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Abstract

In this paper, we propose and analyze an inexact version of the symmetric proximal alternating
direction method of multipliers (ADMM) for solving linearly constrained optimization problems.
Basically, the method allows its first subproblem to be solved inexactly in such way that a rel-
ative approximate criterion is satisfied. In terms of the iteration number k, we establish global
O(1/

√
k) pointwise and O(1/k) ergodic convergence rates of the method for a domain of the

acceleration parameters, which is consistent with the largest known one in the exact case. Since
the symmetric proximal ADMM can be seen as a class of ADMM variants, the new algorithm as
well as its convergence rates generalize, in particular, many others in the literature. Numerical
experiments illustrating the practical advantages of the method are reported. To the best of our
knowledge, this work is the first one to study an inexact version of the symmetric proximal ADMM.

Key words: Symmetric alternating direction method of multipliers, convex program, relative
error criterion, pointwise iteration-complexity, ergodic iteration-complexity.

AMS Subject Classification: 47H05, 49M27, 90C25, 90C60, 65K10.

1 Introduction

Throughout this paper, R, Rn and R
n×p denote, respectively, the set of real numbers, the set of

n dimensional real column vectors and the set of n× p real matrices. For any vectores x, y ∈ R
n,

〈x, y〉 stands for their inner product and ‖x‖ :=
√
〈x, y〉 stands for the Euclidean norm of x. The

space of symmetric positive semidefinite (resp. definite) matrices on R
n×n is denoted by S

n
+ (resp.

S
n
++). Each element Q ∈ S

n
+ induces a symmetric bilinear form 〈Q(·), ·〉 on R

n×R
n and a seminorm

‖ · ‖Q :=
√
〈Q(·), ·〉 on R

n. The trace and determinant of a matrix P are denoted by Tr(P ) and
det(P ), respectively. We use I and 0 to stand, respectively, for the identity matrix and the zero
matrix with proper dimension throughout the context.

Consider the separable linearly constrained optimization problem

min{f(x) + g(y) : Ax+By = b}, (1)

where f : Rn → (−∞,∞] and g : Rp → (−∞,∞] are proper, closed and convex functions, A ∈
R
m×n, B ∈ R

m×p, and b ∈ R
m. Convex optimization problems with a separable structure such
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as (1) appear in many applications areas such as machine learning, compressive sensing and image
processing. The augmented Lagrangian method (see, e.g., [7]) attempts to solve (1) directly without
taking into account its particular structure. To overcome this drawback, a variant of the augmented
Lagrangian method, namely, the alternating direction method of multipliers (ADMM), was proposed
and studied in [16, 19]. The ADMM takes full advantage of the special structure of the problem
by considering each variable separably in an alternating form and coupling them into the Lagrange
multiplier updating; for detailed reviews, see [8, 18].

More recently, a symmetric version of the ADMM was proposed in [23] and since then it has been
studied by many authors (see, for example, [6, 9, 17, 29, 30, 32, 33, 34]). The method with proximal
terms added (named here as symmetric proximal ADMM) is described as follows: let an initial point
(x0, y0, γ0) ∈ R

n × R
p × R

m, a penalty parameter β > 0, two acceleration parameters τ and θ, and
two proximal matrices G ∈ S

n
+ and H ∈ S

m
+ be given; for k = 1, 2, . . . do

xk ∈ arg min
x∈Rn

{
f(x)− 〈γk−1, Ax〉+

β

2
‖Ax+Byk−1 − b‖2 + 1

2
‖x− xk−1‖2G

}
, (2a)

γk− 1

2

:= γk−1 − τβ (Axk +Byk−1 − b) , (2b)

yk ∈ arg min
y∈Rp

{
g(y) − 〈γk+ 1

2

, By〉+ β

2
‖Axk +By − b‖2 + 1

2
‖y − yk−1‖2H

}
, (2c)

γk := γk−1 − θβ (Axk +Byk − b) . (2d)

The symmetric proximal ADMM unifies several ADMM variants. For example, it reduces to:

• the standard ADMM when G = 0, H = 0, τ = 0 and θ = 1;

• the Fortin and Glowinski acceleration version of the proximal ADMM (for short FG-P-ADMM)
when τ = 0; see [14, 15, 21];

• the generalized proximal ADMM (for short G-P-ADMM) with the relaxation factor α := τ +1
when θ = 1; see [1, 11]. The proof of the latter fact can be found, for example, in [23, Remark
5.8];

• the strictly contractive Peaceman–Rachford splitting method studied in [22] when τ = θ ∈
(0, 1). It is worth pointing out that if τ = θ = 1, G = 0 and H = 0, the symmetric proximal
ADMM corresponds to the standard Peaceman-Rachford splitting method applied to the dual
of (1).

As has been observed by some authors (see, e.g., [1, 6, 23]), the use of suitable acceleration pa-
rameters τ and θ considerably improves the numerical performances of the ADMM-type algorithms.
We also mention that the proximal terms ‖x − xk−1‖2G/2 and ‖y − yk−1‖2H/2 in subproblems (2a)
and (2c), respectively, can make them easier to solve or even to have closed-form solution in some
applications; see, e.g., [5, 10, 24] for discussion.

In order to ensure the convergence of the symmetric ADMM in [23], the parameters τ and θ were
considered into the domain

D :=
{
(τ, θ) | τ ∈ (−1, 1), θ ∈ (0, (1 +

√
5)/2), τ + θ > 0, |τ | < 1 + θ − θ2

}
.

Later, in the multi-block symmetric ADMM setting, the authors in [6] have extended this convergence
domain to

K :=
{
(τ, θ) | τ ≤ 1, τ + θ > 0, 1 + τ + θ − τθ − τ2 − θ2 > 0

}
, (3)
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by using appropriate proximal terms and by assuming that the matrices associated to the respective
multi-block problem have full column rank. Note that, if τ = 0 (resp. θ = 1), the convergence
domains in the above regions are equivalent to the classical condition θ ∈ (0, (1 +

√
5)/2) (resp.

τ ∈ (−1, 1) or, in terms of the relaxation factor α, α ∈ (0, 2)) in the FG-P-ADMM (resp. G-P-
ADMM). We refer the reader to [1, 21] for some complexity and numerical results of the G-P-ADMM
and FG-P-ADMM.

It is well-known that implementations of the ADMM in some applications may be expensive
and difficult due to the necessity to solve exactly its two subproblems. For applications in which
one subproblem of the ADMM is significantly more challenging to solve than the other one, being
necessary, therefore, to use iterative methods to approximately solve it, papers [2] and [3] proposed
partially inexact versions of the FG-P-ADMM and G-P-ADMM, respectively, using relative error
conditions. Essentially, the proposed schemes allow an inexact solution x̃k ∈ R

n with residual
uk ∈ R

n of subproblem (2a) with G = I/β, i.e.,

uk ∈ ∂f(x̃k)−A∗γ̃k, (4)

such that the relative error condition

‖x̃k − xk−1 + βuk‖2 ≤ σ̃‖γ̃k − γk−1‖2 + σ̂‖x̃k − xk−1‖2, (5)

is satisfied, where
γ̃k := γk−1 − β(Ax̃k +Byk−1 − b), xk := xk−1 − βuk,

and σ̃ and σ̂ are two error tolerance parameters. Recall that the ε-subdifferential of a convex function
h : Rn → R is defined by

∂εh(x) := {u ∈ R
n : h(x̃) ≥ h(x) + 〈u, x̃− x〉 − ε, ∀ x̃ ∈ R

n}, ∀x ∈ R
n.

When ε = 0, then ∂0h(x) is denoted by ∂h(x) and is called the subdifferential of f at x. Note
that the inclusion in (4) is based on the first-order optimality condition for (2a). For the inexact
FG-P-ADMM in [2], the domain of the acceleration factor θ was

θ ∈
(
0,

1− 2σ̃ +
√

(1− 2σ̃)2 + 4(1− σ̃)

2(1− σ̃)

)
, (6)

whereas, for the inexact G-P-ADMM in [3], the domain of the acceleration factor τ was

τ ∈ (−1, 1− σ̃) (or, in term of the relaxation factor α, α ∈ (0, 2 − σ̃)). (7)

If σ̃ = 0, then (6) and (7) reduce, respectively, to the standard conditions θ ∈ (0, (1 +
√
5)/2) and

τ ∈ (−1, 1). Other inexact ADMMs with relative and/or absolute error condition were proposed in
[4, 12, 13, 25, 35]. It is worth pointing out that, as observed in [12], approximation criteria based
on relative error are more interesting from a computational viewpoint than those based on absolute
error.

Therefore, the main goal of this work is to present an inexact version of the symmetric proximal
ADMM (2) in which, similarly to [2, 3], the solution of the first subproblem can be computed in an
approximate way such that a relative error condition is satisfied. From the theoretical viewpoint, the
global O(1/

√
k) pointwise convergence rate is shown, which ensures, in particular, that for a given
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tolerance ρ > 0, the algorithm generates a ρ−approximate solution (x̃, y, γ̃) with residual (u, v, w) of
the Lagrangian system associated to (1), i.e.,

u ∈ ∂f(x̃)−A∗γ̃, v ∈ ∂g(y)−B∗γ̃, w = Ax̃+By − b,

and
max{‖u‖, ‖v‖, ‖w‖} ≤ ρ,

in at most O(1/ρ2) iterations. The global O(1/k) ergodic convergence rate is also established, which
implies, in particular, that a ρ−approximate solution (x̃a, ya, γ̃a) with residuals (ua, va, wa) and
(εa, ζa) of the Lagrangian system associated to (1), i.e.,

ua ∈ ∂εaf(x̃
a)−A∗γ̃a, va ∈ ∂ζag(y

a)−B∗γ̃a, wa = Ax̃a +Bya − b,

and
max{‖ua‖, ‖va‖, ‖wa‖, εa, ζa} ≤ ρ,

is obtained in at most O(1/ρ) iterations by means of the ergodic sequence. The analysis of the
method is established without any assumptions on A and B. Moreover, the new convergence domain
of τ and θ reduces to (3), except for the case τ = 1 and θ ∈ (−1, 1), in the exact setting (see
Remark 2.1(a)). From the applicability viewpoint, we report numerical experiments in order to
illustrate the efficiency of the method for solving real-life applications. To the best of our knowledge,
this work is the first one to study an inexact version of the symmetric proximal ADMM.

The paper is organized as follows. Section 2 presents the inexact symmetric proximal ADMM as
well as its pointwise and ergodic convergence rates. Section 3 is devoted to the numerical study of
the proposed method. Some concluding remarks are given in Section 4.

2 Inexact symmetric proximal ADMM

This section describes and investigates an inexact version of the symmetric proximal ADMM for
solving (1). Essentially, the method allows its first subproblem to be solved inexactly in such way
that a relative error condition is satisfied. In particular, the new algorithm as well as its iteration-
complexity results generalize many others in the literature.

We begin by formally stating the inexact algorithm.

4



Algorithm 1: An inexact symmetric proximal ADMM

Step 0. Let an initial point (x0, y0, γ0) ∈ R
n × R

p × R
m, a penalty parameter β > 0, two error

tolerance parameters σ̃, σ̂ ∈ [0, 1), and two proximal matrices G ∈ S
n
++ and H ∈ S

p
+ be given.

Choose the acceleration parameters τ and θ such that (τ, θ) ∈ Rσ̃ where

Rσ̃ =

{
(τ, θ)

∣∣∣∣∣
τ ∈ (−1, 1− σ̃) , τ + θ > 0, and

(
1− τ2

)
(2− τ − θ − σ̃)− (1− θ)2 (1− τ − σ̃) > 0

}
, (8)

and set k = 1.

Step 1. Compute (x̃k, uk) ∈ R
n × R

n such that

uk ∈ ∂f(x̃k)−A∗γ̃k, (9)

and ∥∥x̃k − xk−1 +G−1uk
∥∥2
G
≤ σ̃

β
‖γ̃k − γk−1‖2 + σ̂ ‖x̃k − xk−1‖2G , (10)

where
γ̃k := γk−1 − β(Ax̃k +Byk−1 − b). (11)

Step 2. Set
γk− 1

2

:= γk−1 − τβ (Ax̃k +Byk−1 − b) . (12)

Step 3. Compute an optimal solution yk ∈ R
p of the subproblem

min
y∈Rp

{
g(y)− 〈γk− 1

2

, By〉+ β

2
‖Ax̃k +By − b‖2 + 1

2
‖y − yk−1‖2H

}
. (13)

Step 4. Set
xk := xk−1 −G−1uk, γk := γk− 1

2

− θβ (Ax̃k +Byk − b) , (14)

and k ← k + 1, and go to step 1.

We now make some relevant comments of our approach.

Remark 2.1. (a) Clearly, it follows from the definition in (8) that if (τ, θ) ∈ Rσ̃, then θ < 2,
(1− τ − σ̃) > 0 and (2− τ − θ − σ̃) > 0. Moreover, the third condition in (8) can be rewritten
as (

1 + τ + θ − τθ − τ2 − θ2
)
(1− τ) +

(
τ2 − 2θ + θ2

)
σ̃ > 0.

If σ̃ = 0, then τ ∈ (−1, 1). Hence, it follows from the above inequality that R0 reduces to the
region K in (3) with τ 6= 1. The regions R0, R0.3 and R0.6 are illustrated in Fig. 1(a), 1(b),
and 1(c), respectively. Note that for some suitable choice of (σ̃, τ), the stepsize θ can be even
chosen greater than (1 +

√
5)/2 ≈ 1.618.

(b) If the inaccuracy parameters σ̃ and σ̂ are zeros, from (10) and the first equality in (14), we
obtain x̃k = xk and uk = G(xk−1 − xk). Hence, in view of the definition of γ̃k in (11) and the
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inclusion in (9), it follows that computing xk is equivalent to solve exactly the subproblem in
(2a). Therefore, we can conclude that Algorithm 1 recovers its exact version.

(c) In order to simplify the updated formula of xk in (14) and the relative error condition in (10),
a trivial choice for the proximal matrix G would be I/β.

(d) If τ = 0, then (τ, θ) ∈ Rσ̃ corresponds to

θ ∈
(
0,

1− 2σ̃ +
√

(1− 2σ̃)2 + 4(1 − σ̃)

2(1− σ̃)

)
, (15)

and hence Algorithm 1 with G = I/β reduces to the partially inexact proximal ADMM studied
in [2]. Note also that if σ̃ = 0 (exact case), then (15) turns out to be the classical condition
θ ∈ (0, (1 +

√
5)/2) for the FG-P-ADMM; see [21].

(e) If θ = 1, then (τ, θ) ∈ Rσ̃ corresponds to τ ∈ (−1, 1 − σ̃). By setting α := τ + 1, it is possible
to prove (see, e.g., [23, Remark 5.8]) that Algorithm 1 with G = I/β reduces to the inexact
generalized proximal ADMM in [3]. Furthermore, if σ̃ = 0, then the condition on τ becomes
the standard condition τ ∈ (−1, 1) (or, in term of the relaxation factor α, α ∈ (0, 2)) for the
G-P-ADMM; see [1].

-1 -1/3 0 1
-1

0

1

5/3

(a) R0

-1 -1/3 0 0.7 1
-1

0

1

5/3

(b) R0.3

-1 -1/3 0 0.4 1
-1

0

1

5/3

(c) R0.6

Figure 1: Some instances of Rσ̃.

Throughout the paper, we make the following standard assumption.

Assumption 1. There exists a solution (x∗, y∗, γ∗) ∈ R
n × R

p × R
m of the Lagrangian system

0 ∈ ∂f(x)−A∗γ, 0 ∈ ∂g(y) −B∗γ, 0 = Ax+By − b, (16)

associated to (1).
In order to establish pointwise and ergodic convergence rates for Algorithm 1, we first show in

Section 2.1 that the algorithm can be seen as an instance of a general proximal point method. With
this fact in hand, we will be able to present convergence rates of Algorithm 1 in Section 2.2. It
should be mentioned that the analysis of Algorithm 1 is much more complicated, since it involves
two acceleration parameters τ and θ.
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2.1 Auxiliar results

Our goal in this section is to show that Algorithm 1 can be seen as an instance of the hybrid proximal
extragradient (HPE) framework in [21] (see also [1, 2]). More specifically, it will be proven that there
exists a scalar σ ∈ [σ̂, 1) such that

M (zk−1 − zk) ∈ T (z̃k), ‖z̃k − zk‖2M + ηk ≤ σ ‖z̃k − zk−1‖2M + ηk−1, ∀ k ≥ 1, (17)

where zk := (xk, yk, γk) and z̃k := (x̃k, yk, γ̃k), and the matrix M , the operator T and the sequence
{ηk} will be specified later. As a consequence of the latter fact, the pointwise convergence rate to
be presented in the next section could be derived from [21, Theorem 3.3]. However, since its proof
follows easily from (17), we present it here for completeness and convenience of the reader. On the
other hand, although the ergodic convergence rate in the next section is related to [21, Theorem 3.4],
its proof does not follow immediately from the latter theorem.

The proof of (17) is extensive and nontrivial. We begin by defining and establishing some
properties of the matrix M and the operator T .

Proposition 2.2. Consider the operator T and the matrix M defined as

T (x, y, γ) =




∂f(x)−A∗γ
∂g(y) −B∗γ
Ax+By − b


 , M =




G 0 0

0 H + (τ−τθ+θ)β
τ+θ

B∗B − τ
τ+θ

B∗

0 − τ
τ+θ

B 1
(τ+θ)β I


 . (18)

Then, T is maximal monotone and M is symmetric positive semidefinite.

Proof. Note that T can be decomposed as T = T̃ + T̂ , where

T̃ (z) := (∂f(x), ∂g(y),−b) and T̂ (z) := Dz, with D :=




0 0 −A∗

0 0 −B∗

A B 0


 .

Thus, since f and g are convex functions, the operators ∂f and ∂g are maximal monotone (see [27])
and, hence, the operator T̃ is maximal monotone as well. In addition, since D is skew-symmetric, T̂
is also maximal monotone. Therefore, we obtain that T is maximal monotone.

Now, it is evident that M is symmetric and, using the inequality of Cauchy-Schwarz, for every
z = (x, y, γ) ∈ R

n × R
p × R

m

〈Mz, z〉 = ‖x‖2G + ‖y‖2H +
(τ − τθ + θ)β

τ + θ
‖By‖2 − 2τ

τ + θ
〈By, γ〉+ 1

(τ + θ)β
‖γ‖2

≥ (τ − τθ + θ)β

τ + θ
‖By‖2 − 2 |τ |

τ + θ
‖By‖ ‖γ‖+ 1

(τ + θ)β
‖γ‖2 = 〈Pw,w〉 , (19)

where w := (‖γ‖ , ‖By‖) and

P :=




1
(τ+θ)β − |τ |

τ+θ

− |τ |
τ+θ

(τ−τθ+θ)β
τ+θ


 .

From step 0 of Algorithm 1, we obtain

P1,1 =
1

(τ + θ)β
> 0, and det(P ) =

(1− τ)(τ + θ)

(τ + θ)2
> 0,

Therefore, P is symmetric positive definite and, hence, the statement onM follows now from (19).

7



We next establish a technical result.

Lemma 2.3. Consider the sequences {pk} and {qk} defined by

pk = B (yk − yk−1) , qk = −β (Ax̃k +Byk − b) , ∀ k ≥ 1. (20)

Then, for every k ≥ 1, the following equalities hold:

γ̃k − γk−1 = βpk + qk, γ̃k − γk = (1− τ) βpk + (1− τ − θ) qk, (21)

γk − γk−1 = τβpk + (τ + θ) qk. (22)

Proof. From the definition of γ̃k in (11), we have

γ̃k − γk−1 = βB (yk − yk−1)− β (Ax̃k +Byk − b) ,

which, in view of (20), proves the first identity in (21). Now, using (11), (12) and the definition of
γk in (14) we get

γ̃k − γk = γk−1 − γk− 1

2

− β (Ax̃k +Byk−1 − b) + θβ (Ax̃k +Byk − b)

= − (1− τ) β (Ax̃k +Byk−1 − b) + θβ (Ax̃k +Byk − b)

= (1− τ)βB (yk − yk−1)− (1− τ − θ)β (Ax̃k +Byk − b) .

This equality, together with (20), implies the second identity in (21). Again using the definitions of
γk− 1

2

and γk in (12) and (14), respectively, we obtain

γk − γk−1 = −θβ (Ax̃k +Byk − b)− τβ (Ax̃k +Byk−1 − b)

= τβB (yk − yk−1)− (τ + θ)β (Ax̃k +Byk − b) ,

which, combined with (20), yields (22).

We next show that the inclusion in (17) holds.

Theorem 2.4. For every k ≥ 1, the following estimatives hold:

G(xk−1 − xk) ∈ ∂f(x̃k)−A∗γ̃k, (23)

(
H +

(τ − τθ + θ)β

τ + θ
B∗B

)
(yk−1−yk)−

τ

τ + θ
B∗(γk−1 − γk) ∈ ∂g(yk)−B∗γ̃k, (24)

− τ

τ + θ
B(yk−1 − yk) +

1

(τ + θ)β
(γk−1 − γk) = Ax̃k +Byk − b. (25)

As a consequence, for every k ≥ 1,

M (zk−1 − zk) ∈ T (z̃k),

where
zk := (xk, yk, γk) ∀ k ≥ 0, z̃k := (x̃k, yk, γ̃k) ∀ k ≥ 1, (26)

and T and M are as in (18).
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Proof. Inclusion in (23) follows trivially from (9) and the definition of xk in (14). It follows from
(12) and (14) that

γk − γk−1 = −θβ (Ax̃k +Byk − b)− τβ (Ax̃k +Byk−1 − b)

= −(τ + θ)β (Ax̃k +Byk − b) + τβB (yk − yk−1) ,

which is equivalent to (25). Now, from the optimality condition for (13), we have

0 ∈ ∂g(yk)−B∗
[
γk− 1

2

− β (Ax̃k +Byk − b)
]
+H (yk − yk−1) . (27)

On the other hand, using (11), we obtain

γk− 1

2

− β (Ax̃k +Byk − b) = γk− 1

2

− β (Ax̃k +Byk−1 − b)− βB (yk − yk−1)

= γ̃k + γk− 1

2

− γk−1 − βB (yk − yk−1) .

From the definition of γk in (14), we find

γk− 1

2

− γk−1 = γk− 1

2

− γk + γk − γk−1 = θβ (Ax̃k +Byk − b) + γk − γk−1

= θβ

[
τ

τ + θ
B (yk − yk−1)−

1

(τ + θ)β
(γk − γk−1)

]
+ γk − γk−1

=
τθβ

τ + θ
B (yk − yk−1) +

τ

τ + θ
(γk − γk−1) ,

where the last equality is due to (25). Combining the last two equalities, we have

γk− 1

2

− β (Ax̃k +Byk − b) = γ̃k −
(τ − τθ + θ)β

τ + θ
B (yk − yk−1) +

τ

τ + θ
(γk − γk−1) ,

which, combined with (27), implies (24).

In the remaining part of this section, we will prove that the inequality in (17) holds. Toward this
goal, we next establish three technical results.

Lemma 2.5. Let {zk} and {z̃k} be as in (26). Then, for every z∗ ∈ T−1(0), we have

‖z∗ − zk‖2M − ‖z∗ − zk−1‖2M ≤ ‖z̃k − zk‖2M − ‖z̃k − zk−1‖2M , ∀ k ≥ 1.

Proof. As M (zk−1 − zk) ∈ T (z̃k) (Theorem 2.4), T is monotone maximal (Proposition 2.2) and
0 ∈ T (z∗), we obtain 〈M(zk−1 − zk), z̃k − z∗〉 ≥ 0. Hence,

‖z∗ − zk‖2M − ‖z∗ − zk−1‖2M = ‖z∗ − z̃k + z̃k − zk‖2M − ‖z∗ − z̃k + z̃k − zk−1‖2M
= ‖z̃k − zk‖2M + 2〈M(zk−1 − zk), z

∗ − z̃k〉 − ‖z̃k − zk−1‖2M
≤ ‖z̃k − zk‖2M − ‖z̃k − zk−1‖2M ,

concluding the proof.

9



Proposition 2.6. Define the matrix Q and the scalar ϑ as

Q =

[
(3− 3τ − 2σ̃) βI 2 (1− τ − σ̃) I

2 (1− τ − σ̃) I 4−τ−θ−2σ̃
β

I

]
, (28)

and
ϑ =

√
(3− 3τ − 2σ̃) (4− τ − θ − 2σ̃)− 2 (1− τ − σ̃) . (29)

Then, Q is symmetric positive definite and ϑ > 0. Moreover, for any (y, γ) ∈ R
p × R

m

‖(y, γ)‖2Q ≥ −2ϑ 〈y, γ〉 .

Proof. Clearly Q is symmetric, and is positive definite iff

Q̂ =

[
(3− 3τ − 2σ̃) β 2 (1− τ − σ̃)

2 (1− τ − σ̃) 4−τ−θ−2σ̃
β

]

is positive definite. To show that Q̂ ∈ S
2
++ consider the scalars ̺, ˜̺, and ˆ̺ defined by

̺ = (3− 3τ − 2σ̃) β, ˜̺ = 2 (1− τ − σ̃) , and ˆ̺ =
4− τ − θ − 2σ̃

β
.

Since 3−3τ −2σ̃ = (1− τ)+2 (1− τ − σ̃) and 4−τ −θ−2σ̃=(τ + θ)+2 (2− τ − θ − σ̃), we obtain,
from (8), that ̺, ˆ̺> 0. Moreover,

̺ ˆ̺− ˜̺2 = [(1− τ) + 2 (1− τ − σ̃)] (4− τ − θ − 2σ̃)− 4 (1− τ − σ̃)2

= (1− τ − σ̃) [(2− τ − θ − σ̃) + 2 (3 + τ − θ)] + σ̃ (3− σ̃ − θ) .

From (8), we have (1 − τ − σ̃) > 0, (2 − τ − θ − σ̃) > 0 and θ < 2. The latter inequality, together
with the facts that τ > −1 and σ̃ < 1, yields 3+ τ − θ > 0 and 3− σ̃− θ > 0. Therefore, det(Q̂) > 0
and Tr(Q̂) > 0, and we conclude that Q is positive definite. In addition, inequalities ̺ ˆ̺− ˜̺2 > 0 and
(1− τ − σ̃) > 0 clearly imply that ϑ > 0.

Now, for a given (y, γ) ∈ R
p × R

m, using (28), (29) and simple algebraic manipulations, we find

‖(y, γ)‖2Q =

∥∥∥∥
√

(3− 3τ − 2σ̃)βy +

√
4− τ − θ − 2σ̃√

β
γ

∥∥∥∥
2

− 2ϑ 〈y, γ〉 ≥ −2ϑ 〈y, γ〉 ,

which concluded the proof of the proposition.

Proposition 2.7. Consider the functions ϕ, ϕ̂, ϕ̃, ϕ : R→ R defined by

ϕ(σ) = (1− τ) (σ − 1) + (1− τ − σ̃) (τ + θ) , (30a)

ϕ̂(σ) = (1− τ) [(1 + θ)σ − 1 + τ ]− σ̃ (τ + θ) , (30b)

ϕ̃(σ) = σ − (1− τ − θ)2 − σ̃ (τ + θ) , (30c)

ϕ(σ) = [(1 + τ) ϕ̂(σ)− 2τϕ(σ)] (1 + τ) ϕ̃(σ)− (1− θ)2 (ϕ(σ))2 . (30d)

Then, there exists a scalar σ ∈ [σ̂, 1) such that ϕ(σ) ≥ 0, ϕ̂(σ) ≥ 0, ϕ̃(σ) > 0 and ϕ(σ) ≥ 0.
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Proof. Since

ϕ(1) = (1− τ − σ̃) (τ + θ) = ϕ̂(1), ϕ̃(1) = (2− τ − θ − σ̃) (τ + θ) ,

and

ϕ(1) = (1− τ − σ̃) (τ + θ)2
[(
1− τ2

)
(2− τ − θ − σ̃)− (1− θ)2 (1− τ − σ̃)

]
,

it follows from (8) that all functions defined in (30) are positive for σ = 1. Therefore, there exists
σ ∈ [σ̂, 1) close to 1 such that the statements of the proposition hold.

The following lemma provides some estimates of the sequences {‖z̃k − zk−1‖2M} and {‖z̃k − zk‖2M},
which appear in (17).

Lemma 2.8. Let T , M , {pk}, {qk}, {zk} and {z̃k} be as in (18), (20) and (26). Then, for every
k ≥ 1,

‖z̃k − zk−1‖2M = ‖x̃k − xk−1‖2G + ‖yk − yk−1‖2H + ak, ‖z̃k − zk‖2M = ‖x̃k − xk‖2G + bk, (31)

where

ak :=
(1− τ)(1 + θ)β

τ + θ
‖pk‖2 +

2(1− τ)

τ + θ
〈pk, qk〉+

1

(τ + θ)β
‖qk‖2 ,

and

bk :=
(1− τ)2β

τ + θ
‖pk‖2 +

2(1 − τ)(1− τ − θ)

τ + θ
〈pk, qk〉+

(1− τ − θ)2

(τ + θ)β
‖qk‖2 .

Proof. It follows from (26) and the first equality in (21) that

‖z̃k − zk−1‖2M = ‖(x̃k − xk−1, yk − yk−1, βpk + qk)‖2M .

Hence, using (18) and (20), we find

‖z̃k − zk−1‖2M = ‖x̃k − xk−1‖2G + ‖yk − yk−1‖2H + ãk

where

ãk :=
(τ − τθ + θ)β

τ + θ
‖pk‖2 −

2τ

τ + θ
〈pk, βpk + qk〉+

1

(τ + θ)β
‖βpk + qk‖2 .

By developing the right-hand side of the last expression, we have

ãk =
(τ − τθ + θ − 2τ + 1)β

τ + θ
‖pk‖2 −

2τ − 2

τ + θ
〈pk, qk〉+

1

(τ + θ)β
‖qk‖2

=
(1− τ)(1 + θ)β

τ + θ
‖pk‖2 +

2(1− τ)

τ + θ
〈pk, qk〉+

1

(τ + θ)β
‖qk‖2 = ak.

Therefore, the first equation in (31) follows. Now, using (26), (20), the second equality in (21), and
the definition of M in (18), we obtain

‖z̃k − zk‖2M = ‖(x̃k − xk, 0, (1 − τ)βpk + (1− τ − θ)qk)‖2M
= ‖x̃k − xk−1‖2G +

1

(τ + θ)β
‖(1− τ)βpk + (1− τ − θ)qk‖2 ,

which is equivalent to the second equation in (31).
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Before proving the inequality in (17), we establish some other relations satisfied by the sequences
generated by Algorithm 1. To do this, we consider the following constant

d0 = inf
{
‖z∗ − z0‖2M : z∗ ∈ T−1(0)

}
, (32)

where M , T and z0 are as in (18) and (26). Note that, if M is positive definite, then d0 measures
the squared distance in the norm ‖ · ‖M of the initial point z0 = (x0, y0, γ0) to the solution set of (1).

Lemma 2.9. Let {pk}, {qk} and d0 be as in (20) and (32). Then, the following hold:
(a)

min
{
2ϑ 〈p1, q1〉 ,−‖y1 − y0‖2H

}
≥ −4d0,

where ϑ is as in (29).
(b) for every k ≥ 2, we have

2(1 + τ) 〈pk, qk〉 ≥ 2(1 − θ) 〈pk, qk−1〉 − 2τβ ‖pk‖2 + ‖yk − yk−1‖2H − ‖yk−1 − yk−2‖2H .

Proof. (a) From (22) with k = 1, we have γ1− γ0 = τβp1 +(τ + θ)q1. Then, using (26) (with k = 1)
and the definition of M in (18), we find

‖z1 − z0‖2M = ‖(x1 − x0, y1 − y0, γ1 − γ0)‖2M = ‖x1 − x0‖2G + ‖y1 − y0‖2H + c1, (33)

where

c1 :=
(τ − τθ + θ)β

τ + θ
‖p1‖2 −

2τ

τ + θ
〈p1, γ1 − γ0〉+

1

(τ + θ)β
‖γ1 − γ0‖2

=

(
τ − τθ + θ − τ2

)
β

τ + θ
‖p1‖2 +

τ + θ

β
‖q1‖2 = (1− τ)β ‖p1‖2 +

τ + θ

β
‖q1‖2 . (34)

Let z∗ = (x∗, y∗, γ∗) be an arbitrary solution of (16), i.e., z∗ ∈ T−1(0) with T as in (18). Hence, it
follows from (33) and the fact that ‖z − z′‖2M ≤ 2(‖z‖2M + ‖z′‖2M ), for all z, z′, that

c1 + ‖y1 − y0‖2H ≤ ‖z1 − z0‖2M ≤ 2
(
‖z∗ − z1‖2M + ‖z∗ − z0‖2M

)
. (35)

On the other hand, it follows from (10) with k = 1 and the definition of x1 in (14) that

‖x̃1 − x1‖2G ≤ σ̂ ‖x̃1 − x0‖2G +
σ̃

β
‖γ̃1 − γ0‖2 ≤ ‖x̃1 − x0‖2G +

σ̃

β
‖γ̃1 − γ0‖2,

where, in the second inequality, we use that σ̂ < 1. Thus, using the first identity in (21) with k = 1,
we obtain

‖x̃1 − x0‖2G − ‖x̃1 − x1‖2G ≥ −
σ̃

β
‖βp1 + q1‖2 .

This inequality, together with Lemma 2.5 and Lemma 2.8 (with k = 1), implies that

‖z∗ − z0‖2M − ‖z∗ − z1‖2M ≥ ‖z̃1 − z0‖2M − ‖z̃1 − z1‖2M
≥ ‖x̃1 − x0‖2G − ‖x̃1 − x1‖2G +

(1− τ) (τ + θ)β

τ + θ
‖p1‖2

+
2(1− τ)(τ + θ)

τ + θ
〈p1, q1〉+

1− [1− (τ + θ)]2

(τ + θ)β
‖q1‖2

≥ (1− τ − σ̃)
[
β ‖p1‖2 + 2 〈p1, q1〉

]
+

2− τ − θ − σ̃

β
‖q1‖2 .
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Combining this inequality with (35) and using the identity in (34), we find

4 ‖z∗ − z0‖2M ≥ ‖y1 − y0‖2H + (3− 3τ − 2σ̃) β ‖p1‖2 + 4 (1− τ − σ̃) 〈p1, q1〉+
4− τ − θ − 2σ̃

β
‖q1‖2

= ‖y1 − y0‖2H + ‖(p1, q1)‖2Q ,

where Q is as in (28). Hence, using Proposition 2.6 we conclude that

max
{
−ϑ 〈p1, q1〉 , ‖y1 − y0‖2H

}
≤ 4 ‖z∗ − z0‖2M .

Therefore, statement (a) follows from the definition of d0 in (32).

(b) It follows from the definitions of γk and qk in (14) and (20), respectively, that

γk− 1

2

− β (Ax̃k +Byk − b) = γk − (1− θ)β (Ax̃k +Byk − b) = γk + (1− θ) qk.

Hence, since yk is an optimal solution of (13), we obtain, for every k ≥ 1,

0 ∈ ∂g(yk)−B∗
[
γk− 1

2

− β (Ax̃k +Byk − b)
]
+H (yk − yk−1)

= ∂g(yk)−B∗ [γk + (1− θ) qk] +H (yk − yk−1) .

Thus, the monotonicity of ∂g and the definition of pk in (20) imply that, for eve-ry k ≥ 2,

0 ≤ 〈γk − γk−1 + (1− θ) (qk − qk−1), pk〉 − ‖yk − yk−1‖2H + 〈H (yk−1 − yk−2), yk − yk−1〉
= 〈τβpk + (1 + τ) qk − (1− θ) qk−1, pk〉 − ‖yk − yk−1‖2H + 〈H (yk−1 − yk−2), yk − yk−1〉

≤ τβ ‖pk‖2 + (1 + τ) 〈pk, qk〉 − (1− θ) 〈pk, qk−1〉 −
1

2
‖yk − yk−1‖2H +

1

2
‖yk−1 − yk−2‖2H ,

where the second equality is due to (22) and the last inequality is due to the fact that 2 〈Hy, y′〉 ≤
‖y‖2H + ‖y′‖2H for all y, y′ ∈ R

p. Therefore, the desired inequality follows immediately from the last
one.

With the above propositions and lemmas, we now prove the inequality in (17).

Theorem 2.10. Let {zk}, {z̃k} and {qk} be as in (26) and (20) and assume that σ ∈ [σ̂, 1) is given
by Proposition 2.7. Consider the sequence {ηk} defined by

η0 =
4 (1 + τ + ϑ)ϕ (σ)

(τ + θ) (1 + τ)ϑ
d0, ηk =

ϕ̃ (σ)

(τ + θ)β
‖qk‖2 +

ϕ (σ)

(τ + θ) (1 + τ)
‖yk − yk−1‖2H , ∀ k ≥ 1, (36)

where ϑ, d0, ϕ and ϕ̃ are as in (29), (32), (30a) and (30c), respectively. Then, for every k ≥ 1,

‖z̃k − zk‖2M + ηk ≤ σ ‖z̃k − zk−1‖2M + ηk−1, (37)

where M is as in (18).
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Proof. It follows from Lemma 2.8 that

σ ‖z̃k − zk−1‖2M − ‖z̃k − zk‖2M = σ ‖x̃k − xk−1‖2G − ‖x̃k − xk‖2G
+ σ ‖yk − yk−1‖2H +

(1− τ) [(1 + θ)σ − (1− τ)] β

τ + θ
‖pk‖2

+
2 (1− τ) [σ − (1− τ − θ)]

τ + θ
〈pk, qk〉+

σ − (1− τ − θ)2

(τ + θ)β
‖qk‖2 . (38)

Using the inequality in (10), the definition of xk in (14) and noting that σ ≥ σ̂, we obtain

σ ‖x̃k − xk−1‖2G − ‖x̃k − xk‖2G ≥ −
σ̃

β
‖γ̃k − γk−1‖2 = −σ̃β ‖pk‖2 − 2σ̃ 〈pk, qk〉 −

σ̃

β
‖qk‖2

where the last equality is due to the first expression in (21). Combining the last inequality with (38)
and definitions in (30), we find

σ ‖z̃k − zk−1‖2M − ‖z̃k − zk‖2M ≥
ϕ̂(σ)β

τ + θ
‖pk‖2 +

2ϕ (σ)

τ + θ
〈pk, qk〉+

ϕ̃ (σ)

(τ + θ)β
‖qk‖2 . (39)

Let us now consider two cases: k = 1 and k ≥ 2.

Case 1 (k = 1): From (39) with k = 1, Lemma 2.9(a) and the fact that ϕ(σ) ≥ 0, we have

σ ‖z̃1 − z0‖2M − ‖z̃1 − z1‖2M ≥
ϕ̂(σ)β

τ + θ
‖p1‖2 −

4ϕ (σ)

(τ + θ)ϑ
d0 +

ϕ̃ (σ)

(τ + θ)β
‖q1‖2 .

Hence, in view of the definitions of η0 and η1 in (36), we conclude that

σ ‖z̃1 − z0‖2M − ‖z̃1 − z1‖2M + η0 − η1 ≥
ϕ̂(σ)β

τ + θ
‖p1‖2 +

ϕ (σ)

(τ + θ) (1 + τ)

[
4d0 − ‖y1 − y0‖2H

]
≥ 0,

where the last inequality is due to Lemma 2.9(a) and Proposition 2.7. This implies that (37) holds
for k = 1.

Case 2 (k ≥ 2): It follows from Lemma 2.9(b) and (39) that

σ ‖z̃k − zk−1‖2M − ‖z̃k − zk‖2M ≥
ϕ̂(σ)β

τ + θ
‖pk‖2 +

ϕ̃ (σ)

(τ + θ)β
‖qk‖2

+
ϕ (σ)

(τ + θ) (1 + τ)

[
2 (1− θ) 〈pk, qk−1〉 − 2τβ ‖pk‖2 + ‖yk − yk−1‖2H − ‖yk−1 − yk−2‖2H

]
,

which, combined with the definition of ηk in (36), yields

σ ‖z̃k − zk−1‖2M − ‖z̃k − zk‖2M + ηk−1 − ηk ≥
[(1 + τ) ϕ̂ (σ)− 2τϕ (σ)]β

(τ + θ) (1 + τ)
‖pk‖2

+
2 (1− θ)ϕ (σ)

(τ + θ) (1 + τ)
〈pk, qk−1〉+

ϕ̃ (σ)

(τ + θ)β
‖qk−1‖2 .

For simplicity, we define constants a, b, and c by

a =
[(1 + τ) ϕ̂ (σ)− 2τϕ (σ)]β

(τ + θ) (1 + τ)
, b =

(1− θ)ϕ (σ)

(τ + θ) (1 + τ)
, and c =

ϕ̃ (σ)

(τ + θ)β
.
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Hence,

σ ‖z̃k − zk−1‖2M − ‖z̃k − zk‖2M + ηk−1 − ηk ≥ a ‖pk‖2 − 2b 〈pk, qk−1〉+ c ‖qk−1‖2 . (40)

Now, note that

ac− b2 =
[(1 + τ) ϕ̂ (σ)− 2τϕ (σ)] (1 + τ) ϕ̃ (σ)− (1− θ)2 (ϕ (σ))2

(τ + θ)2 (1 + τ)2
=

ϕ (σ)

(τ + θ)2 (1 + τ)2
,

where ϕ is given in (30d). Therefore, it follows from Proposition 2.7 that c > 0 and ac − b2 ≥ 0,
which, combined with (40), implies that (37) also holds for k ≥ 2.

Remark 2.11. If τ = 0 (resp. θ = 1), then Theorems 2.4 and 2.10 correspond to Lemma 3.1 and
Theorem 3.3 in [2] (resp. [3, Proposition 1(a)]).

2.2 Pointwise and ergodic convergence rates of Algorithm 1

In this section, we establish pointwise and ergodic convergence rates for Algorithm 1.

Theorem 2.12 (Pointwise convergence rate of Algorithm 1). Consider the sequences {vk} and {wk}
defined, for every k ≥ 1, by

vk =

(
H +

(τ − τθ + θ)β

τ + θ
B∗B

)
(yk−1 − yk)−

τ

τ + θ
B∗ (γk−1 − γk) , (41)

wk = − τ

τ + θ
B (yk−1 − yk) +

1

(τ + θ)β
(γk−1 − γk) . (42)

Then, for every k ≥ 1,

uk ∈ ∂f(x̃k)−A∗γ̃k, vk ∈ ∂g(yk)−B∗γ̃k, wk = Ax̃k +Byk − b, (43)

and there exists i ≤ k such that

max {‖ui‖ , ‖vi‖ , ‖wi‖} ≤
√

2λMd0C1
k

(44)

where C1 := [1 + σ + 8 (1 + τ + ϑ)ϕ (σ)/((τ + θ) (1 + τ)ϑ)]/[1 − σ], λM is the largest eigenvalue of
the matrix M defined in (18), σ ∈ [σ̂, 1) is given by Proposition 2.7 and ϑ, ϕ and d0 are as in (29),
(30a) and (32), respectively.

Proof. By noting that uk = G (xk−1 − xk) (see (14)), the expressions in (43) follow immediately from
(41), (42) and Theorem 2.4. From Theorem 2.4, we have (uk, vk, wk) = M(zk−1 − zk) and hence

‖(uk, vk, wk)‖2 ≤ λM ‖zk−1 − zk‖2M ≤ 2λM

[
‖zk−1 − z̃k‖2M + ‖z̃k − zk‖2M

]

≤ 2λM

[
(1 + σ) ‖zk−1 − z̃k‖2M + ηk−1 − ηk

]
,

where the last inequality is due to (37). On the other hand, from Lemma 2.5 and (37), we obtain

‖z∗ − zk‖2M − ‖z∗ − zk−1‖2M ≤ (σ − 1) ‖z̃k − zk−1‖2M + ηk−1 − ηk,
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where z∗ ∈ T−1(0). The last two estimates and the fact that σ < 1 imply that, for every k ≥ 1

‖(uk, vk, wk)‖2 ≤ 2λM

[
1 + σ

1− σ

(
‖z∗ − zk−1‖2M − ‖z∗ − zk‖2M + ηk−1 − ηk

)
+ ηk−1 − ηk

]

=
2λM

1− σ

[
(1 + σ)

(
‖z∗ − zk−1‖2M − ‖z∗ − zk‖2M

)
+ 2 (ηk−1 − ηk)

]
.

By summing the above inequality from k = 1 to k, we obtain

k∑

l=1

‖(ul, vl, wl)‖2 ≤
2λM

1− σ

[
(1 + σ) ‖z∗ − z0‖2M + 2η0

]
, (45)

which, combined with the definitions of d0 and η0 (32) and (36), respectively, yields

k

(
min

l=1,...,k
‖(ul, vl, wl)‖2

)
≤ 2λM

1− σ

[
(1 + σ) +

8 (1 + τ + ϑ)ϕ (σ)

(τ + θ) (1 + τ)ϑ

]
d0.

Therefore, (44) follows now from the last inequality and the definition of C1.

Remark 2.13. (a) It follows from Theorem 2.12 that, for a given tolerance ρ > 0, Algorithm 1
generates a ρ−approximate solution (x̃i, yi, γ̃i) of (16) with residual (ui, vi, wi), i.e.,

ui ∈ ∂f(x̃i)−A∗γ̃i, vi ∈ ∂g(yi)−B∗γ̃i, wi = Ax̃i +Byi − b,

such that
max{‖ui‖, ‖vi‖, ‖wi‖} ≤ ρ,

in at most

k̄ =

⌈
2λMd0C1

ρ2

⌉

iterations. (b) Theorem 2.12 encompasses many recently pointwise convergence rates of ADMM
variants. Namely, (i) by taking τ = 0 and G = I/β, we obtain the pointwise convergence rate of the
partially inexact proximal ADMM established in [2, Theorem 3.1]. Additionally, if σ̃ = σ̂ = 0, the
pointwise rate of the FG-P-ADMM in [21, Theorem 2.1] is recovered. (ii) By choosing θ = 1 and
G = I/β, we have the pointwise rate of the inexact proximal generalized ADMM as in [3, Theorem 1].
Finally, if θ = 1, G = I/β and σ̃ = σ̂ = 0, the pointwise convergence rate of the G-P-ADMM in [1,
Theorem 3.4] is obtained.

Theorem 2.14 (Ergodic convergence rate of Algorithm 1). Consider the sequences {(xak, yak , γak , x̃ak, γ̃ak)},
{(uak, vak , wa

k)}, and {(εak, ζak )} defined, for every k ≥ 1, by

(xak, y
a
k , γ

a
k , x̃

a
k, γ̃

a
k) =

1

k

k∑

i=1

(xi, yi, γi, x̃i, γ̃i) , (uak, v
a
k , w

a
k) =

1

k

k∑

i=1

(ui, vi, wi) , (46)

εak =
1

k

k∑

i=1

〈ui +A∗γ̃i, x̃i − x̃ak〉 , and ζak =
1

k

k∑

i=1

〈vi +B∗γ̃i, yi − yak〉 , (47)
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where vi and wi are as in (41) and (42), respectively. Then, for every k ≥ 1, there hold εak ≥ 0,
ζak ≥ 0,

uak ∈ ∂εa
k
f (x̃ak)−A∗γ̃ak , vak ∈ ∂ζa

k
g (yak)−B∗γ̃ak , wa

k = Ax̃ak +Byak − b, (48)

max {‖uak‖ , ‖vak‖ , ‖wa
k‖} ≤

2
√
λMd0C2
k

, max {εak, ζak} ≤
3d0C3
2k

, (49)

where C2 := [1 + 4 (1 + τ + ϑ)ϕ (σ)/((τ + θ) (1 + τ)ϑ)] and C3 := (3 − 2σ)C2/(1 − σ), λM is the
largest eigenvalue of the matrix M defined in (18), σ ∈ [σ̂, 1) is given by Proposition 2.7 and ϑ, ϕ
and d0 are as in (29), (30a) and (32), respectively.

Proof. For every i ≥ 1, it follows from Theorem 2.12 that

ui +A∗γ̃i ∈ ∂f(x̃i), vi +B∗γ̃i ∈ ∂g(yi), wi = Ax̃i +Byi − b.

Hence, using (46), we immediately obtain the last equality in (48). Furthermore, from the first two
inclusions above, (46), (47) and [20, Theorem 2.1] we conclude that, for every k ≥ 1, εak ≥ 0, ζak ≥ 0,
and the inclusions in (48) hold. To show (49), we recall again that (ui, vi, wi) = M (zi−1 − zi) (see
the proof of Theorem 2.12), which together with (46), yields (uak, v

a
k , w

a
k) = (1/k)M (z0 − zk). Then,

for an arbitrary solution z∗ = (x∗, y∗, γ∗) of (16), we have

‖(uak, vak , wa
k)‖2 ≤

λM

k2
‖z0 − zk‖2M ≤

2λM

k2

(
‖z∗ − z0‖2M + ‖z∗ − zk‖2M

)
.

Combining Lemma 2.5 with (37), we obtain, for every k ≥ 1, that

‖z∗ − zk‖2M + ηk ≤ ‖z∗ − zk−1‖2M + (σ − 1) ‖z̃k − zk−1‖2M + ηk−1 ≤ ‖z∗ − zk−1‖2M + ηk−1. (50)

The last two expressions imply that

‖(uak, vak , wa
k)‖2 ≤

4λM

k2

(
‖z∗ − z0‖2M + η0

)
,

which, combined with the definitions of d0 and η0 in (32) and (36), respectively, implies the first
inequality in (49). Let us now show the second inequality in (49). From definitions in (47), we have

εak + ζak =
1

k

k∑

i=1

(
〈ui, x̃i − x̃ak〉+ 〈vi, yi − yak〉+ 〈γ̃i, Ax̃i +Byi −Ax̃ak −Byak〉

)

=
1

k

k∑

i=1

(
〈ui, x̃i − x̃ak〉+ 〈vi, yi − yak〉+ 〈γ̃i, wi − wa

k〉
)

=
1

k

k∑

i=1

(
〈ui, x̃i − x̃ak〉+ 〈vi, yi − yak〉+ 〈wi, γ̃i − γ̃ak〉

)
,

where the second equality is due to the expressions of wi and wa
k in (43) and (48), respectively, and

the third follows from the fact that

1

k

k∑

i=1

〈γ̃i, wi − wa
k〉 =

1

k

k∑

i=1

〈γ̃i − γ̃ak , wi −wa
k〉 =

1

k

k∑

i=1

〈wi, γ̃i − γ̃ak〉

17



(see the definitions of wa
k and γ̃ak in (46)). Hence, setting z̃ak = (x̃ak, y

a
k , γ̃

a
k), and noting that

(ui, vi, wi) = M (zi−1 − zi) and z̃i = (x̃i, yi, γ̃i), we obtain

εak + ζak =
1

k

k∑

i=1

〈M (zi−1 − zi), z̃i − z̃ak〉 . (51)

On the other hand, using (37), we deduce that for all z ∈ R
n × R

p × R
m

‖z − zi‖2M − ‖z − zi−1‖2M = ‖z̃i − zi‖2M − ‖z̃i − zi−1‖2M + 2 〈M(zi−1 − zi), z − z̃i〉
≤ (σ − 1) ‖z̃i − zi−1‖2M + ηi−1 − ηi + 2 〈M(zi−1 − zi), z − z̃i〉 ,

and then, since σ < 1, we find

2

k∑

i=1

〈M(zi−1 − zi), z̃i − z〉 ≤ ‖z − z0‖2M − ‖z − zk‖2M + η0 − ηk ≤ ‖z − z0‖2M + η0.

Applying this result with z := z̃ak and combining with (51), we find

2k(εak + ζak ) ≤ ‖z̃ak − z0‖2M + η0 ≤
1

k

k∑

i=1

‖z̃i − z0‖2M + η0 ≤ max
i=1,...,k

‖z̃i − z0‖2M + η0, (52)

where, in the second inequality, we used the convexity of ‖ · ‖2M and the fact that z̃ak = (1/k)
∑k

i=1 z̃i.
Additionally, since ‖z+ z′ + z′′‖2M ≤ 3

(
‖z‖2M + ‖z′‖2M + ‖z′′‖2M

)
, for all z, z′, z′′ ∈ R

n×R
p×R

m, we
also have

‖z̃i − z0‖2M ≤ 3
[
‖z̃i − zi‖2M + ‖z∗ − zi‖2M + ‖z∗ − z0‖2M

]
, ∀ i ≥ 1.

This, together with (37) and (50), implies that

‖z̃i − z0‖2M ≤ 3
[
σ ‖z̃i − zi−1‖2M + ηi−1 + ‖z∗ − zi−1‖2M + ηi−1 + ‖z∗ − z0‖2M

]

≤ 3
[
σ ‖z̃i − zi−1‖2M + 2

(
‖z∗ − zi−1‖2M + ηi−1

)
+ ‖z∗ − z0‖2M

]

≤ 3
[
σ ‖z̃i − zi−1‖2M + 3 ‖z∗ − z0‖2M + 2η0

]
,

which, combined with (52), yields

2k (εak + ζak ) ≤ 3

[
3
(
‖z∗ − z0‖2M + η0

)
+ σ max

i=1,...,k
‖z̃i − zi−1‖2M

]
.

Now, from (50), it is also possible to verify that

(1− σ) ‖z̃i − zi−1‖2M ≤ ‖z∗ − zi−1‖2M + ηi−1 ≤ ‖z∗ − z0‖2M + η0,

and, therefore

εak + ζak ≤
3(3− 2σ)

2(1− σ)k

(
‖z∗ − z0‖2M + η0

)
. (53)

Therefore, the second inequality in (49) now follows from the definitions of d0 and η0 in (32) and
(36), respectively.
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Remark 2.15. (a) It follows from Theorem 2.14 that, for a given tolerance ρ > 0, Algorithm 1
generates a ρ−approximate solution (x̃ak, y

a
k , γ̃

a
k) of (16) with residuals (uak, v

a
k , w

a
k) and (εak, ζ

a
k ), i.e.,

uak ∈ ∂εa
k
f(x̃ak)−A∗γ̃ak , vak ∈ ∂ζa

k
g(yak)−B∗γ̃ak , wa

k = Ax̃ak +Byak − b,

such that
max{‖uak‖, ‖vak‖, ‖wa

k‖, εak, ζak} ≤ ρ,

in at most k̄ = max {k1, k2} iterations, where

k1 =

⌈
2
√
λMd0C2
ρ

⌉
, and k2 =

⌈
3d0C3
2ρ

⌉
.

(b) Similarly to Theorem 2.12, Theorem 2.14 recovers, in particular, many recently ergodic conver-
gence rates of ADMM variants. Namely, (i) by taking τ = 0 and G = I/β, we obtain the ergodic
convergence rate of the partially inexact proximal ADMM established in [2, Theorem 3.2]. Addition-
ally, if σ̃ = σ̂ = 0, the ergodic rate of the FG-P-ADMM with θ ∈ (0, (1+

√
5)/2) in [21, Theorem 2.2]

is obtained. (ii) By choosing θ = 1 and G = I/β, we have the ergodic rate of the inexact proximal
generalized ADMM as in [3, Theorem 2]. Finally, if θ = 1, G = I/β and σ̃ = σ̂ = 0, the ergodic
convergence rate of the G-P-ADMM with τ ∈ (−1, 1) in [1, Theorem 3.6] is recuperated.

3 Numerical experiments

The purpose of this section is to assess the practical behavior of the proposed method. We first
mention that the inexact FG-P-ADMM (Algorithm 1 with τ = 0) and the inexact G-P-ADMM
(Algorithm 1 with θ = 1) have been shown very efficient in some applications. Indeed, as reported
in [2], the inexact FG-P-ADMM with θ = 1.6 outperformed other inexact ADMMs for two classes
of problems, namely, LASSO and ℓ1−regularized logistic regression. On the other hand, the inexact
G-P-ADMM, proposed later in [3], with τ = 0.9 (or, α = 1.9 in term of the relaxation factor α)
showed to be even more efficient than the FG-P-ADMM with θ = 1.6 for these same classes of
problems. Therefore, our goal here is to investigate the efficiency of Algorithm 1, which combines
both acceleration parameters τ and θ in a single method, for solving another real-life application.
The computational results were obtained using MATLAB R2018a on a 2.4 GHz Intel(R) Core i7
computer with 8 GB of RAM.

We use as test problem the total variation (TV) regularization problem (a.k.a. TV/L2 minimiza-
tion), first proposed by [28],

min
x∈Rm×n

µ

2
‖Kx− c‖2 + ‖x‖TV , (54)

where x ∈ R
m×n is the original image to be restored, µ is a positive regularization parameter,

K : R
m×n → R

m×n is a linear operator representing some blurring operator, c ∈ R
m×n is the

degraded image and ‖ · ‖TV is the discrete TV-norm. Let us briefly recall the definition of TV-norm.
Let x ∈ R

m×n be given and consider D1 and D2 the first-order finite difference m × n matrices in
the horizontal and vertical directions, respectively, which, under the periodic boundary condition,
are defined by

(D1x)i,j =

{
xi+1,j − xi,j if i < m,

x1,j − xm,j if i = m,
(D2x)i,j =

{
xi,j+1 − xi,j if j < n,

xi,1 − xi,n if j = n,
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for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. By defining D =
(
D1;D2

)
, we obtain

‖x‖TV = ‖x‖TVs
:= ~Dx~s :=

m∑

i=1

n∑

j=1

∥∥∥(Dx)i,j

∥∥∥
s
, (55)

where (Dx)i,j =
((

D1x
)
i,j

,
(
D2x

)
i,j

)
∈ R

2 and s = 1 or 2. The TV norm is known as anisotropic

and isotropic if s = 1 and s = 2, respectively. Here, we consider only the isotropic case.
By introducing an auxiliary variable y = (y1, y2) where y1, y2 ∈ R

m×n and, in view of the
definition in (55), the problem in (54) can be written as

min
x,y

µ

2
‖Kx− c‖2 + ~y~2 s.t. y = Dx, (56)

which is obviously an instance of (1) with f(x) = µ
2 ‖Kx− c‖2, g(y) = ~y~2, A= −D, B=I, and

b= 0. In this case, the pair (x̃k, uk) in (9) can be obtained by computing an approximate solution
x̃k with a residual uk of the following linear system

(
µK⊤K + βD⊤D

)
x = µK⊤c+D⊤ (βyk−1 − γk−1) .

In our implementation, the above linear system was reshaped as a linear system of size mn× 1 and
then solved by means of the conjugate gradient method [26] starting from the origin. Note that,
by using the two-dimensional shrinkage operator [31, 36], the subproblem (13) has a closed-form
solution yk =

(
y1k, y

2
k

)
given explicitly by

((
y1k
)
i,j

,
(
y2k
)
i,j

)
:= max

{∥∥(w1
i,j, w

2
i,j)
∥∥− 1

β
, 0

}
 w1

i,j∥∥∥(w1
i,j , w

2
i,j)
∥∥∥
,

w2
i,j∥∥∥(w1

i,j , w
2
i,j)
∥∥∥


 ,

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where

(
w1, w2

)
:= (D1x̃k + (1/β)γ1

k− 1

2

,D2x̃k + (1/β)γ2
k− 1

2

),

and the convention 0 · (0/0) = 0 is followed.
The initialization parameters in Algorithm 1 were set as follows: (x0, y0, γ0) = (0, 0, 0), β = 1,

G = I/β, H = 0 and σ̂ = 1 − 10−8. From (8) (see also Remark 2.1(a)), for given τ ∈ (−1, 1) and

θ ∈
(
−τ,

(
1− τ +

√
5 + 2τ − 3τ2

)
/2
)
, the error tolerance parameter σ̃ was defined as

σ̃ = 0.99 ×




min

{(
1 + τ + θ − τθ − τ2 − θ2

)
(τ − 1)

τ2 − 2θ + θ2
, 1− τ, 1

}
, if τ2 − 2θ + θ2 < 0,

min {1− τ, 1} , if τ2 − 2θ + θ2 ≥ 0.

Moreover, we used the following stopping criterion

‖M(zk−1 − zk)‖∞ < 10−2,

where zk = (xk, yk, γk) and M is as in (18).
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We considered six test images, which were scaled in intensity to [0, 1], namely, (a) Barbara
(512× 512), (b) baboon (512× 512), (c) cameraman (256× 256), (d) Einstein (225× 225), (e) clock
(256 × 256), and (f) moon (347 × 403). All images were blurred by a Gaussian blur of size 9 × 9
with standard deviation 5 and then corrupted by a mean-zero Gaussian noise with variance 10−4.
The regularization parameter µ was set equal to 103. The quality of the images was measured by
the peak signal-to-noise ratio (PSNR) in decibel (dB):

PSNR = 10 log10

(
x̄2max

MSE

)

where MSE = 1
mn

∑m
i=1

∑n
j=1 (x̄i,j − xi,j), x̄max is the maximum possible pixel value of the original

image and x̄ and x are the original image and the recovered image, respectively.
Tables 1–6 report the numerical results of Algorithm 1, with some choices of (τ, θ) satisfying (8),

for solving the six TV regularization problem instances. In the tables, “Out” and “Inner” denote the
number of iterations and the total of inner iterations of the method, respectively, whereas “Time”
is the CPU time in seconds. We mention that, for each problem instance, the final PSNRs were the
same for all (τ, θ) considered. We displayed these values in the tables as well as the PSNRs of the
corrupted images.

Table 1: Baboon 512 × 512

PSNR: input 19.35dB, output 20.71dB

τ θ σ̃ Out Inner Time

0.0 1.00 0.990 131 11723 503.12
0.0 1.60 0.062 100 11748 495.38
0.9 1.00 0.099 71 7408 314.51
0.7 1.12 0.175 73 7224 312.27
0.7 1.15 0.142 71 7120 303.42
0.7 1.18 0.107 70 7205 309.97
0.8 1.12 0.074 76 8322 387.54
0.8 1.15 0.040 75 8672 393.05

Table 2: Barbara 512× 512

PSNR: input 22.59dB, output 23.81dB

τ θ σ̃ Out Inner Time

0.0 1.00 0.990 142 12910 574.58
0.0 1.60 0.062 105 12403 538.17
0.9 1.00 0.099 80 8620 411.47
0.7 1.12 0.175 84 8643 394.74
0.7 1.15 0.142 82 8583 391.85
0.7 1.18 0.107 82 8835 392.69
0.8 1.12 0.074 79 8665 371.47
0.8 1.15 0.040 79 9110 400.56

From the tables, we can see clearly the numerical benefits of using acceleration parameters τ > 0
and θ > 1. Note that Algorithm 1 with the choice (τ, θ) = (0, 1) had the worst performance, in terms
of the three performance measurements, for all problem instances. Note also that Algorithm 1 with
(τ, θ) = (0.9, 1) (0.9 was the best value for τ in [3]) performed better than Algorithm 1 with (τ, θ) =
(0, 1.6) (1.6 was the best value for θ in [2]), such behavior was also observed in [3] for the LASSO
and ℓ1−regularized logistic regression problems. We stress that Algorithm 1 with (τ, θ) = (0.8, 1.12)
was faster in four (Barbara, cameraman, clock and moon) of six instances. Fig. 2 plots the original
and corrupted images as well as the restored image by Algorithm 1 with (τ, θ) = (0.8, 1.12) for the
six instances. As a summary, we can conclude that combinations of the acceleration parameters τ
and θ can also be efficient strategies in the inexact ADMMs for solving real-life applications.
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Table 3: Cameraman 256 × 256

PSNR: input 21.02dB, output 25.14dB

τ θ σ̃ Out Inner Time

0.0 1.00 0.990 135 13684 87.92
0.0 1.60 0.062 85 10382 64.21
0.9 1.00 0.099 72 8472 54.83
0.7 1.12 0.175 75 8473 52.77
0.7 1.15 0.142 74 8429 52.02
0.7 1.18 0.107 74 8709 53.41
0.8 1.12 0.074 71 8460 51.83
0.8 1.15 0.040 71 8756 53.75

Table 4: Clock 256× 256

PSNR: input 22.68dB, output 27.44dB

τ θ σ̃ Out Inner Time

0.0 1.00 0.990 130 12666 82.03
0.0 1.60 0.062 84 10104 64.97
0.9 1.00 0.099 69 7746 53.39
0.7 1.12 0.175 72 7807 51.95
0.7 1.15 0.142 73 7985 52.01
0.7 1.18 0.107 70 7767 55.67
0.8 1.12 0.074 68 7740 50.03
0.8 1.15 0.040 67 7994 51.48

Table 5: Einstein 225× 225

PSNR: input 23.70dB, output 28.24dB

τ θ σ̃ Out Inner Time

0.0 1.00 0.990 120 10506 56.86
0.0 1.60 0.062 88 9968 52.84
0.9 1.00 0.099 72 7560 40.47
0.7 1.12 0.175 68 6573 34.54
0.7 1.15 0.142 74 7631 40.88
0.7 1.18 0.107 73 7566 40.69
0.8 1.12 0.074 71 7685 40.00
0.8 1.15 0.040 70 7830 40.27

Table 6: Moon 347 × 403

PSNR: input 25.57dB, output 28.28dB

τ θ σ̃ Out Inner Time

0.0 1.00 0.990 128 11684 249.27
0.0 1.60 0.062 88 10239 215.91
0.9 1.00 0.099 72 7828 168.30
0.7 1.12 0.175 76 7921 170.00
0.7 1.15 0.142 74 7796 205.34
0.7 1.18 0.107 73 7909 194.64
0.8 1.12 0.074 68 7412 161.05
0.8 1.15 0.040 67 7711 181.89

4 Final remarks

We proposed an inexact symmetric proximal ADMM for solving linearly constrained optimization
problems. Under appropriate hypotheses, the global O(1/

√
k) pointwise and O(1/k) ergodic conver-

gence rates of the proposed method were established for a domain of the acceleration parameters,
which is consistent with the largest known one in the exact case. Numerical experiments were carried
out in order to illustrate the numerical behavior of the new method. They indicate that the proposed
scheme represents an useful tool for solving real-life applications. To the best of our knowledge, this
was the first time that an inexact variant of the symmetric proximal ADMM was proposed and
analyzed.
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