
A0. (4.2)

Write Yγ = CÂ−1γ B, Bγ =
√

2γÂ−1γ B(I + Y T
γ Yγ)−1/2, Cγ =

√
2γ(I + YγY

T
γ )−1/2CÂ−1γ , Aγ = I + 2γÂ−1γ −BγY T

γ Cγ ,
and then

G0 = 2γÂ−1γ BBT(ÂT
γ + CTCÂ−1γ BBT)−1

= 2γÂ−1γ B(I +BTÂ−T
γ CTCÂ−1γ B)−1BTÂ−T

γ = BγB
T
γ ,

and similarly H0 = CT
γ Cγ , A0 = Aγ . The DRE (4.2) reads

X0 = 0, Xt+1 = CT
γ Cγ +AT

γXt

(
I +BγB

T
γ Xt

)−1
Aγ . (4.3)

The form of (4.3) coincides with (3.7). Hence the discussions on DAREs can be adopted to CAREs.
Wong and Balakrishnan [45, 46] proposed the quadratic ADI method

X0 = 0,

Xt+1/2(A− γt+1I −BBTXt) = −CTC − (AT + γt+1I)Xt, <γt+1 > 0,

(AT − γt+1I −Xt+1/2BB
T)Xt+1 = −CTC −Xt+1/2(A+ γt+1I),

12



and presented in [45, (10)]

Xt+1 = CT
γt+1

Cγt+1
+AT

γt+1
Xt

(
I +Bγt+1

BT
γt+1

Xt

)−1
Aγt+1

,

which is the same as (4.3) as long as γt+1 = γ.
Lin and Simoncini [38] developed the Cayley transformed Hamiltonian subspace iteration[

Mt+1

Nt+1

]
= (H−γt+1I)−1(H+γt+1I)

[
I
−Xt

]
, <γt+1 < 0,

Xt+1 = −Nt+1M
−1
t+1.

Benner et al. [5] devoted the RADI method, originated from the incorporation technique (which we will illustrate
later), and proved that if the initial approximation is 0 and the same shifts are used, the RADI method is equivalent
to quadratic ADI method and Cayley transformed Hamiltonian subspace iteration, together with invariant subspace
approach in [1, 4] for special cases.

From the analysis above, we can conclude that the FTA in this paper and the SDA are also equivalent to these
methods under the same condition that the initial approximation is 0 and the shift γ is consistently used, in the sense
that they all produce the same sequence (subsequence for SDA).

Clearly the FTA, Algorithm 1, can be performed on the corresponding DARE to obtain the solution of the CARE.
Rather than directly using the results in Section 3.2, we borrow the same analysis there and eventually obtain

the following analogies of Theorems 3.1 and 3.2.

Theorem 4.1. Let Ã = I + 2γÂ−1γ , B̃ =
√

2γÂ−1γ B, C̃ =
√

2γCÂ−1γ . Write

Ṽt =



C̃

C̃Ã

C̃Ã2

...

...

C̃Ãt−1


, T̃t =



Yγ
C̃B̃ Yγ

C̃ÃB̃ C̃B̃
. . .

...
. . .

. . .
... C̃B̃ Yγ

C̃Ãt−2B̃ · · · · · · C̃ÃB̃ C̃B̃ Yγ


,

T̃1 = Yγ . Then the terms of the sequence {Xt} generated by the DRE (4.3) are

Xt = Ṽ T
t (I + T̃tT̃

T
t )−1Ṽt, t = 1, 2, . . . . (4.4)

Moreover, {Xt} is monotonically nondecreasing, and Xt → X?, the solution of CARE (4.1).

Proof. The monotonicity and the convergence of the sequence are the same as that for DAREs in Section 3.2 and
hence omitted. Only (4.4) is proved here.

It is easy to verify that (4.4) is correct for t = 1. Assuming (4.4) is correct for t, we are going to prove it is also
correct for t+ 1. By the DRE (4.3),

Xt+1 = C̃T(I + YγY
T
γ )−1C̃ + (Ã− B̃Y T

γ (I + YγY
T
γ )−1C̃)TṼ T

t

(
I + T̃tT̃

T
t

)−1
Ṽt

·
(
I + B̃(I + Y T

γ Yγ)−1B̃TṼ T
t

(
I + T̃tT̃

T
t

)−1
Ṽt

)−1
(Ã− B̃Y T

γ (I + YγY
T
γ )−1C̃)

(1.2)
= C̃T(I + YγY

T
γ )−1C̃ + (Ã− B̃Y T

γ (I + YγY
T
γ )−1C̃)TṼ T

t

·
(
I + T̃tT̃

T
t + ṼtB̃(I + Y T

γ Yγ)−1B̃TṼ T
t

)−1
Ṽt(Ã− B̃Y T

γ (I + YγY
T
γ )−1C̃)

= (∗)T
[
I + YγY

T
γ

I + T̃tT̃
T
t + ṼtB̃(I + Y T

γ Yγ)−1B̃TṼ T
t

]−1 [
C̃

ṼtÃ− ṼtB̃Y T
γ (I + YγY

T
γ )−1C̃

]

= (∗)T
[
I + YγY

T
γ

I + T̃tT̃
T
t + ṼtB̃B̃

TṼ T
t − ṼtB̃Y T

γ (I + YγY
T
γ )−1YγB̃

TṼ T
t

]−1
·
[

I

−ṼtB̃Y T
γ (I + YγY

T
γ )−1 I

] [
C̃

ṼtÃ

]
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=

[
C̃

ṼtÃ

]T [
I + YγY

T
γ YγB̃

TṼ T
t

ṼtB̃Y
T
γ I + T̃tT̃

T
t + ṼtB̃B̃

TṼ T
t

]−1 [
C̃

ṼtÃ

]

=

[
C̃

ṼtÃ

]T(
I +

[
Yγ 0

ṼtB̃ T̃t

] [
Yγ 0

ṼtB̃ T̃t

]T)−1 [
C̃

ṼtÃ

]
= Ṽ T

t+1(I + T̃t+1T̃
T
t+1)−1Ṽt+1.

Here ∗ is still used to indicate the same part limited by the symmetry.

Using the notations for Toeplitz matrices in Section 2, we have

T̃t = Ll×m
([

Yγ
Ṽt−1B̃

])
= It ⊗ Yγ +

[
0 0

Ll×m(Ṽt−1B̃) 0

]
=

[
Yγ 0

Ṽt−1B̃ T̃t−1

]
.

Theorem 4.2. Let (
Itl + T̃tT̃

T
t

)[Q2

Q1

]
=

[
0
Il

]
, Q1 ∈ Rl×l, (4.5a)(

I(t−1)l + Ṽt−1B̃B̃
TṼ T

t−1 + T̃t−1T̃
T
t−1

)
Q3 = Ṽt−1B̃, (4.5b)

and W = Im −QT
3 Ṽt−1B̃. Then the sequence Xt defined by DRE (4.4) can be generated by

Xt =

[
Ξ1

Ξ2

]T [
(It ⊗Q1)−1

(It ⊗
[
W +WY T

γ YγW
]
)−1

] [
Ξ1

Ξ2

]
, (4.6)

where

Ξ1 = U l×l
([
Q2

Q1

])T

Ṽt ∈ Rtl×n, Ξ2 = U l×m
([
Q3

0

])T

Ṽt ∈ Rtm×n.

Proof. By Lemma 2.1 with Y ← Yγ , Dt−1 ← Ṽt−1B̃,

(I + T̃tT̃
T
t )−1 = U l×m

([
Q2

Q1

])
(I ⊗Q1)−1 U l×m

([
Q2

Q1

])T

+ U l×m
([
Q3

0

]) (
I ⊗

[
W +WY T

γ YγW
])−1 U l×m([Q3

0

])T

.

(4.7)

Then the result follows from (4.4).

Theorem 4.2 suggests a similar algorithm, Algorithm 2, to approximate the solution of CAREs.
Some remarks are given below to illustrate the algorithm.

Parameter and output

1. Considerations similar to Algorithm 1 have to be made. Eq. (4.6) is not a compact form either, and some
truncation/reduction/shrinking technique may be brought in.

Time complexity Complexity for S, the factor of Xt:

1. Step 1, compute Âγ and its PLU factorization in n+ n(n−1)(4n+1)
6 flops.

2. Step 2, compute C̃, B̃, Yγ in 2n2m+ 2n2l + nm+ nl + lm(2n− 1) flops.

3. Step 3, compute Ṽt, namely C̃Ã, C̃Ã2, . . . , C̃Ãt−1, in (t− 1)[2n2l + nl + nl] flops.

4. Step 4, compute Ṽt−1B̃ in (t− 1)(2n− 1)lm flops.

5. Step 5, Use M -step PCG (suppose one-step PCG is done in Ntl ln l flops for fast multiplication where N is a
constant), to compute Q∗,∗, in O(MNtl[ln2 t+ ln(tl)](l +m)) flops.

6. Step 6, compute W, W̃ in (2tl−1)m(m+1)
2 +m+(2m−1)lm+(2l−1)m(m+1)

2 flops, and LQ, LW in 2
3 l(l−1)(l+4)

flops.

14



Algorithm 2 FFT-based Toeplitz-structured Approximation (FTA) for CAREs

Input: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and γ, t.
1: Compute Âγ = A − γI and generate the linear-system solver Â−1γ for the sparse A (or its PLU factorization

Âγ = PLU for the dense A).

2: Compute (tmp) = U−1L−1P−1B, C̃ =
√

2γCÂ−1γ by the linear solver or forward/backward substitution, and

compute B̃ =
√

2γ(tmp), Yγ = C(tmp).

3: Compute sequentially C̃ · Ã, C̃Ã · Ã, . . . , C̃Ãt−3 · Ã, C̃Ãt−2 · Ã by the way (tmp)Ã = (tmp) + 2γ(tmp)Â−1γ by the

linear solver or forward/backward substitution, and form Ṽt ∈ Rtl×n by stacking C̃ and the t− 1 terms vertically

in order, where the first t− 1 terms consists of Ṽt−1.

4: Compute Ṽt−1B̃ ∈ R(t−1)l×m and form

[
Yγ

Ṽt−1B̃

]
∈ Rtl×m.

5: Use Preconditioned Conjugate Gradient method to solve (4.5).

6: Compute W = Im − QT
3 Ṽt−1B̃, (tmp) = YγW, W̃ = W + (tmp)

T
(tmp) and then the Cholesky factorizations of

Q1 = LQL
T
Q and W̃ = LWL

T
W .

7: Use fast multiplication to obtain S1 = U l×l
([
Q2

Q1

]
L−T
Q

)T

Ṽt ∈ Rtl×n and S2 = U l×m
([
Q3

0

]
L−T
W

)T

Ṽt ∈ Rtm×n,

and form S =

[
S1

S2

]
∈ Rt(l+m)×n.

Output: S which satisfies STS ≈ X? ∈ Rn×n.

7. Step 7, compute

[
Q2

Q1

]
L−T
Q ,

[
Q3

0

]
L−T
W in tl3 + (t− 1)lm2 flops; compute S1, S2 in O(2Nntl ln l) flops.

8. To sum up, assuming l� n,m� n and omitting lower order terms, the total complexity is 2
3n

3 + 2(l+m)n2 +

2lmn+ 2ln2t+ 2lmnt+ O(MNl(l +m)t ln2 t+ 2Nltn ln l) = 2
3n

3 + O
(
t(n2 + ln2 t)

)
flops.

9. Suppose A is sparse, and the number of nonzero entries is nnz(A). The PLU factorization in Step 1 can be
replaced by an iterative solver with at most P steps, such as CG, MINRES and GMRES. The total complexity
is O(P (m + l) nnz(A) + lmn + ltnnz(A) + lmnt + MNl(l + m)t ln2 t + 2Nltn ln l) = O

(
t(nnz(A) + n+ ln2 t)

)
flops. It is worthwhile to mention that computing Â−1γ or solving the corresponding linear systems is necessary
for all methods like RADI and the Cayley transformed Hamiltonian subspace iteration.

Space complexity

1. The storage is similar to that of Algorithm 1.

4.2 Incorporation technique

In the following, we consider the incorporation technique (a.k.a. defect correction). The key idea is: once an

approximate solution X̃ is obtained, letting the difference from the exact solution X? be ∆, namely X? = X̃ + ∆,
the difference satisfies AT(X̃ +∆) + (X̃ +∆)A+CTC − (X̃ +∆)BBT(X̃ +∆) = 0, from which an approximation ∆̃

can be generated and then X̃ + ∆̃ should be an approximate solution to the original equation better than X̃. More
details can be found in [24, 5]. The following lemma is important as the guarantee of the validity of the incorporation
technique.

Lemma 4.1 ([5, Theorem 1]). Let X̃ be an approximation to a solution to (4.1).

1. ∆ = X? − X̃ is a solution to the equation

(A−BBTX̃)T∆+∆(A−BBTX̃) + C (X̃)−∆BBT∆ = 0. (4.8)

2. Conversely, if ∆ is a solution to (4.8), then X̃ + ∆ is a solution to (4.1). Moreover, if X̃ � 0 and ∆ is a

c-stabilizing solution to (4.8), then X̃ +∆ is the c-stabilizing solution to (4.1).

3. If X̃ � 0,C (X̃) � 0, then ∆ is the unique c-stabilizing solution to (4.8).

4. If X̃ � 0,C (X̃) � 0, then ∆ � X?.
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To make the incorporation technique useful for Algorithm 2, the fundamental problem we face is the low rank
factorization of C (X̃). Let X̃ = Xt that we have obtained.

Theorem 4.3. Let 1t ∈ Rt be a vector with each entry one. Then for Xt defined by DRE (4.3), C (Xt) = CT
t Ct,

where
C0 = C, Ct = C +

√
2γ(1T

t ⊗ Il)(I + T̃tT̃
T
t )−1Ṽt. (4.9)

Proof. Clearly,

C (Xt) = ATXt +XtA+ CTC −XtBB
TXt

= [γI + 2γ(Ã− I)−T]Xt +Xt[γI + 2γ(Ã− I)−1] + 2γ(Ã− I)−TC̃TC̃(Ã− I)−1

− 2γXt(Ã− I)−1B̃B̃T(Ã− I)−TXt

= 2γ
[
(Ã− I)−TC̃TC̃(Ã− I)−1 + (Ã− I)−TXt +Xt(Ã− I)−1 +Xt −Xt(Ã− I)−1B̃B̃T(Ã− I)−TXt

]
.

Note that by (4.4)

Xt(Ã− I)−1B̃ = Ṽ T
t (I + T̃tT̃

T
t )−1Ṽt(Ã− I)−1B̃

= Ṽ T
t (I + T̃tT̃

T
t )−1


C̃

C̃Ã
...

C̃Ãt−1

 (Ã− I)−1B̃

= Ṽ T
t (I + T̃tT̃

T
t )−1


Yγ

C̃B̃ + Yγ
...

C̃Ãt−2B̃ + · · ·+ C̃B̃ + Yγ



= Ṽ T
t (I + T̃tT̃

T
t )−1T̃t


Im
Im
...
Im

 = Ṽ T
t (I + T̃tT̃

T
t )−1T̃t(1t ⊗ Im),

and

Xt(Ã− I)−1 = Ṽ T
t (I + T̃tT̃

T
t )−1


C̃

C̃Ã
...

C̃Ãt−1

 (Ã− I)−1

= Ṽ T
t (I + T̃tT̃

T
t )−1


C̃(Ã− I)−1

C̃ + C̃(Ã− I)−1

...

C̃Ãt−2 + · · ·+ C̃ + C̃(Ã− I)−1


= Ṽ T

t (I + T̃tT̃
T
t )−1

(
(1t ⊗ Il)C̃(Ã− I)−1 + Ll×n

([
0

Ṽt−1

])
(1t ⊗ Il)

)
= Ṽ T

t (I + T̃tT̃
T
t )−1

(
(1t ⊗ Il)C̃(Ã− I)−1 + Ll×l

([
0

1t−1 ⊗ Il

])
Ṽt

)
,

of which the last equality is guaranteed by

Ll×n
([

0

Ṽt−1

])
(1t ⊗ Il) =


0

C̃

C̃Ã+ C̃
...

C̃Ãt−2 + · · ·+ C̃

 = Ll×l
([

0
1t−1 ⊗ Il

])
Ṽt.
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Hence

1

2γ

(
C (Xt)− CT

t Ct
)

= (Ã− I)−TC̃TC̃(Ã− I)−1

+ (Ã− I)−TC̃T(1T
t ⊗ Il)(I + T̃tT̃

T
t )−1Ṽt + Ṽ T

t Ll×l
([

0
1t−1 ⊗ Il

])T

(I + T̃tT̃
T
t )−1Ṽt

+ Ṽ T
t (I + T̃tT̃

T
t )−1(1t ⊗ Il)C̃(Ã− I)−1 + Ṽ T

t (I + T̃tT̃
T
t )−1 Ll×l

([
0

1t−1 ⊗ Il

])
Ṽt

+ Ṽ T
t (I + T̃tT̃

T
t )−1Ṽt − Ṽ T

t (I + T̃tT̃
T
t )−1T̃t(1t ⊗ Im)(1T

t ⊗ Im)T̃T
t (I + T̃tT̃

T
t )−1Ṽt

− (Ã− I)−TC̃TC̃(Ã− I)−1 − Ṽ T
t (I + T̃tT̃

T
t )−1(1t ⊗ Il)(1T

t ⊗ Il)(I + T̃tT̃
T
t )−1Ṽt

− (Ã− I)−TC̃T(1T
t ⊗ Il)(I + T̃tT̃

T
t )−1Ṽt − Ṽ T

t (I + T̃tT̃
T
t )−1(1t ⊗ Il)C̃(Ã− I)−1

= Ṽ T
t Ll×l

([
0

1t−1 ⊗ Il

])T

(I + T̃tT̃
T
t )−1Ṽt + Ṽ T

t (I + T̃tT̃
T
t )−1 Ll×l

([
0

1t−1 ⊗ Il

])
Ṽt

+ Ṽ T
t (I + T̃tT̃

T
t )−1Ṽt − Ṽ T

t (I + T̃tT̃
T
t )−1T̃t(1t ⊗ Im)(1T

t ⊗ Im)T̃T
t (I + T̃tT̃

T
t )−1Ṽt

− Ṽ T
t (I + T̃tT̃

T
t )−1(1t ⊗ Il)(1T

t ⊗ Il)(I + T̃tT̃
T
t )−1Ṽt

= Ṽ T
t (I + T̃tT̃

T
t )−1

[
(I + T̃tT̃

T
t )Ll×l

([
0

1t−1 ⊗ Il

])T

+ Ll×l
([

0
1t−1 ⊗ Il

])
(I + T̃tT̃

T
t )

+ (I + T̃tT̃
T
t )− T̃t(1t ⊗ Im)(1T

t ⊗ Im)T̃T
t − (1t ⊗ Il)(1T

t ⊗ Il)

]
(I + T̃tT̃

T
t )−1Ṽt

= Ṽ T
t (I + T̃tT̃

T
t )−1

[
T̃tT̃

T
t Ll×l

([
0

1t−1 ⊗ Il

])T

+ Ll×l
([

0
1t−1 ⊗ Il

])
T̃tT̃

T
t

+ T̃tT̃
T
t − T̃t(1t ⊗ Im)(1T

t ⊗ Im)T̃T
t

]
(I + T̃tT̃

T
t )−1Ṽt

= 0,

of which the last equality holds for

Ll×l
([

0
1t−1 ⊗ Il

])
T̃t = T̃t Lm×m

([
0

1t−1 ⊗ Im

])
.

According to Theorem 4.3, we are able to make incorporation easily and solve (4.8). One thing worth mentioning
is that Ct is not difficult to calculate. Putting (4.7) into (4.9),

Ct = C +
√

2γ

[
Ξ1,I

Ξ2,I

]T [
(It ⊗Q1)−1

(It ⊗
[
W +WY T

γ YγW
]
)−1

] [
Ξ1

Ξ2

]
,

where Ξ1, Ξ2 is defined as in (4.6), and

Ξ1,I = U l×l
([
Q2

Q1

])T

(1t ⊗ Il), Ξ2,I = U l×m
([
Q3

0

])T

(1t ⊗ Il).

Theorem 4.3 gives the detailed form of (4.8) at X̃ = Xt. Note that the sequence {Xt} can be generated by the
RADI method introduced in [5], if the initial approximation is 0 and the same shift γt = γ is used at each step.
If we make incorporation at t = 1 in each iteration, then the process is actually the RADI method. As a direct
consequence, we have the following result.

Theorem 4.4. For Xt defined by DRE (4.3) and Ct defined by (4.9),

∆t := Xt+1 −Xt = 2γ(CtA
−1
t,γ)T(I + CtA

−1
t,γBB

TA−T
t,γ C

T
t )−1CtA

−1
t,γ , At,γ = A−BBTXt − γI,

or equivalently, ∆t is the approximate solution to (4.8) at X̃ = Xt generated by DRE (4.3) on t = 1.

5 Experiments and discussions

In this section, we will provide several examples to illustrate the new algorithm FTA and compare it with some
existing methods. As is stated in Section 4.1, many methods solve a CARE through an equivalent DARE. Hence
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here we only test the CARE of the form

ATX +XA−XBBTX + CTC = 0, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n,

for the performance of the methods on CARE can be recognized as those on DARE. We will use these methods in
the tests:

• FTA: our FFT-based Toeplitz-structured approximation with the incorporation technique;

• RKSM: rational Krylov subspace method [22, 18, 43];

• RADI+opt: RADI method [5], with the residual minimizing shifts;

• RADI+proj: RADI method with the residual Hamiltonian shifts;

• NK-ADI+GP: the Galerkin projected variant of Newton-Kleinman ADI method [6, 7, 10, 9];

• iNK-ADI+LS: the inexact variant of Newton-Kleinman ADI method with line search.

All experiments are done in MATLAB 2021a under the Windows 10 Professional 64-bit operating system on a
PC with a Intel Core i7-8700 processor at 3.20GHz and 64GB RAM. The implementation of RKSM comes from the
source codes from Simoncini’s homepage1 with some modifications; we use corresponding functions in the package
M-M.E.S.S. version 2.1 [42] as the implementations of the last four methods.

The methods are intentionally chosen: RADI is the recommended method by the package M-M.E.S.S., and it is
usually one of the fastest methods among the non-projective methods, and two different shift selection strategies are
used, for there does not exist a definitely good one and both strategies are good in many tests; the two variants of
NK-ADI are Newton-type methods; RKSM is a projection method. On the other hand, FTA, SDA, RADI, quadratic
ADI and Cayley transformed Hamiltonian subspace iteration are theoretically equivalent if the shifts are the same;
the last three are of the same type, so only one of them, namely RADI, is chosen; SDA is appropriate for small-to-mid
scale dense problems, so we give up putting it into comparison.

Since classical performance indices behave very different in different methods, we directly use the accuracy vs. the
running time to compare. The accuracy is measured by

NRes(X) :=
‖C (X)‖F
‖C (0)‖F

=
‖ATX +XA−XBBTX + CTC‖F

‖CTC‖F
.

In the following, three examples are tested, where the results are shown in Figure 5.1.
For the parameters, in FTA, we choose some γ and use t = 64 in one round, and then do incorporation with

another γ and t = 64 until the convergence. Since γ is a shift on the matrix A, the choice of γ with the same magnitude
of the matrix A would perform well. In the following examples, we use a positive number consisting of one random
digit and a hand-picked magnitude as γ. For instance, γ = 8×10−7 is used in Example 5.1, where 8 is random chosen
and −7 is hand-picked (in fact picked according to the choice in SDA). In our tests, the digit is not as important as
the magnitude on the convergence speed; for example, in Example 5.1 FTA with γ = 5, 6, 7, 8, 9, 10× 10−7 performs
nearly the same. In addition, since FTA share the same theoretical convergence with SDA, the strategy of choosing
γ in SDA (see, e.g., [24, Section 5.5]) should work in FTA, so should the sensitivity to γ.

Each of the other five methods has its own way to choose shifts, so we leave the task for their own. Similar
arguments apply for the following examples.

Example 5.1 (Rail). The example is a version of the steel profile cooling model from the Oberwolfach Model
Reduction Benchmark Collection, hosted at MORwiki [41]. The data include A � 0, E � 0, B,C with n = 79841,m =
7, l = 6. Since we only focus on solving the CARE, E is simply dropped.

For the parameters, in FTA, we use a heuristic shift γ = 8× 10−7 and in each incorporation step γ ← γ/1.01.
In this example A ≺ 0 and thus c-stable, which implies the properties of this problem are good. This results

in the fact that all methods converge. We can see that the FTA is the slowest one among all the six methods.
This phenomenon is reasonable. FTA and RADI are theoretically equivalent, while the only difference is that RADI
has much more chances to choose different shifts to accelerate its convergence. Good shifts largely accelerate its
convergence, and on the opposite, bad shifts would slow it down. RKSM and NK-ADI also benefit from the choice
of shifts.

Example 5.2 (Lung2+). The example is generated in this way: A is the matrix lung2 in the SuiteSparse Matrix
Collection [16] (formerly the University of Florida Sparse Matrix Collection), modelling temperature and water vapor
transport in the human lung; B,C are generated by MATLAB function rand. Here n = 109460,m = 10, l = 10.

1http://www.dm.unibo.it/~simoncin/software.html
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Figure 5.1: accuracy vs. time
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For the parameters, in FTA, we use a heuristic shift γ = 5× 103 and in each incorporation step γ ← γ/1.01.
In this example A is nonsymmetric and the eigenvalues of A lie in the right half plane, namely A is c-anti-

stable, or −A is c-stable. None of RADI+opt, RADI+proj, and RKSM converges. NK-ADI+GP and iNK-ADI+LS
both report that non-stable Ritz values were detected and terminated the process. Only FTA produces a good
approximate solution. This tells that the other five methods strongly rely on the stability of A. For example,
a sufficient condition for achieving the convergence is that A is stable and the shifts γk satisfy the non-Blaschke

condition
∑+∞
k=1

<(γk)
1+γkγk

= −∞ [39]. However, the FTA works well even for the case that A is not stable, which

implies that in this sense the FTA is more robust with respect to the spectrum of A.

Example 5.3 (Lung2−). The example is almost the same with Example 5.2 except that the matrix lung2 is used
as −A rather than A.

For the FTA, we still use a heuristic shift γ = 5× 103 and in each incorporation step γ ← γ/1.01.
In this example A is nonsymmetric and c-stable. Note that the only difference between RADI+opt and RADI+proj

is the different shift selection strategies. RADI+opt tends to converge fast but finally stays at a low accuracy;
RADI+proj becomes convergent very late but soonly converges in a very short time. The phenomenon illustrates
that the choice of shifts fatally affects its speed of convergence. The iNK-ADI+LS converges very slowly, while the
NK-ADI+GP reports that non-stable Ritz values were detected again. The RKSM converges in a fairly good speed
but finally slow down. The FTA converges steadily in a predictable speed.

In another view, compared with Example 5.2, the running time of the FTA is nearly the same for different A’s,
so the running time is predictable and can be estimated in advance.

Example 5.4 (Hcircuit). The example is generated in this way: A is the matrix hcircuit in the SuiteSparse Matrix
Collection [16] (formerly the University of Florida Sparse Matrix Collection), modelling a circuit without parasitics;
B,C are generated by MATLAB function rand. Here n = 105676,m = 10, l = 10.

For the parameters, in FTA, we use a heuristic shift γ = 5× 103 and in each incorporation step γ ← γ/1.01.
In this example A is nonsymmetric and the real eigenvalues of A lie in [−1, 86.3], namely A is neither c-stable

nor c-anti-stable, or equivalently neither of ±A is c-stable. None of RADI+opt, RADI+proj, and RKSM converges,
and RKSM terminiates in the midway, reporting that the projected Riccati equation does not have a finite solution.
NK-ADI+GP and iNK-ADI+LS both report that non-stable Ritz values were detected and terminates the process.
Only FTA produces a good approximate solution. This tells that the other five methods strongly rely on the stability
of A, as is illustrated in Example 5.2.

Summarizing the numerical results, we see that the FTA has two significant features:

1. FTA is robust in some sense and it converges no matter how the property of A is;

2. FTA has a steady convergence rate and the execution time is predictable, although in good cases it may converge
slowly compared with other methods.

Moreover, it is easy to see that if A is dense, FTA needs the LU/PLU factorization only several times, while the
other methods need as many as number of iterations, according to the number of used shifts.

6 Conclusion

We have presented our FFT-based Toeplitz-structured approximation method for computing the stabilizing solution
of large-scale algebraic Riccati equations with low-rank structure. It is shown that the closed form given by operator
theory under good assumptions is also valid for the general case, which is proved by matrix analysis. It is quite
natural to ask whether the closed form can be directly produced by the analysis of unbounded linear operators, which
would be a difficult task for future work. On the numerical front, our method works robust in some sense and few
parameters are needed. As the readers may see, there is still possibility to improve the behavior by adopting more
techniques. However, to keep this paper compact and concentrated, we leave it for another work.

A Displacement rank and Toeplitz matrix

In order to prove Lemma 2.1, we first give a few results to the displacement rank and Toeplitz matrices, and interested
readers are referred to the review paper [33] and the references therein.

For any matrix R ∈ Rpn×pn, its (±)-displacement rank α±(R, p) with respect to block size p× p, is defined by

α+(R, p) := rankp(R− Zn,pRZT
n,p), α−(R, p) := rankp(R− ZT

n,pRZn,p),
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where Zn,p =

[
0 0

I(n−1)p 0

]
pn×pn

, and rankp(·) is considered as the rank of the linear transformation on the module

Rnp×p over the ring Rp×p. For the case p = 1, rankp(·) = rank(·), the ordinary rank of matrices in Rn×n.
The definition is based on the following result, namely Lemma A.1.

Lemma A.1 ([32]). Given R1, R2 ∈ Rpn×p and R ∈ Rpn×pn, then

R− Zn,pRZT
n,p = R1R

T
2 ⇐⇒ R = Lp×p(R1)Lp×p(R2)T,

R− ZT
n,pRZn,p = R1R

T
2 ⇐⇒ R = Up×p(R1)Up×p(R2)T.

Lemma A.1 implies that for a matrix its displacement rank is related to how it can be expressed as a sum of
products of block-Toeplitz matrices, as is shown in Lemma A.2.

Lemma A.2 ([32, 31, 33]). Given a matrix R ∈ Rpn×pn.

1. Its (+)-displacement rank α+(R, p) is the smallest integer β such that R can be written in the form

R =

β∑
i=1

Lp×p(Ri)Up×p(R̃i), (A.2a)

where Ri, R̃i ∈ Rpn×p.

2. Its (−)-displacement rank α−(R, p) is the smallest integer β such that R can be written in the form

R =

β∑
i=1

Up×p(Ri)Lp×p(R̃i), (A.2b)

where Ri, R̃i ∈ Rpn×p.

3. If R is symmetric and positive semidefinite, (A.2a) and (A.2b) can be replaced respectively by

R =

β∑
i=1

Lp×p(Ri)Lp×p(Ri)T, and R =

β∑
i=1

Up×p(Ri)Up×p(Ri)T.

4. If R is nonsingular, then α+(R, p) = α−(R−1, p), α−(R, p) = α+(R−1, p).

Lemma A.2 demonstrates the relation between the displacement ranks of a matrix and its inverse, which is actually
the theoretical foundation of the fast and superfast algorithms on Toeplitz matrices.

The following result, namely Lemma A.3, gives an expression of the inverse related to the displacement rank.

Lemma A.3 ([20]). Given R ∈ Rpn×pn, suppose

1. R is nonsingular, and R−1 =

[
Q1,t QL1
Q1 ∗

]
=

[
∗ Q2

QL2 Q2,b

]
where Q1,t, Q2,b ∈ Rp×p are nonsingular;

2. R−Zn,pRZT
n,p =

[
∗ ∗
∗ D1ΣD

T
2

]
where D1, D2 ∈ Rp(n−1)×pα and Σ is a diagonal matrix whose diagonal entries

are ±1;

3. writing R =

[
∗ ∗
∗ Rs

]
where Rs ∈ Rp(n−1)×p(n−1), there exist Q3, Q

L
3 ∈ Rp(n−1)×pα such that RsQ3 =

D1, Q
L
3Rs = DT

2 .

Then

R−1 = −Up×p
([

Q1

0p×p

])
(In ⊗Q1,t)

−1 Up×p
([
QL1 0p×p

]T)T
+ Up×p

([
Q2

Q2,b

])
(In ⊗Q2,b)

−1 Up×p
([
QL2 Q2,b

]T)T
+ Up×pα

([
Q3

0p×pα

])
(In ⊗W )−1 Up×pα

([
QL3 0pα×p

]T)T
, (A.3a)

21



or alternatively,

R−1 = Lp×p
([
Q1,t

Q1

])
(In ⊗Q1,t)

−1 Lp×p
([
Q1,t QL1

]T)T
− Lp×p

([
0p×p
Q2

])
(In ⊗Q2,b)

−1 Lp×p
([

0p×p QL2
]T)T

− Lp×pα
([

0p×pα
Q3

])
(In ⊗W )−1 Lp×pα

([
0pα×p QL3

]T)T
, (A.3b)

where W = Σ −QL3D1.
Moreover, if R is symmetric, then there exists a factorization to make D1 = D2; for that case, (A.3) can be

rewritten by QL1 = QT
1 , Q

L
2 = QT

2 , Q
L
3 = QT

3 .

Remark A.1. Item 2 of Lemma A.3 implies that R− ZT
n,pRZn,p =

[
−D1ΣD

T
2 ∗

∗ ∗

]
.

Note that (A.3) presents a sum of α+ 2 products of block-Toeplitz matrices, in which the number of terms may
not be the smallest one, namely α∓(R, p).

In the following, we will derive a sum of the α+(R, p) = α−(R−1, p) terms, called a shortest sum, to coincide with
Lemma A.2. Using the same way a sum of α−(R, p) = α+(R−1, p) terms can also be derived, so we omit the details.

Write R =

[
R11 R12

R21 Rs

]
, and then R−Zn,pRZT

n,p =

[
R11 R12

R21 D1ΣD
T
2

]
. Thus, α ≤ α+(R, p) ≤ α+ 2, provided that

rank(D1ΣD
T
2 ) = rank(Σ) = pα.

On the other hand, by (1.3), under sufficient nonsingular conditions, it is easy to have[
R11 R12

R21 Rs

]−1
=

[
R−111 +R−111 R12(Rs −R21R

−1
11 R12)−1R21R

−1
11 −R−111 R12(Rs −R21R

−1
11 R12)−1

−(Rs −R21R
−1
11 R12)−1R21R

−1
11 (Rs −R21R

−1
11 R12)−1

]
=

[
(R11 −R12R

−1
s R21)−1 −(R11 −R12R

−1
s R21)−1R12R

−1
s

−R−1s R21(R11 −R12R
−1
s R21)−1 R−1s +R−1s R21(R11 −R12R

−1
s R21)−1R12R

−1
s

]
.

Compared with the conditions,

Q1 = −R−1s R21Q1,t, QL1 = −Q1,tR12R
−1
s , Q1,t = (R11 −R12R

−1
s R21)−1.

If α+(R, p) = α, then it has to hold that R − Zn,pRZ
T
n,p =

[
ST
1 Σ
−1S2 ST

1 D
T
2

D1S2 D1ΣD
T
2

]
for some S1, S2 ∈ Rpα×p.

Clearly S1, S2 are of full column rank for R is nonsingular. Noticing Σ−1 = Σ, we have

Q1 = −R−1s D1S2Q1,t = −Q3S2Q1,t,

QL1 = −Q1,tS
T
1 D

T
2 R
−1
s = −Q1,tS

T
1 Q

L
3 ,

Q1,t = (ST
1 Σ
−1S2 − ST

1 D
T
2 R
−1
s D1S2)−1 = (ST

1 Σ
−1S2 − ST

1 Q
L
3D1S2)−1 = (ST

1 WS2)−1.

Thus

Up×p
([
Q1

0

])
(In ⊗Q1,t)

−1 Up×p
([
QL1 0

]T)T
= Up×p

([
−Q3S2Q1,t

0

])
(In ⊗Q1,t)

−1 Up×p
([
−Q1,tS

T
1 Q

L
3 0

]T)T
= Up×pα

([
Q3

0

])
(In ⊗ S2Q1,t)(In ⊗Q1,t)

−1(In ⊗Q1,tS
T
1 )Up×pα

([
QL3 0

]T)T
= Up×pα

([
Q3

0

])
(In ⊗ S2Q1,tS

T
1 )Up×pα

([
QL3 0

]T)T
= Up×pα

([
Q3

0

]) (
In ⊗ S2(ST

1 WS2)−1ST
1

)
Up×pα

([
QL3 0

]T)T
.

Note that [
W−1 − S2

(
ST
1 WS2

)−1
ST
1

]
WS2 = 0.
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Complement S2 to a nonsingular matrix
[
S2 Sc2

]
, and then[

W−1 − S2

(
ST
1 WS2

)−1
ST
1

]
W
[
S2 Sc2

]
=
[
S2 Sc2

] [0p×p −
(
ST
1 WS2

)−1
ST
1 WSc2

0 Ip(α−1)

]
=
[
S2 Sc2

] [− (ST
1 WS2

)−1
ST
1 WSc2

Ip(α−1)

] [
0 Ip(α−1)

]
,

whose rank is p(α− 1). Write

W1 =
[
S2 Sc2

] [− (ST
1 WS2

)−1
ST
1 WSc2

Ip(α−1)

]
∈ Rpα×p(α−1),

WL
1 =

[
0 Ip(α−1)

] [
S2 Sc2

]−1
W−1 ∈ Rp(α−1)×pα,

and then W−1 − S2

(
ST
1 WS2

)−1
ST
1 = W1W

L
1 . Hence

R−1 = Up×p
([

Q2

Q2,b

])
(In ⊗Q2,b)

−1 Up×p
([
QL2 Q2,b

]T)T
+ Up×pα

([
Q3

0

])
(In ⊗W1W

L
1 )Up×pα

([
QL3 0

]T)T
= Up×p

([
Q2

Q2,b

])
(In ⊗Q2,b)

−1 Up×p
([
QL2 Q2,b

]T)T
+ Up×p(α−1)

([
Q3W1

0

])
Up×p(α−1)

([
WL

1 Q
L
3 0

]T)T
.

(A.4)
If α+(R, p) = α+ 1, then it holds that

R− Zn,pRZT
n,p =

[
ST
1 Σ
−1S2 ST

1 D
T
2

D1S2 D1ΣD
T
2

]
+

[
S3 DT

3

0 0

]
(A.5a)

or

[
ST
1 Σ
−1S2 ST

1 D
T
2

D1S2 D1ΣD
T
2

]
+

[
S3 0
D3 0

]
(A.5b)

for some S1, S2 ∈ Rpα×p, S3 ∈ Rp×p and D3 ∈ Rp(n−1)×p.
Consider (A.5a). Then,

Q1 = −R−1s D1S2Q1,t = −Q3S2Q1,t,

QL1 = −Q1,t(S
T
1 D

T
2 +DT

3 )R−1s = −Q1,tS
T
1 Q

L
3 −Q1,tD

T
3 R
−1
s ,

Q1,t = (ST
1 Σ
−1S2 + S3 − (ST

1 D
T
2 +DT

3 )R−1s D1S2)−1

= (ST
1 Σ
−1S2 + S3 −DT

3 Q3S2 − ST
1 Q

L
3D1S2)−1

= (S3 −DT
3 Q3S2 + ST

1 WS2)−1.

Thus,

Up×p
([
Q1

0

])
(In ⊗Q1,t)

−1 Up×p
([
QL1 0

]T)T
= Up×p

([
−Q3S2Q1,t

0

])
(In ⊗Q1,t)

−1 Up×p
([
−Q1,tS

T
1 Q

L
3 −Q1,tD

T
3 R
−1
s 0

]T)T
= Up×pα

([
Q3

0

])
(In ⊗ S2Q1,t)(In ⊗Q1,t)

−1(In ⊗Q1,tS
T
1 )Up×pα

([
QL3 0

]T)T
+ Up×pα

([
Q3

0

])
(In ⊗ S2Q1,t)(In ⊗Q1,t)

−1(In ⊗Q1,t)Up×p
([
DT

3 R
−1
s 0

]T)T
= Up×pα

([
Q3

0

])
(In ⊗ S2Q1,tS

T
1 )Up×pα

([
QL3 0

]T)T
+ Up×pα

([
Q3

0

])
(In ⊗ S2Q1,t)Up×p

([
DT

3 R
−1
s 0

]T)T
= Up×pα

([
Q3

0

])
(In ⊗ S2(S3 −DT

3 Q3S2 + ST
1 WS2)−1ST

1 )Up×pα
([
QL3 0

]T)T
+ Up×pα

([
Q3

0

])
(In ⊗ S2Q1,t)Up×p

([
DT

3 R
−1
s 0

]T)T
.

Since

W−1 − S2(S3 −DT
3 Q3S2 + ST

1 WS2)−1ST
1 = W−1

(
W −WS2(S3 −DT

3 Q3S2 + ST
1 WS2)−1ST

1 W
)
W−1
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(1.3)
= W−1

(
W−1 + S2(S3 −DT

3 Q3S2)−1ST
1

)−1
W−1

=
(
W +WS2(S3 −DT

3 Q3S2)−1ST
1 W

)−1
=: W−11 ,

we have

R−1 = Up×p
([

Q2

Q2,b

])
(In ⊗Q2,b)

−1 Up×p
([
QL2 Q2,b

]T)T
+ Up×pα

([
Q3

0

])
(In ⊗W1)−1 Up×pα

([
QL3 0

]T)T − Up×pα([Q3

0

])
(In ⊗ S2Q1,t)Up×p

([
DT

3 R
−1
s 0

]T)T
= Up×p

([
Q2

Q2,b

])
(In ⊗Q2,b)

−1 Up×p
([
QL2 Q2,b

]T)T
+ Up×pα

([
Q3

0

])
(In ⊗W1)−1 Up×pα

([
QL3 −W1S2Q1,tD

T
3 R
−1
s 0

]T)T
.

(A.6)
Similarly, for (A.5b),

R−1 = Up×p
([

Q2

Q2,b

])
(In ⊗Q2,b)

−1 Up×p
([
QL2 Q2,b

]T)T
+ Up×pα

([
Q3 −R−1s D3Q1,tS

T
1 W1

0

])
(In ⊗W1)−1 Up×pα

([
QL3 0

]T)T
,

(A.7)

where W1 = W +WS2(S3 − ST
1 Q

L
3D3)−1ST

1 W .
To sum up, we have Lemma A.4.

Lemma A.4. Given R ∈ Rpn×pn, suppose the conditions in Lemma A.3 hold. Then α ≤ α+(R, p) ≤ α+ 2, and the
following statements hold.

1. if α+(R, p) = α, then (A.4) is a shortest sum.

2. if α+(R, p) = α+ 1, then (A.6) or (A.7) is a shortest sum.

3. if α+(R, p) = α+ 2, then (A.3a) is a shortest sum.

Moreover, if R is symmetric, then there exists a factorization to make D1 = D2; for that case, (A.4), (A.6), (A.7)
and (A.3a) can be rewritten by QL1 = QT

1 , Q
L
2 = QT

2 , Q
L
3 = QT

3 , S1 = S2, D3 = 0.

Then we devote Lemma A.5.

Lemma A.5. Given Y ∈ Rp1×p2 , Y L ∈ Rp2×p1 , Dt−1 ∈ Rp1(t−1)×p2 , DL
t−1 ∈ Rp2×p1(t−1), let

Tt = Lp1×p2
([

Y
Dt−1

])
=

[
Y 0

Dt−1 Tt−1

]
∈ Rp1t×p2t,

TLt = Lp1×p2
([
Y L DL

t−1
]T)T

=

[
Y L DL

t−1
0 TLt−1

]
∈ Rp2t×p1t.

If Ip1t − TtTLt is nonsingular, then

(Ip1t − TtTLt )−1 = Up1×p1
([

Q2

Q2,b

])
(It ⊗Q2,b)

−1 Up1×p1
([
QL2 Q2,b

]T)T
+ Up1×p2

([
Q3

0p1×p2

])
(It ⊗

[
W +WY LYW

]
)−1 Up1×p2

([
QL3 0p2×p1

]T)T
,

(A.8a)

where the following equations are solvable and Q2,b,W +WY LYW are nonsingular:

QL3
(
Ip1(t−1) −Dt−1D

L
t−1 − Tt−1TLt−1

)
= DL

t−1, (A.8b)(
Ip1t −Dt−1D

L
t−1 − Tt−1TLt−1

)
Q3 = Dt−1, W = −(Ip2 +QL3Dt−1), (A.8c)[

QL2 Q2,b

]
(Ip1t − TtTLt ) =

[
0 Ip1

]
, (A.8d)

(Ip1t − TtTLt )

[
Q2

Q2,b

]
=

[
0
Ip1

]
, Q2,b ∈ Rp1×p1 . (A.8e)
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Proof. First consider the case p1 = p2 = p. Since

Ipt − TtTLt =

[
Ip − Y Y L −Y DL

t−1
−Dt−1Y

L Ip(t−1) −Dt−1D
L
t−1 − Tt−1TLt−1

]
,

and

(Ipt − TtTLt )− Zt,p(Ipt − TtTLt )ZT
t,p = Ipt − Zt,pZT

t,p − TtTLt + Zt,pTtT
L
t Z

T
t,p

=

[
Ip

0

]
−
[
Y 0

Dt−1 Tt−1

] [
Y L DL

t−1
0 TLt−1

]
+

[
0 0

Tt−1 0

] [
0 TLt−1
0 0

]
=

[
Ip − Y Y L −Y DL

t−1
−Dt−1Y

L −Dt−1D
L
t−1

]
,

we have α+(Ipt − TtTLt , p) = 2. By Lemma A.4, since α = 1, the case falls in Item 2 with substitutions

D3 ← 0, S3 ← Ip, D1 ← Dt−1, Σ ← −Ip(t−1), DT
2 ← DL

t−1, S
T
1 ← Y, S2 ← Y L.

Then (A.6) (or equivalently (A.7)) becomes

(Ipt − TtTLt )−1 = Up×p
([

Q2

Q2,b

])
(It ⊗Q2,b)

−1 Up×p
([
QL2 Q2,b

]T)T
+ Up×p

([
Q3

0

])
(It ⊗ [W +WY LYW ])−1 Up×p

([
QL3 0

]T)T
,

where Q2, Q2,b, Q
L
2 , Q3, Q

L
3 ,W is as in (A.8).

Then consider the case p1 > p2. Complement Y to a p1 × p1 matrix Ỹ =
[
Y 0

]
and similarly for D̃t−1 =[

Dt−1 0
]
, Ỹ L =

[
Y L

0

]
, D̃L

t−1 =

[
DL
t−1
0

]
. Immediately we are able to use the result above on the case p1 = p2 to

obtain

[
Ip1t − Lp1×p1

([
Ỹ

D̃t−1

])
Lp1×p1

([
Ỹ L D̃L

t−1

]T)T
]−1

. Note that

Lp1×p1

([
Ỹ

D̃t−1

])
Lp1×p1

([
Ỹ L D̃L

t−1

]T)T

=

∗ 0 ∗ 0 · · ·
...

...
...

...
∗ 0 ∗ 0 · · ·



∗ · · · ∗
0 · · · 0
∗ · · · ∗
0 · · · 0
...

...


=

∗ ∗ · · ·...
...

∗ ∗ · · ·


∗ · · · ∗∗ · · · ∗
...

...


= Lp1×p2

([
Y

Dt−1

])
Lp1×p2

([
Y L DL

t−1
]T)T

.

Thus, Q̃2 = Q2, Q̃
L
2 = QL2 , Q̃2,b = Q2,b, and Q̃3 =

[
Q3 0

]
, Q̃L3 =

[
QL3
0

]
. Therefore,

W̃ = −Ip1 −
[
QL3
0

] [
Dt−1 0

]
=

[
−Ip2 −QL3Dt−1 0

0 −Ip1−p2

]
=

[
W

−Ip1−p2

]
,

W̃ Ỹ LỸ W̃ =

[
W

−Ip1−p2

] [
Y L

0

] [
Y 0

] [W
−Ip1−p2

]
=

[
WY LYW

0

]
.

Hence

Up1×p1
([
Q̃3

0

])
(It ⊗ [W̃ + W̃ Ỹ LỸ W̃ ])−1 Up1×p1

([
Q̃L3 0

]T)T

=

∗ 0 ∗ 0 · · ·
...

...
...

...
∗ 0 ∗ 0 · · ·



∗
−I

∗
−I

. . .




∗ · · · ∗
0 · · · 0
∗ · · · ∗
0 · · · 0
...

...


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=

∗ ∗ · · ·...
...

∗ ∗ · · ·


∗ ∗

. . .


∗ · · · ∗∗ · · · ∗
...

...


= Up1×p2

([
Q3

0

])
(It ⊗ [W +WY LYW ])−1 Up1×p2

([
QL3 0

]T)T
.

Finally consider the case p1 < p2. Complement Y to a p2 × p2 matrix Ỹ =

[
Y
0

]
and similarly for D̃T

t−1 =[
∗ 0 ∗ 0 · · ·

]
where DT

t−1 =
[
∗ ∗ · · ·

]
, and Ỹ L =

[
Y L 0

]
, D̃L

t−1 =
[
∗ 0 ∗ 0 · · ·

]
where DL

t−1 =[
∗ ∗ · · ·

]
. To make things clear, two permutations P, Ps are used to make P

[
Ỹ

D̃t−1

]
=

 Y
Dt−1

0

 , PsD̃t−1 =

[
Dt−1

0

]
.

So
[
Ỹ L D̃L

t−1

]
PT =

[
Y L DL

t−1 0
]
, D̃L

t−1P
T
s =

[
DL
t−1 0

]
, and

P Lp2×p2

([
Ỹ

D̃t−1

])
=

Lp1×p2 ([ Y
Dt−1

])
0

 ,
Lp2×p2

([
Ỹ L D̃L

t−1

]T)T

PT =

[
Lp1×p2

([
Y L DL

t−1
]T)T

0

]
.

Then we use the result above on the case p1 = p2 to obtain

[
Ip2t − Lp2×p2

([
Ỹ

D̃t−1

])
Lp2×p2

([
Ỹ L D̃L

t−1

]T)T
]−1

.

Note that

P

[
Ip2t − Lp2×p2

([
Ỹ

D̃t−1

])
Lp2×p2

([
Ỹ L D̃L

t−1

]T)T
]
PT

=

Ip1t − Lp1×p2 ([ Y
Dt−1

])
Lp1×p2

([
Y L DL

t−1
]T)T

I(p2−p1)t

 .
Thus,

P

[
Q̃2

Q̃2,b

]
= P

[
Ip2t − Lp2×p2

([
Ỹ

D̃t−1

])
Lp2×p2

([
Ỹ L D̃L

t−1

]T)T
]−1

PTP

[
0
Ip2

]

=

[Ip1t − Lp1×p2 ([ Y
Dt−1

])
Lp1×p2

([
Y L DL

t−1
]T)T]−1

I(p2−p1)t




0[
Ip1 0

]
0[

0 Ip2−p1
]


=


[
Ip1t − Lp1×p2

([
Y

Dt−1

])
Lp1×p2

([
Y L DL

t−1
]T)T]−1 [ 0

Ip1

]
0

0

[
0

Ip2−p1

]


=


[
Q2

Q2,b

]
0

0

[
0

Ip2−p1

]
 ,

and similarly,
[
Q̃L2 Q̃2,b

]
PT =

[[
QL2 Q2,b

]
0

0
[
0 Ip2−p1

]]. Therefore, Q̃2,b =

[
Q2,b 0

0 Ip2−p1

]
and

P Up2×p2

([
Q̃2

Q̃2,b

])
PTP (It ⊗ Q̃2,b)

−1PTP Up2×p2
([
Q̃L2 Q̃2,b

]T)T

PT

=

Up1×p1 ([ Q2

Q2,b

])
0

0 I(p2−p1)t

[(It ⊗Q2,b)
−1

I(p2−p1)t

] [
Up1×p1

([
QL2 Q2,b

]T)
0

0 I(p2−p1)t

]T

=

Up1×p1 ([ Q2

Q2,b

])
(It ⊗Q2,b)

−1 Up1×p1
([
QL2 Q2,b

]T)T
I(p2−p1)t

 .
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Similarly,

PsQ̃3 = Ps

[
Ip2(t−1) − D̃t−1D̃

L
t−1 − T̃t−1T̃Lt−1

]−1
PT
s PsD̃t−1

=

[[
Ip1(t−1) −Dt−1D

L
t−1 − Tt−1TLt−1

]−1
I(p2−p1)(t−1)

] [
Dt−1

0

]
=

[
Q3

0

]
,

and similarly, Q̃L3 P
T
s =

[
QL3 0

]
, and then

W̃ = −Ip2 − Q̃L3 PT
s PsD̃t−1 = −Ip2 −QL3Dt−1 = W,

W̃ Ỹ LỸ W̃ = W
[
Y L 0

] [Y
0

]
W = WY LYW.

Hence

P Up2×p2
([
Q̃3

0

])
(It ⊗ [W̃ + W̃ Ỹ LỸ W̃ ])−1 Up2×p2

([
Q̃L3 0

]T)T

PT

=

Up1×p2 ([Q3

0

])
0

 (It ⊗ [W +WY LYW ])−1

[
Up1×p2

([
QL3 0

]T)
0

]T

=

Up1×p2 ([Q3

0

])
(It ⊗ [W +WY LYW ])−1 Up1×p2

([
QL3 0

]T)T
0

 .
Finally, Lemma 2.1 comes out as a corollary.

Proof of Lemma 2.1. Use Lemma A.5 with Y = −(Y L)T, Dt−1 = −(DL
t−1)T. Then we take Q2,b = Q1 to obtain the

result.
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