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Abstract

An ensemble-based time stepping scheme is applied to solving a transient
heat equation with random Robin boundary and diffusion coefficients.
By introducing two ensemble means of Robin boundary and diffusion
coeflicients, we propose a new ensemble Monte Carlo (EMC) scheme for
the a transient heat equation. The EMC scheme solves a single linear
system including several right-side vectors at each time step. Stabil-
ity analysis and error estimates are derived. Two numerical examples
verify the theoretical results and the validity of the EMC method.
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1 Introduction

We consider the numerical simulations to a transient heat problem with ran-
dom diffusion coefficients and Robin coefficients: Seek y satisfying almost
surely (a.s.),

ye — V- la(t,x,w)Vy] = f(t,x,w), in[0,T]x D xQ,

aVy(t,x,w) -n=0, on [0,T]x 0Dy X ,

aVy(t,x,w) - n = a(t,x,w)(u(t,x,w) — y(t,x,w)), on [0,T] x 0Dy x £,
y(0,x) = 1°(x,w)), in D xQ,

(1)
here D C R%( d = 2, 3) is a Lipschitz domain. The boundary 9D is divided into
two disjoint parts 0Dy and 0Dy, i.e. 0D = 0Dy |JID;. n is the unit outward
normal vector to dD. (2, F, P) stands for a complete probability space, where
Q) is the sample space, F C 2% is the o-algebra of events, and P : F — [0, 1]
is a probability measure.

Uncertainty widely exists in many problems of physics or engineering. The
process of heat and mass transfer is affected by many uncertain factors, such
as random ambient temperature, random initial temperature, random material
characteristics, random thermal conductivity (diffusion coefficient), random
convective heat transfer coefficient (Robin coefficient), or random geometry.
The problem (1) is random diffusion coefficient and Robin coefficient, which
can been seen in [3, 4]. The model (1) also appears in other problems, such as
21, 22).

There are many numerical algorithms for solving PDEs with random coef-
ficients (see, e.g., [1, 7, 9, 18, 23, 25, 26]). In addition to polynomial chaos
method, stochastic collocation method and stochastic finite element method,
Monte Carlo (MC) method is a very important method (see, e.g., [6, 8, 10, 20]).
MC method is non-intrusive and the convergence is not rely on the dimension
of the random model parameters. It is easy to implement for the MC method.
Once MC method is adopted, independent sampling is needed first, and then
independent numerical simulation is carried out for each sample. These simu-
lations are influenced by independent initial and boundary conditions, physical
forces, diffusion coefficients and Robin coefficients. Assume the simulations
involve J independent members, where the j-th member holds

it — V- laj(t,x)Vy;] = f;(t,x), in (0,T) x D,

a;Vy;(t,x) - n=0, on (0,T) x 9Dy,

a; Vy,;(t,x) -n = a;(t,x)(u;(t,x) —y;(t,x)), on (0,T) x 0D,
y;(0,x) = y?(x), in D,

(2)

j€{1,2,...,J}. Here we can think a;(¢,x) = a(t, x,w;), a;(t,x) = a(t, x,w;).
The others are similar.
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In the numerical simulation of problem (2), a large number of linear
equations A;z; =b;,j € {1,2,...,J} need to be solved. The calculation cost
is very high since the number J is relatively large. In order to improve com-
puting efficiency, ensemble method are widely used (see, e.g., [11, 15, 19, 20].
The ensemble method change solving Aj;z; = b;,j € {1,2,...,J} to solving
Azj = Bj,j € {1,2,...,J}. In [19], the authors studied the parabolic problem
with random coefficients by using ensemble method, and obtained an error
estimate. But the error estimate therein is not optimal with respect to (w.r.t.)
space. In view of this problem, the authors of [16] combined the ensemble with
HDG method to obtain an optimal error estimate in space. For the heat con-
duction problem with random Robin coefficient, we have not found relevant
results with the ensemble method.

We study the numerical approximation of (1) by ensemble method in this
work. Before this, we consider the numerical simulation of model (2). Denote
the ensemble average for the diffusion coeflicient and the Robin coefficient by

1
a(t,x) := Z a; (t, %), (3)

<

and 1 ;
alt,x) == 5 Z aj (t,%), (4)

respectively. We use an isometric time division on [0, T] with ¢, = nAt, where
At represents the step size. Let yi, iy, al, of, @™ and @™ be the values
of functions y;, fj,u;,a;, aj, @ and & at t = t,. The ensemble-based time

stepping scheme describes as

n+1

Yj
At

oy, @'yt = v [(af T =@t vy = 7 =1,

with the same boundary and initial conditions of (2). In order to appear Robin
coefficient in the scheme, we develop a variational ensemble scheme reads, for
all v € HY(D),

(y? i v) + (@ VL Vo) + ((a =@t vy, Vo)
Al ) Y j Y
+ (@),

— (f;LJrl,v) 4 (a;}+1u;}+1’ U)aDI ,

n =N n (5)
+((0f" = a" )y v) ),

j=1,...,J.
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After rearrangement, we obtain, for j =1,...,J,

At

1
= (f7,0) + (O‘?H“?Hv”)apl + <Aty?’v> (6)
— ((a}”l _ an-i—l) Vy;ﬂVv) _ ((a;wrl _ dn+1) y;l’v)

(g o) + @9V + @),

oD’

Through a spatial discretization, we observe that the coefficient matrix
of the resulting linear system will be independent of j. The discrete systems
share a common coefficient matrix, and the right-hand-side (RHS) vectors vary
among the ensemble members. Then, if the scale of the problem is small, the
solution of the group can be obtained by LU decomposition of the coefficient
matrix only once (see, e.g., [19, 20]). While the case is of a large-scale, block
Krylov subspace iteration method will be used to compute efficiently (see, e.g.,
[5, 14, 24)).

The following describes the structure of this article. In Section 2, some
notations and preliminaries are introduced. The full discretization ensemble
scheme for (5) is given in Section 3 with its stability and convergence analysis.
The random transient heat equation and its stability as well as error analysis
are discussed in Section 4. In Section 5, two numerical tests are presented.
Some conclusions are given in Section 6.

2 Basic preliminaries.

In this section, we will give some notations. For simplicity, dx,ds and dt in
some expression will be omitted when there is no confusion. The boundaries
0Dg and 0D concern to the experimentally accessible and inaccessible parts,
respectively.

Let ||-|| and (-,-) be the L?(D) norm as well as inner product, respectively.
Simultaneously ||-|lap and (-, -)ap stand for corresponding the L?(9D) norm as
well as inner product. The Sobolev space W* (D) with the norm ||v||ys.qa(p,
here s € N (positive integer set) and 1 < ¢ < +o00. We denote H*(D) =
W#2(D). Particularly, H!(D) is equipped the norm || - ||; = || - ||1.p, which is
defined by

lyllo = (lyl* + 1IVyl*)*
Let H~*(D) is the dual space of bounded linear functions on H*(D), with

norm || f||—s = supg_spe = (py (fv)/[|v[ls- The norm || - |1 ap, is defined by
Iyl o0, = / | Vy 2 +/ v
D 0D
which is equivalent to the standard norm || - ||1, cf. [12, 13]. In the later state-

ments, it will not differentiate the norm || - [[1,0p, and || - [[1 = || - [[52(D)-
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Denote
L>*(D) = {v | v is a measurable functions and | v |oc< +00},
where | v |oo=ess supyep | v |

(9, F, P) is a complete probability space. Z € LL(2) is a random variable.
Denote the expected value of Z by

E[Z] = /Q Z(w)dP(w).

Let 6 = (d1,...,04) be a d-tuple with the length | § |= Z?Zl 8i,0; € NT.
The stochastic Sobolev spaces W#4(D) = L%, (2, W*4(D)) contains stochastic

function, v : @ x D — R, which is measurable w.r.t. the product o-algebra
F ® B(D). The norm of W#4(D) is defined by

1/q

015500y = ( [1lfa)) = (E| 2 [ 10%or] ]

l1<s

where 1 < ¢ < +00. Let H*(D) = WS’Q(D) ~ L%(Q) ® H*(D).
We will use the Hilbert space

X =I%(0,T; H'(D)) ~ L% (0,T; H'(D); Q)

with its inner product

(v,u)xEl/OT/D(VU'Vquvu)

The induced norm is given by
) 1/2

follx = <E l [ [ awor

Suppose T, is a quasi-uniform triangulation of the domain D, such that
D = UkeT, K. Let hx be the diameter of the element K. Define h =
maxgeT, hi. Let P; be the set of polynomials of degree [. Denote the finite
element (FE) space V}, of the domain D by

Vi = span{px}) € {v e H(D)NH"(D) :v |xe P,VK € T} (7)
The FEs space Sy, of the boundary 0D by

Sy, = span {$;}1"°? ¢ {v € HY(OD) N HFXID) : v |opnxe P, VK € Ti} .
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Throughout this work C' is a positive constant, it has different values in
different places and does not rely on time step At, sample size J and mesh
size h.

3 A variational ensemble scheme for
deterministic transient heat equations

In this section, we first give some assumptions and a full discretization
ensemble scheme for (5). Then the stability and error estimate results are
presented.

Suppose the following two hypotheses (H1) and (H2) hold.

(H1) There exists positive constants A , fmin and fimaez, such that for
je{1,2,...,J},

mina,;(t,x) > X, Vte[0,T], (8)
xeD

and

Pmaz > Jnax a;j(t,x) > a;(t,x) > xrenggl a;(t,X) > fmin, Vt€[0,T]. (9)

(H2) There exists positive constants A_, Ay, u— and py, such that for
jed{1,2,...,J},

Ao <] a;(t,x) — a(t,x) o< A\, VE€ (0,77, (10)

and
pe < aj(t,x) —a(t,x) |co< pg, Vtel0,T]. (11)

Evidently, hypothesis (H1) means the problem is uniformly coercivity.
Hypothesis (H2) shows that the difference between a;(t,x) and a(t,x) is
uniformly bounded, and so does the Robin coefficient (¢, x).

Under the assumption that the isometric time division on [0, 7], the full-
discrete scheme for (5) is that: seek y;’# € Vi, U Sy, such that, for all v, €
Vi, U Sy,

n+l _ . n
(W’“h> + (@ Ton ) + () = @) Vg, Vo)

~n+1, n+1 n+1 ~n+1 n
+ (a Yj.n ,%)aDl =+ ((ozj —Q >ijh’vh)aD1

:(f;”l,vh) + (a?“u;l“,vh)a[)l ,j=1--,Jn=0,...,N—1,
(12)

here N = T'/At, the initial value yﬁh € Vi U Sy, (y;-{h,vh) = (y?,vh).

3.1 Stability.
The stability of the ensemble scheme (12) has the following result.
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Theorem 1 Assume that f; € L? (O, T; H_l(D)> , uj € L? (O, T; L2(8D1)), and
hypotheses (H1) and (H2) are held. Then the ensemble scheme (5) is stable if

A=Ay >0 and Lmin — i+ > 0. (13)

Furthermore, the numerical solution to (12) satisfies

s+ 2-sef i+ 20803 g

+ p— AtHy] hH +(Nmzn_u+ At Z Hyn+1H

0D, 0D,

<CAt Ngl it Eﬁ L
= il Y lap, Yj.n
n=0 n=0

2 2
0 0
+ Hyj’hHaDl + Hyj’hH ]

(14)

Proof Choosing vy, = y"+1 (12), we have

1 n+1 n+1 _n+1 n+1 n+1
At (yjh *y]hayjh )+(a Vyj’h ,Vyjh )

1 — 1 1 1 1 1
+ ((a;.”r —a"t )Vyﬁh,VyZZ )+( Ty )8D1

n+l  —n+l n n+1 _ n+1 n+1 n+l n+l n+1
+ ((aj Q )yj,h,yj,h )8D1 = (fj »Yjih ) + (Oéj U Yin >8D1 .

Applying the polarization identity and the coercivity of "' and a"tt, multiplying

both sides by At, we obtain

2 2
1 1 1 1

61 el I A ] At IR v e e

1
<At ((aﬂ“ "+1) vy} h,w”“) + At (f”“,y;b;gl)
n+1 —_n+1 n n+1 n+1 n+1l n+1
_At(( —a )yjh,y]h )BD +At( Wy )apl'

(15)

For some 7,£,0,p > 0, according to Cauchy-Schwarz and Young inequalities, one

obtains
At | ((aﬂ“ "+1) Vy]h,Vy"+1) |

<atfaft —a ! o [ Vypa] | Vo (16)

41 ntl + 1 !
car o= o (L e et )
1 1 1 !
Al () 1 < AtHfJM H_1 Hyﬁ H1
1
1 1 1 ’
<agt ool + farl),)” o

=Sl e (s + s,
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1 _ 1 1
At | ((a?+ —a"t )Vyﬁh,Vy?}{ ) loD,

<Attt gt mh
- J

Y HaD (18)

< At a}’“ —a"t < 20 v, hHaD1 2 H n+1HaD1> ’

oo [[9nllop,

and
n+l n+l n+l1 n+1 n+1 n+1
At (O‘J’ i o Yjn )zm1 S Atlag™ oo Huj H8D1 b Ham (19)
< Stunas (105 [, 2155 ,)
Mma:v( oD, +plly oD,
Substituting (16), (17), (18) and (19) into (15), and dropping the non-negative term
2
Hy""'l - yZhH , we get
+1 2 n_ 1 +1_ _ntl +1|2
3 (ot = hgal®) + e [r-e= (B o) 105+ =0 1o o
At +1 _n+1 +1
F ottt -a e (vt - Ivail?
0 1 1 _—n+l 1|2
+ At |:;Ufmin — & — plimaz — ( + 29> |an+ —a"t ‘Oo] H Jn-}t H8D1
+ 2 At |an+1 —TL+1 ‘ H n+1H _ || n H2
20 o] Yy oD, Yj.h 8D
LOAt .anHQ Atpimaz u@+1H2
- 4€ J 1 4p J 0D, '

Amounting n from 0 to N — 1, multiplying both sides by 2, taking 7 =1 and § = 1,
we have

N-1
2 2
Joisll = Ioall #2003 (3= e+t = ) ot

N-1
+ At Z | a;ﬁrl _ C_LnJrl (Hvyn+1H HVy;l,hHQ)
n=0
N—-1
+ 2At Z [Nmm — & — ppimaz— | a;‘Hl - 0_‘”+1 ] HyngIH (20)
n=0

N-1
+ AL Z ot =Gt (HynJrlHaDl - Hy?,hHéDl)
CAt n+1H Atllmax H n+1‘
Z I Z

Choosing

. A— | a";L+1 _ l_ln+1 |oo Lomin — ‘ a;_1+1 _ 6(71-&-1 |<>o
§ = min 2 9, 4 b

.

1 — 1
Hmin— | CM;‘H_ - an+ |oo
p= 4 )

Umaz
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and using the conditions (8)-(11) and (13), we can obtain

2
il -acfohl 0 a0 80 3 g

2
N
+/L—AtHyj,hH8D + (Bmin — p4) At Z Hyn_‘—lH
1

0D
CAt Z an—i-lH + 2Atﬂmaw Z H n+1H
mzn {)\ )\ /—Lmrn l‘+} o 1 Kmin — oy 0D
2
0
er- [Vl 4 st il + 5]
One gets the desired conclusion immediately. ]

Remark 1 The stability condition (13) requests, for {a]} -1, the difference between

a;j and its mean @ is smaller than the coercivity constant A. Similar requirement

holds for {ozj };]: 1- Without such case, one partition the ensemble into smaller groups

and applies the ensemble algorithm to each smaller groups, in this process one must
maintain the stability condition in these smaller groups.

3.2 Error analysis.

In this subsection, the approximation error of the ensemble scheme (12) is
estimated. Suppose the transient heat equation’s solution is smooth enough,
particularly,

y; € L* (0,T; H'(D)NnH"Y(D))nH"' (0,T; H* (D)) nH? (0,T; L*(D)),

and similar requirement holds on boundary 0D;. We have the following result
for the error of the numerical approximation of (12).

Theorem 2 Denote yj and yj'), the solutions of systems (2) and (12) at tn, respec-
tively. Assume f; € L? (0, T, Hﬁl(D)), uj € L? (O,T; L2(8D1)), and hypothesis
(H1) and (H2) are satisfied. Thus there exists a positive constant C such that

9 2
N_ N N _ N
Hyj *ijhH *LNHV(W 7‘7’]”1)” HL*AtHyJ

y“ Ham
N 2 N 2
+ A=A A IV (557 =y I+ (i — 1) ALY |y} = winll5p, (2D
n=1 n=1

<C (At2 + h2l) ,

if the stability condition (13) holds, that is, A — Ay > 0 and pmin — p4+ > 0.
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Proof Firstly, we establish the error equation to calculate the approximation error
n (12). Evaluating the system (2) at ¢ = ¢,,41, one can get

1 (yn+1 *y?,vh) +( n+1v n+1 Vvh) +( n+1y;7,+17 )aD
1

At (22)
o n+1 n+l n+1 - n+1
= (fj ,vh) + (aj u; ’Uh)aDl (rj ,vh) , Yup € V3 USy,
n+1
where rj = y;H'l %Ai% Let e} :=yj —y7';,. Subtracting (12) from (22), one
can obtain
1
Az (e"'H - e?wh) + (&"+1Ve?+1, Vvh) + ((a?“ - d"'H) Ve}-ﬂVvh)
+ ((a;H_l — &n+1) \Y% (y]n—H — y;l) ,Vvh) + (&n+le?+1,vh)
ODs (23)

n+1l _n+1) n ) (( n+1l _n+1> ( n+1 'r_L) )
a; a e;,v a; a U
+ (( J 7" ) o, + J Yi 7Y ) ") op,

+ (T?+17Uh) = 0.

Divide the error into two parts:
n n n n n U3 3
ej = (y5 = Qn (v7)) — (Wjin = Qn (v5')) = i — &fn,
. 2 ..
here pif =y — Qn (v), ¢7 4 = yin — Qn (¥7), Qn (y}) is the L* projection of y7
onto Vj, U S}, namely, (y;l - Qn(y}), vp,) = 0 for any vj, € V;, US),. One thus applies
the decomposition in (23), and gets

2 (0 = o) + (@ vertt v ) + (o - ) V6, Vo)
(AT o), + (57 ) )

_( "ty "‘H Vvh) + ((a}H—l — d"“) Vp?7Vvh>
+ ((a?—H - &"+1> v (y;L—H - y]n) ,Vvh)

1 nl 1 , 1
+ ((a}“‘ —a"t ) (yjn+ - y;) ’Uh)aDl + (T;L+ ,vh).

¢n+1 (24)

Letting vy, = ih o using the polarization identity, and coercivity (8) and (9), one

has
(e RN N WOV LS O o

<I (a5 —a"t) vorn, voit) 1+ 1 ((of ™ =) opnnofitt) |
+ (a"+1V nt1 v¢"+1) |+ ((a?“ *”“) VpJ,V¢n+1) |
(=) v (i =) vet) |
(

1 _ 1 1 1 1 1
(g =) (=) et ), L (T en ) 1
(25)

For any positive constants 3;(i =0, ...,4), Young’s and Cauchy-Schwarz’s inequali-
ties imply

0D1

[vai HW“H
2

| ((a;ﬁ-l _n+1) Vo h,v¢n+1) I<| a;;+1 —a"t |
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n+1l _ —n+1 n+1
(e )8 ) o,
¢n+1

3h H0D1

n+1 _n+1 H¢);LvhHZD
<| a;  —a oo 5 + 5 )
L
n+1 n+1 7,l+1 < _n+1 H J
| ( VP V(;ZS]JL ) |_‘ a |oo 280
A w”“H
n+l _ —n+l n+1 n+l  -n+l HVPJH H
(ot =) wop vorit) 1< Jap e | B2 >

| ((a;}+1 _ a”“) v (y;zﬂ yjn) 7v¢?7;1) |

et oo (2050l ey,

1 — 1 1 1
(o5t —amt) (u* y?) ) o, |

n+1 n+41
) G oty ¥
+1 —n+1 ||y vi oD 9D,
<| a? —a"m | 555 1 5 ,
2
b, o (el bt
| ( n+1 ¢n+1) ‘< J —1 0D,
’ - 284 2

Dropplng the non-negative term 2At H¢"+1 ;‘l,h HQ, and using the above inequalities

n (25), one can get

9 | a?tl _gntl |oo 9
n+1 n 7 n+1 n
i (Jesi I =egal’”) + == e’ - 1ve51°)
n+1 —n+1
S Y (W N
2 h D1 J,h 0D4
2
+(A_%|an+1 e B +§2+ i+l g+ |, — )HWHHH
+ 2 _
+ (,Ufmin - B32 | Q?Jrl —a"t! loo — ) Hd’n+1H
1 -ntl
Sl Ry AL i i YR
2B & 25 &
n+1 —_n+1
[aj™ —a"" oo HvynJrl VyﬂH2
2832 J J
2
1 -n+tl 7?+1H
N |a;}+ —a" | Hyn+1 nHz . HT] .
203 oD, 284



Springer Nature 2021 BTEX template

12 Ensemble Scheme for Random Transient Heat Equation
. dla T —a" T lal Tt —an |,
Selecting By = b B1 = B2 = g’ B3 = m, and B4 =
J oo
Sla” Tt —an | . X
—~+——5——— for some positive J, yields that
2 | ol =" o 2
n+1 n J n+1 n
2AL <H¢ H = [l )+ 2 (HV¢ H = [IVé5al )
+1_ —n41
| O‘;L —a" |°O n+1 n 112
. S = el

+ [A —(144) [a¥ Tt~ ] Hw"“H

+ [Nmin -5 | a;z-‘rl _ C_I,n+1 ‘oo _ | a?+1 _ _n—i—l |oo] H¢n+1H8D

—n+1 (2 2 ‘aﬂ+1_dn+1|
e o R e LT

<
oAt At e

2
el | —a e 2
T : 75 - o]
(5|aj+ —antl | 0 J
n+1 —n+1 2
| Oéj -« |00 ‘ 'rlz—‘,-l . 2
5| a;H'l —ant! oo Ilop,

(26)
Taking § = min {%7 %}, using the stability condition (13), the uniform

coercivity (H1) and uniform bounded condition (H2), we have that

A — (1 +5) ‘ n+1 _n+1 |o<>2 % > 07

5 | a;z+1 _ C_ln+1 | n+1 _ an+1 |002 Hmin — K+ > 0.

Hmin — oo_|06j D)

For the last three items on the RHS of (26), it is that

HV nrl gy H / | vyt - vy \2:/ \/tnﬂ (Vy;), I?
D tn

tht 9
SAt/t /D | (Vy)), I’= AtHVijtHL2(tn,tn+1; L2(D))>

n+1 n 2 n+1 n 2 tnt1 2
Hy —yjHaDl—/aDllyj —yjl—/aDl\/t (vi), |

n

n+1
< At[ / y] t| - At‘|y‘77t||L2(tn7tn+1’ LQ(le))

The integral form of Taylor’s theorem,

tn+1
1 1
yp =y = Anlt - / Y1t (-, 7) (tn — 7) dr,

tn

and
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implies
n+1 n+1 tny
H H/ Y (7)) (T —tn)dr|| < / Hyj,tt('ﬂ')” - 1dr
tnt 1/2 tnt1 9 1/2
<[ st dr} ([ 12ar)
tn tn
< VAt Hyj,tth(tn,W; L2(D))”
and

S

2 2 2
5= el s eatlalia,

tnt1; LQ(D)) ’
Replacing by these inequalities in (26), using the uniform coercivity (H1) and uni-

form bounded condition (H2) , amounting n from 0 to N — 1, and multiplying both
sides of (26) by 2A¢, we obtain

R e T E

IRESYINS o LT3 TG 5 7 o

N—-1
2At 1 2
> (o ta B o s e

- . A=AL Pmin—p4
mln{ 22 0 2h; n=0

m 2
+ AL A || Vy;, t||L2 tnstngr; L2(D)) T :\n:mAtHyjatHLz(tn,thrl;L2(8D1))

c 2
+ At ||yjattHL2(tn,t"+1; L2(D))> ’

where we used the assumption that y?,h = Qp (y})), thus "¢?’h" = Hvd)(;’hH =0,
similar formula holds on boundary dD;. Applying the regularity hypothesis as well

as standard FM estimates of the L? projection in norm H- (see, e.g., Section 4.4 of
[2]), that is, Wy € H'*H(D)n HY(D),

Vo3 1* = 19 (@n () =) P < Or* ' [1 -

we have

ol -t o] +w-ae o,

IRSYINS oy LETY TRSRIING ») 7 o

<C (At +h% ) .
Since the triangle inequality, one gets inequality (21). d

The ensemble solution of the transient heat equations about uncertain
inputs is investigated in next section.
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4 The ensemble scheme for the stochastic
transient heat model

Applying the ensemble scheme to stochastic PDEs (1), we first take the MC
approach to random sampling. After sampling with independent identically
distributed (i.i.d.), we solve (2). Then, the solution for (1) is obtained from the
expectation of the solution of (2). An ensemble-based Monte-Carlo algorithm
(i.e. EMC algorithm) is proposed to quantifies uncertainty and improve its
computational efficiency. This algorithm is comprised of the three steps:

Algorithm 1 EMC Algorithm
Stepl. Select a group of stochastic samples for the stochastic diffusion
coefficient, Robin coefficient, source term, boundary and initial conditions

a; = a(,wj), a5 = a(,wj), fj, = fl,Hwy), vj = u(-,-,w;), and
y? = 90 (-,wj;) for the j-th sample, respectively. As a result, the solutions
y(-,-,w;) beiid..

Step2. Let vy} = y(tw,xw;) , @ = (l,E:;]:la(tn,x,wj)7 and

a" = %ijla(tn,ij). For the j-th sample, n = 0,..., N — 1, we seeks
y;l+1 such that the algorithm (5). On numerical simulation, the appropriate

FE spaces can be selected, one seeks the FE solution yj, (-, -,w;) on FE spaces.

Step3. Approximate the expectation E[y] by the EMC sample average
} Z'j]:l yn (-, wj). A quantity of interest G(y) is given, one is to discuss the
outputs for the ensemble systems, G (yp, (-, -,w1)), .-+, G (yn (+,+,ws)), to obtain
the stochastic information.

Next, we give the stability analysis and error estimate.

4.1 Stability.

Paralleling to handle the PDE problem (2), we select the same FE space V}, and
Sy mentioned in Section 2. Let yi!), = yn (tn, X, w;) . Given the j-th sample and
n=20,1,..., N—1, the EMC finite element method is to seek an approximation
solution yﬁfl € V, U Sy, such that

+1 n
Yin Y
<J’h A J’h,vh> + (d"HVy;f?:l,Vvh) + ((af* —a" ) vy, V)

—n+1, n+1 n+l  -n+4l n
(@ tyiton) o+ (0 =) g

= (f;.r"_l, Uh) + (Oé?+1u;-l+1,vh)aDl Nop € Vi, U Sy,
(27)

the initial value ygh € V, US, holds (yjo-ﬁ, vh) = (y;-), vh) for all v, € V, U S}.



Springer Nature 2021 BTEX template

Ensemble Scheme for Random Transient Heat Equation 15

Note that Y n (27) is a random variable. To analyze the corresponding
stability and error estimate, we suppose the following two hypotheses (H3)
and (H4) are satisfied.

(H3) There exist three positive constants X, fmin, fbmaz, such that, for
Yt € [0,T], the probability

Pro {wj € ; mina(t,x,w;) > )\} =1, (28)
x€D
and
Pro{w; € Q; pmas > a(t,x,w;) > min} = 1. (29)

(H4) There exist four positive constants A_, Ay, u—, u4, such that, for
vt € [0,T], the probability

Pro{w; € O A_ <|a(t,x,w;) —a o< Ay} =1, (30)

and
Pro{w; € & p— <] a(t,x,w;) — & o< 4} = 1. (31)
Hypothesis (H3) ensures the uniform coercivity almost surely; hypothesis
(H4) indicates the uniform bound for | a(¢,x,w;) — a(t,x) | a.s.. Similar
properties is for the Robin coefficient « (¢, x,w;).
From Theorem 1 and the property of expectation, we will derive to some
stability results of the FE solution y7:

Theorem 3 Assume f; € ? (O,T; H_l(D)), u; € 2 (O,T; L2(8D1)>, hypothe-
ses (H3) and (H4) are held. Then the stability for the FE solution yj') of the
algorithm (27) hold if

A=Ay >0 and Mamin — i+ > 0. (32)
Particularly, for all At > 0, the FE solution suits to

o] 2 aem [foait ] + - mmN > & [|wwi|]

o [, ]+ G = AtzE[Hy"*lHaDJ
(33)

<A z B[+, | + car z B [fut],] + oo ||9uu]]
o [l ] -5 [l ] ~

The stability condition (32) confines the difference between diffusion
coefficients and the mean. The Robin coefficient is similar. Parallel to the deter-
ministic equation (see Remark 1), If the stability condition false, the ensemble
can be divided into smaller groups to maintain the condition (32) that applies
to each group, so the EMC scheme will apply to all the smaller groups.
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4.2 Convergence analysis.

n —

The EMC approximate solution of the full discretization is defined as ¥} =

1 Z}I:1 Y7y, Thus, one will lead an estimate for E [y"] — ¥} in some averaged
norms. E [y"] — ¥} can be divide into two terms:

Ely"] - U} = (E[y?] —E[y7]) + (E [y7] — T3)
=&+ &5,

here we apply E[y"] = E [yﬂ The first term is corresponding to the FE
discretization error, £’ = E {y;b -y h} , is controlled by the time step as well as

mesh size. For the second term that is the statistical error, £§ = E [y? h} -y,

is controlled by the sample size J. Next, we examine the bounds of £;' and £3.
And then we achieve an error estimate for the EMC scheme.

Theorem 4 Assume y;L is the solution to stochastic PDE (1) while w = w; with t =
tn, Yy, suits to (27). Let 4 € L2 (Hl(D) mHl“(D)) f; € L2 (0, T H—l(D)),

uj € L? (O,T; L2(8D1)). Under hypotheses (H3) and (H4), there is a constant
C > 0 satisfies

o <[ r-aex 0 (o - o)

2 N
+ p—AtE [“yjl‘v*y;\,’hHBDl} A=2ApA Z [ T =i H] (34)
N
+ (Nmin - /L+) At Z E [Hy? - ZJ]T‘L,hHEDl] <C (AtQ + h2l) R
n=1

if the stability condition (32) holds.

Proof This result holds by Theorem 2 afterward using the expectation on (21). O

The statistical error £F can be estimated through applying the standard
error calculation of MC approach (e.g., see [17]):

Theorem 5 Assume statements (H3) and (H4), the stability condition (32)
hold, suppose f; € L? (O,T; H_l(D)), u; € L? (O,T; L2(8D1)), y? €
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L? (Hl(D) N HH'I(D)), thus there is a constant C > 0, satisfies

s e8] + a-ave oed ] + - MAJT s [[ve ]

B |5

) N—
e [0, ] + Gomin — a0 3 o]
n=

< (sl e X [uuyﬂu;j+m[uwah!ﬂ

n=0

o [l ] o= ol ]).

Proof We first estimate E[||[VEZ||]. Define (y},y1) := (Vyr, Vyr). It is easily that

E[vagyf]:ﬁk};(myh ) %g y],h)>]

=5 ZZE = vin B [yh] = vin)]

1=17=1

J
1
=22 D_E[E[vh] - vin Evh] —vin)] -
j=1
The last equality is due to the fact that y}’ (w1,-),...,y}; (wy,-) are i.i.d., and thus
the expected value of <E Wil —vinElyn] — y;fh> is zero for i # j. We now expand

the quantity <IE Wil = vin Elyp] — y?,h>, apply the identities E [y;)] = E [y;-l’h] as
2
well as E [(y};)ﬂ =E {(yjnh) } Let m =y; and m = E [m]. Noting that
_ _ -2 _ 2] _ _2 2 2
E [{(m —m,m — m)] —E[m —2{(m,m)+m } =-E [m } —I—]E[m } gE[m }

we get

1
E{ves|*] < E{IVeial®].
J
By Theorem 3, we obtain

(A= Ap) At ivj E [|Voinl’]
N 1 " —1 2 2
<oar S a | ] < oar S [, ] <o ot
n= 0 =0 !

v oate |5, ] +E [Hyahu J
The other terms of (35), including E [Hé’ész} , E [“Vgész} [HgéVHSD ], and
1

2
E [Hc‘,’g+1 HBD ], can be processed in the same way. O
1
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Combining the FE error and MC sampling error, we can get the error of
EMC finite element method.

Theorem 6 Suppose f; € L? (O,T; H_l(D)), boundary function u; €

L? (O,T; L2(8D1)), and y;-) eL? (HI(D) ﬂHH'l(D)). The hypotheses (H3) and
(H4), the stability condition (32) are satisfied, thus the following formula trues

s o o] - ]+ r-aem v (=[] o) ]
PO A (17 @) - ] s (2 [] - ]

=) &S |- ),
<5 (At {anﬂH }_FCAthlE {H n+1 aDl] + CAtE {HW?WHQ]

=0
+OALE [Hyghum} [\yjhm) ro(ad ).
(36)

Proof For the first item on the LHS of (36), Young’s inequality and triangle inequality
imply

s{[e ] -] <2 (2 |2 ] - s ()] -2 e o] - o))

Using Jensen inequality, one gets

s{[e ] -2 ] <& |l -] =& [l -]

Thus the result is obtained according to Theorem 4 and Theorem 5. Other items in
the LHS of (36) be able to calculate by a similar way. O

5 Some numerical tests

Two numerical examples on the ensemble algorithm are illustrated. Example
1 is deterministic heat transfer model, which is intended to show Theorem 2.
Example 2 is random transient heat equation, that is applied to verify Theorem
6 and reveals the effectiveness of the ensemble scheme.

5.1 Example 1

The first experiment implements the ensemble scheme for the determin-
istic heat transfer model (2) and testes the numerical performance of
the propose algorithm. J = 3. The exact solution is y; = (1 +
wj) cos(2mz) cos(2mx2) exp(t+1), where w; is a random perturbation in [0, 1],
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t € [0,1] and (x1,z2) € [0,1]%. The diffusion coefficient, Robin coefficient are

chosen as a; = oj = 2+ (1 + w;) sin(¢) sin(z122). The initial condition, Robin
boundary function, and source term are selected to match the exact solution.

Table 1 Numerical errors and convergence rates of time

[ At [ 0.5000 [ 0.2500 | 0.1250 [ 0.0625 |
h=1/29 w =0.2
ELEél 0.07805 | 0.03778 | 0.01852 | 0.00924
Rate 1.047 1.029 1.004
h=1/2% wy =0.7
gff 0.04854 | 0.02273 | 0.01074 | 0.00508
Rate 1.095 1.081 1.081
h=1/2% w3 =0.38
Sf,f 0.0831 | 0.0388 | 0.0184 | 0.0088
Rate 1.100 1.077 1.066

Table 2 Numerical errors and convergence rates of space

[ h ] 00625 ]0.03125 | 0.0156 [ 0.0078 |
At =1/29, w1 = 0.2
€T ] 014636 | 0.03807 [ 0.00969 [ 0.00251
Rate 1.943 1.975 1.946
At =1/29, we = 0.7
£F57 1 020969 | 0.05434 [ 0.01365 [ 0.00336
Rate 1.048 1.993 2.022
At=1/2 w3 =0.8
£F” ] 02225 | 0.0576 | 0.0144 [ 0.0035
Rate 1.949 1.096 2.033

The ensemble scheme (12) is used to simulate the group in this experiment,
involves three members with w; = 0.2, ws = 0.7, and w3 = 0.8. Define

i o
€12 = max |lyf —yinl, J=123.

We use linear FEs (I = 1) and isometric time partition and uniform space
partition. To check the convergence rate in time, we select the time step At
from 1/2 to 1/2* with h = 1/2°. The numerical results is listed in Table 1.
To check the convergence order in space, we choose space step h from 1/2% to
1/27 with At = 1/2°. The numerical errors are listed in Table 2.

From Table 1, the convergence order w.r.t. time is about 1. It is in accord
with Theorem 2. From Table 1, the rate of convergence w.r.t. space is about
2, which is higher than theoretical findings of Theorem 2. This may be the
cause of higher regularity of source term f and boundary function u in this
numerical test.
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5.2 Example 2

Here we consider transient heat equations (1) with random coefficients on unit
square domain [0, 1]2. The exact solution, the diffusion coefficient and Robin
coefficient are chosen as

5
y(t, z,w) =(1 +w; + Zwl) cos(2mxy ) cos(2mas) exp(t + 1),
1=2
a(z,w1) =2+ (1 + wy) sin(z122),

3
a(z,ws, - ,ws) =10 + exp((ws cos(rzs) + w3 sin(mxs)) exp(—z)

+ (w4 cos(mz1) + ws sin(mxy)) exp(—§)).

4
The random variables wy, - -+ ,ws are independent. w; is uniformly distributed
on [0,1]. wa, - -+ ,ws are uniformly distributed in the interval [—%, %] The initial

condition, Robin boundary condition, and the source term are selected to
match the exact solution. Define

1 J

— _ no__ no |2

5L2—1g}La§XN J’Elllyj yrnll®-
]:

Two realizations of a(z,ws, - ,ws) are depicted in Figure 1.

17
13 ii%
12 18

1.4
1

13
" 12

1
109

1
108 109

4 108

107 .

107

1 05 1

Fig. 1 Two realizations of a. Left: wo = 0.47,w3 = —0.09,wq = 0.38,ws = —0.41. Right:
wo = —0.35,wz = —0.42, wg = 0.44, w5 = 0.46.

—

0 0.5 0
2

Analogy to deterministic case, we use linear FEs (I = 1) and isometric time
partition and uniform space partition. The corresponding numerical results are
listed in Table 3 and Table 4.

From Table 3, the convergence rate of time is agree with theoretical findings
of Theorem 4. From Table 4, the convergence order of space is higher than
our theoretical findings of Theorem 4. This also may be because the higher
regularity of source term f and part boundary function w.
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Table 3 Numerical errors and convergence rates in time (h = 1/28,J = 50)

At 0.5000 0.2500 0.1250 0.0625
Er2 2.400E-03 | 1.300E-03 | 6.437E-04 | 3.286E-04
Rate 0.88 1.01 0.97

Table 4 Numerical errors and convergence rates in space (At = 1/2°,J = 50)
h 0.0625 0.03125 0.0156 0.0078
Er2 2.011E-01 | 5.195E-02 | 1.308E-02 | 3.264E-03
Rate 1.95 1.99 2.00

The convergence rate of MC sampling size J is very natural in our
theoretical results in Theorem 6. Here we ignore this numerical test.

Choosing the sample size J = 100, the mesh size h = 1/25, At = 1/2*, we
calculate the mean and variance of the solutions at ¢ = 0.14. The results are
listed in Figure 2. To measure the effectiveness of the EMC scheme, we com-
pare the result with that of individual finite element MC (IFE-MC) solutions
using the same realizations. The difference between the mean and the IFE-MC
solution is also shown in Figure 2.

Fig. 2 EMC approximation results. Left: mean. Middle: variance at t =
difference between the mean and the IFE-MC simulation.

0.14. Right:

The difference is on the order of 1073, and the mean O(1). This implies
that the EMC scheme can achieve basically accurate approximation as the
IFE-MC implements.

To test the efficiency of our proposed ensemble scheme, we list the results
of our EMC algorithm and MC method in Table 5 under the same time and
space size. Here the discrete system’s size is not too large, we apply MATLAB
with its LU factorization.

Table 5 CPU time comparisons (At = 1/23, h = 1/28)

J 10 50 100 200
EMC CPU time | 22.23 117.671 238.843 490.616
MC CPU time | 57.76  295.998 496.976  1074.91

From Table 5, we can see that our EMC algorithm requires less CPU time
than MC method when J > 1. The EMC method improves the computational
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efficiency by about 50%-60%, compared with the non-ensemble scheme. The
advantage of EMC becomes more obvious when the ensemble size increases.

6 Conclusion

An ensemble scheme is applied to reform the computational efficiency for
numerical solutions to stochastic parabolic equations in this work. The coef-
ficient matrix of linear systems are calculated and stored once (and for all)
during a possibly expensive off-line stage, thus enabling a very rapid (and J-
independent) assembling of the linear equation during the online stage. We
first discuss the ensemble scheme to deterministic transient heat models. Then
we establish the ensemble-based MC sampling method for random transient
heat models. The effectiveness of both cases are tested.

The EMC algorithm can be applied to nonlinear parabolic equations.
Higher order scheme or stochastic Robin boundary control problem are worth
investigation next.

Declarations

® Funding: This work is supported by National Natural Science Foundation

of China (Granted No. 11961008(X. Luo), 71961003(S.W. Xiang)).

Competing interests: There is no conflict of interest.

Ethics approval: Not applicable.

Availability of data and materials: Not applicable.

Authors’ contributions: X. Luo and T. Yao proposed the idea; T. Yao and

X. Luo given the analysis; C. Ye prepared numerical test and figures. T.

Yao and X. Luo wrote the main manuscript text. All authors reviewed the

manuscript.

® Acknowledgments: The authors thank Springer Nature Submission Sup-
port’s suggestion.

References

[1] Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method
for elliptic partial differential equations with random input data. SIAM
Review 52(2), 317-355(2010)

[2] S. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element
Methods. Springer, New York (2007)

[3] Chiba, R.: Stochastic analysis of heat conduction and thermal stresses in
solids: a review. Chapter 9 in Heat Transfer Phenomena and Applications,
IntechOpen, London (2012)



[4]

Springer Nature 2021 BTEX template

Ensemble Scheme for Random Transient Heat Equation 23

Chiba, R.: Stochastic heat conduction analysis of a functionally graded
annular disc with spatially random heat transfer coefficients. Appl. Math.
Model. 33(1), 507-523 (2009)

Feng, X.B., Luo, Y., Vo, L., Wang, Z.: An efficient iterative method for
solving parameter-dependent and random convection-diffusion problems.
J. Sci. Comput. 90, 72 (2022)

Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications.
Springer, New York (1996).

Ganapathysubramanian, B., Zabaras, N.: Sparse grid collocation schemes
for stochastic natural convection problems. J. Comput. Phys. 225, 652-685
(2007)

Giles, M.B.: Multilevel Monte Carlo methods. Acta Numerica 24, 259-328
(2015)

Gunzburger, M.D., Webster, C.G., Zhang, G.: Stochastic finite element
methods for partial differential equations with random input data. Acta
Numer. 23, 521-650 (2014)

Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation
of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Safe.,
81, 23-69 (2003)

Jiang, N., Layton, W. An algorithm for fast calculation of flow ensembles.
Int. J. Uncertain. Quan. 4, 273-301 (2014)

Jin, B., Zou, J.: Numerical estimation of the Robin coefficient in a
stationary diffusion equation. IMA J. Numer. Anal. 30(3), 677-701 (2010)

Jin, B., Zou, J.: Numerical identification of a Robin coefficient in parabolic
problems. Math. Comp. 81, 1369-1398 (2012)

Ju, L., Leng, W., Wang, Z., Yuan, S.: Numerical investigation of ensem-
ble methods with block iterative solvers for evolution problems. Discrete
Contin. Dyn. Syst. Ser. B 25(12), 4905-4923 (2020)

Li, M., Luo, X.: An EMC-HDG scheme for the convection-diffusion
equation with random diffusivity. Numer. Algorithms 90, 1755-1776
(2022)

Li, M., Luo, X.: An MLMCE-HDG method for the convection diffu-
sion equation with random diffusivity. Computers & Mathematics with
Applications 127, 127-143 (2022)



24

[17]

[18]

[19]

[24]

[25]

[26]

Springer Nature 2021 BTEX template

Ensemble Scheme for Random Transient Heat Equation

Liu, K., Riviere, B.M.: Discontinuous Galerkin methods for elliptic partial
differential equations with random coefficients. Int. J. Comput. Math. 90,
2477-2490 (2013)

Lord, G.J., Powell, C.E., Shardlow, T.: An introduction to computational
stochastic PDEs. Cambridge University Press, New York (2014)

Luo, Y., Wang, Z.: An ensemble algorithm for numerical solutions to
deterministic and random parabolic PDEs. SIAM J. Numer. Anal. 56,
859-876 (2018)

Luo, Y., Wang, Z.: A multilevel Monte Carlo ensemble scheme for solving
random parabolic PDEs. SIAM J. Sci. Comput. 41, A622-A642 (2019)

Martinez-Frutos, J., Kessler, M., Mnch, A., Periago, F.: Robust optimal
Robin boundary control for the transient heat equation with random input
data. Int. J. Numer. Methods Eng. 108, 116-135 (2016)

Martinez-Frutos, J., Esparza, F.P.: Optimal control of PDEs under uncer-
tainty: An introduction with application to optimal shape design of
structures. Springer, (bcam), (2018)

Mathelin, L., Hussaini, M.Y., Zang, T.A.: Stochastic approaches to uncer-
tainty quantification in CFD simulations. Numer. Algorithms 38, 209-236
(2005)

Meng, J., Zhu, P.Y., Li, H.B.: A block method for linear systems with
multiple right-hand sides. J. Comput. Appl. Math. 255, 544-554 (2014)

Xiu, D, Hesthaven, J.S.: High-order collocation methods for differen-
tial equations with random inputs. SIAM J. Sci. Comput. 27, 1118-1139
(2005)

Zhu, X., Linebarger, E.M., Xiu, D.: Multi-fidelity stochastic collocation
method for computation of statistical moments. J. Comput. Phys. 341,
386-396 (2017)



