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Abstract

In a dual weighted residual method based on the finite element framework, the Galerkin orthogonality is an issue
that prevents solving the dual equation in the same space as the one for the primal equation. In the literature, there have
been two popular approaches to constructing a new space for the dual problem, i.e., refining mesh grids (h-approach)
and raising the order of approximate polynomials (p-approach). In this paper, a novel approach is proposed for the
purpose based on the multiple-precision technique, i.e., the construction of the new finite element space is based on the
same configuration as the one for the primal equation, except for the precision in calculations. The feasibility of such
a new approach is discussed in detail in the paper. In numerical experiments, the proposed approach can be realized
conveniently with C++ template. Moreover, the new approach shows remarkable improvements in both efficiency and
storage compared with the h-approach and the p-approach. It is worth mentioning that the performance of our approach
is comparable with the one through a higher order interpolation (i-approach) in the literature. The combination of these
two approaches is believed to further enhance the efficiency of the dual weighted residual method.

Keywords: finite element method; h-adaptive mesh method; dual-weighted residual; multiple-precision; C++ tem-
plate

1 Introduction
The use of adjoint equations and duality arguments in residual-based a posteriori error estimation has become one of the
most popular topics in the numerical analysis of partial differential equations. The idea can be traced back to the work
of Babuška and Miller [2–4]. Then the techniques were systematically developed for more general situations [14–16].
Furthermore, Becker and Rannacher improved this approach into a computation-based feedback method, i.e. the dual
weighted residual (DWR) method, which has the goal-orientation property [9–11, 31]. Related techniques using duality
arguments in post-processing and design have been studied in [18, 19, 27, 28]. Due to the capability of dealing with the
quantities of interest, the DWR method has been applied in many areas, such as mechanics, physics, and chemistry
[1, 5, 6, 12, 23, 29, 30].

Based on a variational formulation of the discrete problem, the DWR method uses duality techniques to generate a
posteriori error estimation, which depends on the unknown exact solution of a so-called dual problem. It is noted that
the dual solution can not be calculated in the same finite element space as the primal problem. Otherwise, the error
estimation would be vanished due to the Galerkin orthogonality. To deal with this problem, there are some classic
approaches to obtain an approximation of the dual solution, such as finer mesh approximation (h-approach), higher-
order finite element method approximation (p-approach), or patch-wise higher-order interpolation approximation (i-
approach) [6, 19]. In these classic approaches, several operations are necessary to construct the dual solution, which
would cost unignorable computational resources. To overcome this, in this work, we explore the possibility of building
a different finite element space for solving the dual problem through one feature of the computer, i.e., finite precision
arithmetic.

A key observation is that with the same configuration (same mesh, degrees of freedom, basis functions, etc.), if we use
two different floating point precision to build finite element spaces, for example, float-precision and double-precision,
the two finite element spaces should be different from the computer’s point of view. To understand it, we need to
recall the way a real number is expressed in the computer. From IEEE standard shown in Fig. 1.1, each real number
takes up 64 bits in double-precision formats, 32 bits in float-precision formats, and 16 bits in half-precision, respectively.
Consequently, one number stored with different precision formats will be treated as different numbers in calculations.
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Figure 1.1: IEEE754 data format.

Then we take two vectors v1 = (cos π
3 , sin π

3 ) and v2 = (−sin π
3 , cos π

3 ) as an example, it can be seen that two vectors
are orthogonal with each other mathematically. Numerically, if two vectors are expressed in single-precision, the inner
product (v1, v2) is computed as 0.00000000. However, if v1 is in single, and v2 is in double, then the inner product
becomes -0.000000007771812, which is obviously not zero in double-precision. Such an observation motivates an idea
for the new implementation of DWR, i.e., solving primal and dual problems in two different precision formats to avoid
the Galerkin orthogonality.

In this paper, a multiple-precision DWR (MP-DWR) method is proposed for the implementation of h-adaptive finite
element methods, towards improving the simulation efficiency. In the framework of the MP-DWR method, the primal
and dual problem are solved with different precision, respectively. Based on these, a DWR a posteriori error estimation
can be generated to serve the following local mesh refinement. The feasibility of above algorithm is discussed in detail
in the paper, from which the break of the Galerkin orthogonality can be seen clearly in examples.

The improvement for the efficiency can be expected from our method by observations that i). both the re-partitioning
of mesh grids and the rearrangement of degree of freedoms as well as associate basis functions are avoided in our
method, and ii). the involvement of single-precision calculation would bring the reduction of both CPU time and storage.
In numerical experiments, the significant acceleration by our method can be seen clearly, e.g., in solving 3D Poisson
equation, around an order of magnitude difference of CPU time between the h-approach strategy and our method can
be observed in the generation of the error indicator.

Another feature of our MP-DWR method is its concise coding work with the aid of template property in C++ language.
In this paper, all simulations are realized by using a C++ library AFEPack [24], in which the code is organized following
a standard procedure on solving partial differential equations as modules. By using these modules and setting the type
of the floating-point number as a parameter of the template class, the code can be concise and easily managed.

The outline of this paper is as follows. In Section 2, based on the Poisson equation, the idea of goal-orientation and
the dual weighted residual method in h-adaptive finite element methods are briefly reviewed. In Section 3, we describe
a novel DWR implementation based on multiple-precision in detail. In Section 4, several numerical experiments are
implemented, in which the validity and acceleration of the proposed method can be demonstrated. Besides that, the
capability of the proposed method for solving the eigenvalue problem is also shown. In addition, several remarks are
delivered about the properties and limitations of the proposed method, based on our numerical experience. Finally, we
give the conclusion of this paper and future works in Section 5.

2 Poisson equation and DWR based h-adaptive mesh methods
In this section, based on the Poisson equation, a DWR based h-adaptive finite element method is reviewed briefly, as
well as the associated classic theory.

2.1 Poisson equation and finite element discretization
Consider the Poisson equation {

−∆u = f , in Ω,
u = 0, on ∂Ω, (1)

with a homogeneous Dirichlet boundary condition on the boundary ∂Ω for the well posedness. Ω ⊂ Rd is a bounded
domain in two (d = 2) or three (d = 3) dimensional space. We choose the variational space V = H1

0(Ω) to incorporate
the homogeneous Dirichlet boundary condition. This implies f ∈ L2(Ω).

Then the weak solution u to the Poisson equation can be characterized via the variational problem:

Find u ∈ V , such that a(u, v) := (∇u,∇v) = ( f , v), ∀v ∈ V. (2)

On a triangulation T , we can introduce the finite element space Vh ⊂ H1
0(Ω). In Vh, the Ritz-Galerkin approximation

to (2) can be expressed as:

Find uh ∈ Vh, such that a(uh, v) := (∇uh,∇v) = ( f , v), ∀v ∈ Vh ⊂ V, (3)

where uh is the Galerkin approximation to u.
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2.2 Goal-orientation and dual weighted residual
We now introduce the classic residual type a posteriori error estimation. Based on that, an introduction of the framework
of a goal-oriented a posteriori error estimation based on DWR method follows. Denote the exact solution of (1) and (3) by
u and uh, respectively. Then the error eh is related to the residual as:

a(eh, v) = a(u− uh, v) := R(v), ∀v ∈ V. (4)

Then integration by parts element-wise to transformR as:

R(v) = ∑
K

∫
K
( f + ∆uh)vdx + ∑

E

∫
E

r[nE · ∇uh]vds, (5)

where K and E represent elements and the edges of elements, respectively, nE represents a unit vector on E, and r is
the “jump” term as defined in [33]. Based on (5), a classic residual-based error indicator ηresi

K for every element K ∈ T
can be obtained as given in [33].

Generally, the quantities of interest can be some functionals of the exact solution u in simulations. The dual weighted
residual method is a better choice to deal with these situations, in which the residual terms are multiplied by weights
obtained by solving a dual problem. Following by [6,31], the framework of the DWR method can be briefly summarized
as follows. Based on the above finite element discretization, to evaluate the target functional J(·) (assumed to be linear
for simplicity), the corresponding dual problem is introduced as

a(ϕ, z) = J(ϕ), ∀ϕ ∈ V, (6)

where z ∈ V is the corresponding dual solution. The Galerkin approximation of the dual problem in Vh can be given
by

a(ϕh, zh) = J(ϕh), ∀ϕh ∈ Vh, (7)

where zh ∈ Vh. By combining (6) and (7), we can get the dual weighted residual error indicator of error in functional
J(·):

J(e) : = J(u)− J(uh) = a(u− uh, z)
= ∑

K∈Th

{(Rh, z)K + 1
2 (r(n · ∇uh), z)∂K} =: η, (8)

where the cell residual Rh is defined by

Rh|K := f + ∆uh, (9)

and r(n · ∇uh) represents the jump term of neighboring elements K and K′ on the common edge Γ with normal unit
vector n pointing from K to K′:

r(n · ∇uh) = (∇uh|K′∩Γ −∇uh|K∩Γ) · n. (10)

In simulations, with the approximation η̃ to η, the effectivity of the error indicator can be evaluated through the index
given by

Ieff =

∣∣∣∣ η̃

J(e)

∣∣∣∣ , (11)

which represents the degree of overestimation and should desirably be close to one [6].
Moreover, a posterori error estimate can be obtained as

|J(e)| ≤ ηω := ∑
K∈Th

ρKωK , (12)

where the cell residuals ρK and weights ωK are given by:

ρK := (‖Rh‖2
K + h−1

K ‖r(n · ∇uh)‖2
∂K)

1/2,

ωK := (‖z‖2
K + hK‖z‖2

∂K)
1/2.

(13)

Since the dual solution z is generally unknown, the only left issue is to obtain the approximation z̃. It should be
noticed that z̃ can not be computed in the same space Vh as the one for solving the primal problem otherwise the error
indicator would be a trivial value due to Galerkin orthogonality:

a(u− uh, vh) = 0, ∀vh ∈ Vh. (14)

To deal with this issue, there are three main classic approaches for computing z̃ as follows.

• By h-approach: A denser mesh T̃h can be constructed by globally refining the mesh Th. Based on T̃h, a different
space Ṽh can be built. Then the dual solution z̃ can be obtained from Ṽh.

• By p-approach: A finite element space Ṽ(2)
h with quadratic (or higher-order) finite elements has to be constructed.

From Ṽ(2)
h , the dual solution z̃ can be obtained.

• By i-approach: The bilinear Ritz projection zh ∈ Vh of z is computed first. Then the approximation z̃ is obtained
by patch-wise higher-order interpolation of zh. In the following numerical experiments, we only consider quadratic
interpolation.
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In practical simulations, the first two approaches all build a different finite element space for solving the dual prob-
lem. Some operations would be necessary in such a process, i.e., re-meshing the grid, re-organizing the degree of free-
doms, regeneration of the information of numerical quadrature,the reformation of a larger scale stiff matrix, and solving
an even larger linear system of linear equations, which would cost nonignorable CPU time and memory storage in cal-
culations. To avoid these operations, the i-approach obtains the approximation z̃ by using higher-order interpolation,
which makes it cheaper than the other two classic approaches [29]. Different from three classic approaches above, we
expect to propose a novel approach to avoid the Galerkin orthogonality. Such a new approach can also avoid these
operations so the acceleration in simulations can be expected.

3 A novel DWR implementation based on multiple-precision
Recall the example in the introduction, which shows that the orthogonality of two vectors can not be preserved numer-
ically with multiple-precision calculations. Based on the same idea, we introduce a new implementation of DWR, in
which the multiple-precision will be used to effectively break the Galerkin orthogonality.

First of all, we will show how the multiple-precision breaks the Galerkin orthogonality to make sure this idea works.
The Galerkin orthogonality in (14) indicates that: for vh = uh from Vh, we have

a(u− uh, uh) = 0. (15)

By using a different precision format, a different space V′h can be built without changing the mesh grid. From V′h, u′h
can be obtained. Based on the above idea, uh and u′h would be different since they are computed with different precision
formats. Furthermore, they are obtained from two different finite element spaces Vh and V′h, respectively. Thus, it can be
expected that the Galerkin orthogonality between them would not be preserved:

a(u− uh, u′h) 6= 0. (16)

To confirm that, we implement the numerical experiment by using a combination of double- and float-precision.
Here, we only focus on the Poisson equation in the 2-dimensional domain Ω = (−1, 1)2 with the exact function as
u = sin(πx)sin(2πy). With double-precision, the finite element space Vd

h is built firstly, from which ud
h can be obtained.

Then the similar operations are implemented in float precision, we can obtain the numerical solution u f
h from V f

h . Based

on these, we can compute the value of a(u− ud
h, ud

h) and a(u− ud
h, u f

h). The numerical results are shown in Table 3.1.

Dofs L2 Error a(u− ud
h, ud

h) a(u− ud
h, u f

h)

385 4.470e-1 -5.035e-5 -8.117e-5
1473 1.136e-1 -1.579e-7 -5.103e-4
5761 2.854e-2 -6.596e-10 -2.202e-3
22785 7.143e-3 8.254e-11 -9.337e-3

Table 3.1: Galerkin orthogonality of ud
h and u f

h for the case u = sin(πx)sin(2πy).

Tables 3.1 shows that the error in L2-norm (L2 Error) tends to zero with more Dofs (degrees of freedom), such that ud
h

and u f
h get more accurate. Meanwhile, the value of a(u− ud

h, ud
h) tends to zero, which means the Galerkin orthogonality

of ud
h is numerically preserved better. That is the reason that we can not directly compute the dual solution in the same

space with the same precision. On the contrary, the value of a(u− ud
h, u f

h) gets further away from zero as the number of

Dofs increases, which means the Galerkin orthogonality between ud
h and u f

h is numerically broken more obviously. Based

on this phenomenon, we can confirm that the Galerkin orthogonality between ud
h and u f

h can be numerically broken by
multiple-precision.

Thus, it can be expected that dual solutions from the finite element space constructed with different precision will
work in the DWR method. By combining such primal and dual solutions, a reliable DWR error indicator can be obtained
for mesh adaptation. Based on this, we propose Algorithm 1 for the multiple-precision implementation of the DWR
method.

Algorithm 1 Framework of Adaptive finite element method based on MP-DWR(DF) method.
Require: The initial mesh, T0; The tolerance, tol; The maximum iteration times, Maxiter; the iteration times k = 0.

1: Build a finite element space Vh on the mesh Tk;
2: Solve the primal problem in double-precision to get the primal solution ud

h;

3: Solve the dual problem in float-precision to get the dual solution z f
h ;

4: Calculate the cell residual ρ̃K and weights ω̃K for each element to construct the error indicator η̃ω as (12);
5: Check the stopping condition: If η̃ < tol or k > Maxiter, stop the adaptation and return the numerical solutions.
6: Else, adapt the current mesh with η̃ω to get the new mesh Tk+1, update the iteration times k = k + 1 and return to

step 1.
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Remark 1 In the above framework of MP-DWR(DF) method, the primal problem is solved in Double-precision. As for dual problem,
it is solved with Float-precision. In fact, the framework of MP-DWR(FD) is also useful, i.e. solving the primal and dual problem
in Float and Double precision, respectively. But there are some limits of MP-DWR(FD), which will be shown through a numerical
example (4.4) in the following part. In this paper, MP-DWR(DF) framework is used by default in numerical experiments if not
specified.

Such a new implementation of DWR method has a series of advantages, which can be summarized as follows. First of
all, several repeated operations of building finite element space can be avoided. Compared to the two classic methods (h-
approach and p-approach), the MP-DWR method only computes the modules of building the finite element space once
in one iteration. With the help of multiple-precision, the re-partitioning of the mesh grid, the rearrangement of degrees
of freedom, the recalculation of the quadrature information, the reformation of stiff matrix, and solving an even larger
linear system of linear equations can be avoided in the process of obtaining the dual solution. In this way, considerable
improvements in efficiency can be expected. Compared with the i-approach, the dual solution in MP-DWR is generally
not as accurate as the one from higher-order interpolation, making the error indicator potentially less accurate. But the
MP-DWR method can avoid high-order interpolation, thus saving some computation time.

The second advantage of MP-DWR comes from the involvement of computations with low precision. On computers,
if one number is stored in double-precision, it will cost 8 bytes. While it costs 4 bytes in single-precision. Thus, if data
are stored in single-precision instead of double-precision, the storage memory would be saved by fifty percent. Besides
that, data with lower precision are more conducive to accelerating the calculation. Consider following C++ codes:

double double_data = 0.;

for(int i=0;i<1.0e7;i++){ double_data +=4.0* atan (1.0);}

float float_data = 0.;

for(int i=0;i<1.0e7;i++){ float_data += float (4.0* atan (1.0));}

The same operation of the data is implemented 1.0e7 times with different precision formats. For double-precision, the
cost of CPU time is 4.010e-2. As a comparison, CPU time is 2.448e-2 for float-precision, which is much less than double-
precision. Therefore, it can be expected that the single-precision calculation part in the MP-DWR method can bring
further reduction in both storage and CPU time.

In addition, the realization of the MP-DWR method can be very concise by using template. In this paper, we implement
all simulations based on the AFEPack library [24]. The code in the AFEPack library follows a standard procedure for
solving partial differential equations. Furthermore, each step is realized as a module based on template in AFEPack.
Template is a feature of the C++ programming language that allows functions and classes to work on many different data
types without rewriting the code for each one. By setting the floating type as the parameter of template, it is quite trivial to
realize Algorithm 1. For example, consider the bilinear operator module in AFEPack: BilinearOperator < . . . , Number >.
We can merely change the template parameter ‘Number’, then the precision of the numbers in BilinearOperator will be
changed. Thus, it is convenient to implement multiple-precision calculations without repeating the entire code for each
precision format. Moreover, the use of template also facilitates the modification of our codes based on some function
libraries. Codes of one numerical example of the MP-DWR method can be found in Github [25].

4 Numerical experiments
In this section, a series of examples are shown to demonstrate the validity and acceleration of the MP-DWR method.
In the following numerical experiments, we use the linear triangle template element for 2D cases and the tetrahedron
template element for 3D cases, respectively. All numerical examples presented in this paper are developed by using
the AFEPack [24] in C++, and the hardware is a DELL Precision T5610 workstation with 12 CPU Cores, 3.6GHz and 64
Gigabytes memory.

Moreover, a high order Gaussian quadrature is recommended in the calculations since it can produce more accurate
results, which can break the Galerkin orthogonality more obviously. Therefore, the MP-DWR error indicators can be
more effective. Here, we use the six-order Gaussian quadrature in all computations.

4.1 Effectiveness of MP-DWR method
In this part, we conduct a series of numerical experiments based on MP-DWR method to verify its effectiveness. In
the beginning, the Poisson equation is considered for testing the goal-orientation property and effectivity of the MP-
DWR method. Then experiments of a problem with diffusion coefficient and the convection-diffusion equation are also
conducted to study whether the MP-DWR method can be effective in some more complex situations.

4.1.1 Poisson equation

In this example, we consider the Poisson problem as (1) with Ω = (−1, 1)× (−1, 1). First of all, we study the effectivity
indices of the MP-DWR method for different target functionals in the Poisson case. As a benchmark example in [6], we
consider an exact solution u1 = (1− x2

1)(1− x2
2)sin(4x1)sin(4x2) with the target functionals:

Jarea(u) := |S|−1 ∫
S udx, S := [− 1

2 , 0]× [0, 1
2 ], x = (x1, x2),

Jp(u) := u(xe), xe = ( 1
2 , 1

2 ).
(17)

To evaluate the error indicator generated by MP-DWR, we compute the effectivity index Ieff given in (11). In Figure
4.1.1, we present effect indices of the MP-DWR approach applied to this Poisson case. It can be seen that effectivity
indices of target functionals J1 and Jp get closer to one as the number of Dofs increases. Although they are not strictly
equal to one, they tend to around one. Therefore, we can confirm the effectivity of the MP-DWR method.
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Figure 4.1.1: Effectivity indices of MP-DWR error indicators for the target functionals Jarea and Jp over the number of
Dofs.

Figure 4.1.2: Upper left: the adapted mesh based on MP-DWR. Lower left: the adapted mesh based on residual-based
method. Middle: the relationship between error in target functionals and degrees of freedom. Right: the target error
over the number of Dofs.

Then, a sharper function is considered, of which the exact form is given as u2 = 5.0× (1− x2
1)(1− x2

2)exp(1− x−4
2 ).

Besides that, we consider a point-wise output functional, which is given by:

Jp(u) := u(xe), xe = (0.2, 0.8). (18)

And the residual-based method with indicator ηresi
K as mentioned above is implemented for comparison. The refined

mesh and numerical results are shown in Figure 4.1.2.
From the left two pictures in Figure 4.1.2, the adapted mesh based on residual based error indicator gets denser

around the singularity of function u in the whole domain. By contrast, the adapted mesh based on the MP-DWR method
not only gets denser around the singularity but also adds much more degrees of freedom around the interested point.

Moreover, the middle picture in Figure 4.1.2 shows that the MP-DWR can obtain the numerical result reaching at the
specified level with much more fewer degrees of freedom compared to the residual-based method. These phenomena
confirm the goal-orientation property of the MP-DWR method, which demonstrates the effectiveness of the MP-DWR
method on the Poisson problem with some particular target functionals somehow.

Furthermore, we also implement the h-approach, p-approach and i-approach for comparisons. The numerical results
are shown in the right picture of Figure 4.1.2. It can be observed that the MP-DWR method can obtain a result of similar
accuracy with a similar number of Dofs compared to the three classic approaches. Consequently, the efficiency of the
MP-DWR method is comparable with the three approaches. However, the implementation of the MP-DWR method
is faster, which makes the MP-DWR competitive. Such an advantage of the MP-DWR method will be shown in the
following numerical example 4.2.

4.1.2 Coefficient elliptic equation

Then we consider a coefficient elliptic equation, which is given by{
−∇ · (a∇u3) + cu3 = f , in Ω,
u3|∂Ω = 0, (19)

where

a =

{
10, x2

1 − x2
2 ≥ 0,

1, x2
1 − x2

2 < 0.
(20)

And we set c = 1 and f = 1. The output functional of this case is defined by

Jp(u) := u(xe), xe = (0.5, 0). (21)
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Figure 4.1.3: Upper left: the adapted mesh based on MP-DWR. Lower left: the adapted mesh based on residual-based
method. Right: the log value of target functionals.

The bilinear form of this equation should also be changed. More details can be found in [24]. Based on that, an error
indicator similar to (12) can be obtained. We implement the MP-DWR method and residual-based method to refine the
mesh grid, respectively. The right picture in Figure 4.1.3 shows that target error over the number of Dofs. Since the
mesh is too coarse in the beginning, slight oscillation can be observed. However, with the refinement of the mesh grid,
the convergence becomes smooth. Then it can be observed that the MP-DWR method can obtain the numerical result
reaching the specified level with much fewer Dofs than the residual-based method. Besides that, from two left pictures
in Figure 4.1.3, we can observe that the refined mesh based on MP-DWR can capture the goal point better. While the
residual-based method provides a mesh, on which the solution can be approximated well in the whole domain. As a
result, it has to cost more expensive numerical effort than the MP-DWR method to get accurate quantities of interest.
Based on these, the effectiveness of the MP-DWR method in the coefficient elliptic equation can be verified.

4.1.3 Convection-diffusion equation

To test the validity of MP-DWR method in other complex cases, we consider the convection-diffusion equation, which is
given by {

−∇ · (ε∇u) + α∇u = f , in Ω,
u = 0, on ∂Ω, (22)

and the exact solution u is given as u4(x1, x2) = sin(2πx1)sin(πx2). In the numerical simulation, the ε is set as 0.01
and α = [1, 1]. Following the DWR framework in the convection-diffusion equation, we can get the corresponding DWR
error indicator for mesh adaptation. More details can be found in [6, 12]. For comparison, residual-based method with
ηresi

K is implemented in the simulation. In this case, the target functional is defined as the point-wise one:

Jp(u) := u(xe), xe = (−1
3

,−1
2
). (23)

Numerical results are shown in the Figure 4.1.4. This case nicely shows the goal-orientation property of MP-DWR
method. It can be seen that the MP-DWR method sets more degrees of freedom around the interested point and along
those finite elements that influence the error of interested point in the direction of the flow field α. As a comparison,
the residual-based method puts more degrees of freedom on the whole domain. Consequently, the adapted mesh grids
would be quite dense as the lower left picture in Figure 4.1.4. And the right picture in Figure 4.1.4 demonstrates that
the residual-based method has to use many degrees of freedom to get an accurate numerical result. While the MP-DWR
method can obtain the numerical result satisfying the same precision with just a few degrees of freedom. Therefore, we
can confirm the effectiveness of MP-DWR method in this convection-diffusion case.

4.2 Performance on acceleration
In this part, we will show one important advantage of the MP-DWR method in numerical simulations, i.e. the accel-
eration of simulations. Three classic DWR approaches, i.e. h-approach, p-approach, and i-approach, are implemented
during the experiments as comparisons. By comparing the CPU time consumption of each approach, we can test the
acceleration capability of the MP-DWR method.
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Figure 4.1.4: Upper left: the adapted mesh based on the MP-DWR method. Lower left: the adapted mesh based on the
residual-based method. Right: the relationship between error in target functionals and degrees of freedom.

4.2.1 2D case

Above all, we consider the Poisson case as (1) with point-wise target functional Jp in (17). The exact solution is u =

5.0 × (1 − x2
1)(1 − x2

2)exp(1 − x−4
2 ) and the interested point is xe = (0.2, 0.8). In this case, the DWR error indicators

based on four different approaches (MP-DWR and three classic approaches) are generated from the same initial mesh
with almost thirty thousands degrees of freedom. The process is repeated 100 times and the average CPU time of several
operations in this process is recorded in Table 4.2.1.

It can be seen that all approaches cost similar CPU time to obtain the primal solution. However, in order to generate
the error indicator (including solving the dual problem and constructing the error indicator), four approaches cost quite
different CPU time. Compared with h- and p-approach, the i-approach and MP-DWR method can save CPU time by
avoiding several operations of building new space. Moreover, since no more Dofs or mesh grid points are introduced,
they cost much less time to build quadrature information and solve the linear system than the former two classic ap-
proaches. In addition, the i-approach has to spend some time on interpolation while constructing the error indicator.
Due to such a difference, the MP-DWR method is slightly faster than the i-approach.

Operation h-approach p-approach i-approach MP-DWR
Build primal FEM space 8.915e0 8.274e0 7.825e0 8.154e0
Build Quadrature information 2.632e1 2.658e1 2.255e1 2.196e1
Solve Linear System 1.788e2 1.789e2 1.836e2 1.786e2
Remeshing 1.041e1
Build dual FEM space 3.476e1 1.092e1
Assemble Linear System 8.231e1 4.912e1 1.837e1 1.832e1
Solve Linear System 7.039e0 2.669e1 1.238e0 1.203e0
Construct indicator 2.999e1 2.934e1 3.420e1 2.815e1
Generate indicator 1.645e2 1.161e2 5.381e1 4.767e1
Total CPU time 3.785e2 3.298e2 2.678e2 2.564e2

Table 4.2.1: CPU time(seconds) of operations in the computation of Poisson case. The values are the average of 100 experimental
results. The process of generating the indicator includes solving the dual problem and constructing the error indicator. For the i-approach,
the CPU time for interpolation is included in the CPU time for the ‘construct indicator’ step.

Then we implement the whole numerical simulation through each approach. The mesh adaptation is executed until
the error tolerance is satisfied. The numerical results are shown in the left one of Figure 4.2.1. Furthermore, we change
the exact solution of Poisson case as u1 = (1− x2

1)(1− x2
2) sin(4x1) sin(4x2) with the area target functional Jarea(u) in

(17). Similar simulations are implemented. The relationship between the error and whole CPU time for this case is shown
in the right one of Figure 4.2.1. In the left picture in Figure 4.2.1, it can be seen that the MP-DWR method and i-approach
are much faster than h- and p-approach. The acceleration gets more obvious as the times of mesh adaptation increase.
Then we focus on the comparison of MP-DWR and i-approach: the i-approach can control the error of the point-wise
target functional better than MP-DWR method with a similar number of Dofs. But the CPU time of the MP-DWR method
is always less than the i-approach. This suggests that the MP-DWR method may be less accurate but computationally
fast compared to the i-method in this case.
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Figure 4.2.1: The error and CPU time of the whole experiments based on MP-DWR and three classic DWR approaches.
Left: with point-wise target functional. Right: with area target functional. The number of Dofs is shown in the figure.

As for the right picture, the corresponding points of the MP-DWR method always stay at the most left position in
each iteration step, which means that the MP-DWR method generally cost the least CPU time in simulations. When the
iterations stop, although the MP-DWR method uses the most Dofs, the CPU time of the MP-DWR method is significantly
less than the other three methods. This demonstrates that the MP-DWR method can be calculated faster than the three
classical methods in this case.

4.2.2 3D case

Then we consider the Poisson equation in 3-dimensional with a target functional, which is given by:

JG(u) =
∫

Ω3D

udx, x = (x1, x2, x3), (24)

where Ω3D = (−1, 1)3. The exact solution is given as the example in [6]:

u = (1− x2
1)

2(1− x2
2)

2(1− x2
3)

2(64x2
1 + 0.1)−1(64x2

3 + 0.1)−1. (25)

The comparison of CPU time for the whole simulation based on the MP-DWR method and three classic approaches is
similar to the 2D case in Figure 4.2.1. The MP-DWR method and i-approach demonstrate similar efficiency, and both of
them are computed faster than the h- and p-approach.

Then we mainly focus on the comparison of CPU time for generating the error indicator. Similar to the 2D case, we
implement the four approaches to generate the error indicators from the same initial mesh (with almost 18000 Dofs),
respectively. The corresponding CPU time is recorded in the Table 4.2.2. The values are the average of 100 experimental
results.

Compared to the i-approach, the MP-DWR method can save some CPU time during solving the dual problem since
the involvement of single-precision computations. Besides that, due to the increased number of elements and corre-
sponding neighbors in the 3D case, higher-order interpolation takes more CPU time than in the 2D case. Consequently,
the MP-DWR method can save much CPU time during constructing the indicator. More importantly, compared to the
h- and p-approach, the improvement in CPU time brought by the MP-DWR method is quite significant. The MP-DWR
method can use the equivalent of about 15% of the time for the h-approach and about 30% of the time for the p-approach
to generate the indicator. Based on that, we can demonstrate that the performance of the MP-DWR method in acceler-
ation is quite considerable in the 3D case compared to the h- and p-approach. Therefore, the MP-DWR method can be
more competitive in 3D numerical simulations.

4.3 Performance in eigenvalue problems
To extend the MP-DWR method into more applications, we spend some time on verifying its effectiveness in the eigen-
value problem. Consider the eigenvalue problem as follows. Seeking an eigenpair (λ, u) ∈ C × H1

0(Ω) with

−∆u + β · ∇u = λu in Ω. (26)

In experiments, β is set as [3,0]. The computational domain is set as the slit area Ω3 = ((−1, 1)× (−1, 1))\([0, 1]× {0}).
Following the DWR framework in the eigenvalue problem as in [6,17,20], we can get the related error indicator for mesh
adaptation. In the simulation of the MP-DWR method, we follow the framework of Algorithm 1, i.e. the primal solution
and corresponding residual ρK are computed in double-precision. While the dual solution and corresponding residual
ρ∗K are computed in single-precision. Based on these, the error indicator ηω

λ = ∑K∈Th
{ρKω∗K + ρ∗KωK} can be computed.

For comparison, the residual-based error indicator η
energy
λ = cλ ∑K∈Th

h2
K{ρ2

K + ρ∗2K } is also implemented, where cλ is a
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Operation h-approach p-approach i-approach MP-DWR
Build primal FEM space 3.086e0 3.048e0 2.825e0 3.196e0
Build Quadrature information 1.135e1 1.137e1 1.129e1 9.710e0
Solve Linear System 2.137e1 2.137e1 2.139e1 2.148e1
Remeshing 6.423e0
Build dual FEM space 2.446e1 3.886e0
Assemble Linear System 7.833e1 4.096e1 9.853e0 8.272e0
Solve Linear System 1.062e0 6.402e0 1.449e-1 1.447e-1
Construct indicator 9.956e0 1.033e1 2.157e1 9.691e0
Generate indicator 1.202e2 6.162e1 3.156e1 1.811e1
Total time 1.560e2 9.741e1 6.707e1 5.249e1

Table 4.2.2: CPU time(seconds) of operations in 3-dimensional Poisson case. The values are the average of 100 experimental results.
The process of generating the indicator includes solving the dual problem and constructing the error indicator. For the i-approach, the
CPU time for interpolation is included in the CPU time for the ‘construct indicator’ step.

Figure 4.3.1: Upper left: the plot figure of the primal solution. Lower left: dual solution.. Right: the smallest eigenvalue
errors over the number of Dofs.

constant growing linearly with |λ|. The left pictures in Figure 4.3.1 shows the numerical primal and dual solution. The
residual of the smallest eigenvalue λ1 over Dofs is shown in the right one of Figure 4.3.1. It can be observed that, with
the specified number of Dofs, the MP-DWR method can get a more accurate result than the ηenergy based method. This
demonstrates that the MP-DWR method can deal with the interested eigenpair more efficiently. Consequently, it can be
demonstrated that the MP-DWR method can still work in the eigenvalue problem. Based on these, it can be expected
that the MP-DWR method can be used in many applications, such as density functional theory.

4.4 The limit of MP-DWR method
In this part, we discuss a limit of the MP-DWR(FD) framework. In some numerical experiments, it is strange that
MP-DWR(FD) becomes less effective with refining the mesh too many times. Consider the Poisson case with point-wise
target functional in case 4.1.1. We solve the primal problem with single-precision and double-precision, respectively. The
numerical results of the primal solutions are shown in Figure 4.4.1. It can be seen that when the mesh grids are dense
enough, the residual in single-precision gets larger as the number of degrees of freedom increases, which is different
from the residual in double-precision. With this unexpected phenomenon, it can not be expected that such an inaccurate
primal solution in single-precision can construct a reliable DWR error indicator. One possible reason is that while we
adapt the mesh several times, some area will gets quite dense and the minimal volume of elements will get very tiny.
For reference, the minimal volumes of elements on the mesh grids in each iteration are shown in Table 4.4. When the
minimal volume gets the level of 1.0e-6, the data in such an element can be close to the limit of single-precision so that
the computations may demonstrate some unexpected phenomena causing the strange curve in Figure 4.4.1. Due to such
a limit, we have to be careful about the data precision in numerical simulations while using the MP-DWR method.

Remark 2 Although there is a limit to the MP-DWR(FD) method, we propose a potential algorithm to make full use of the ad-
vantages of the MP-DWR method: First of all, we can compute the primal solution with half-precision and dual solution with
single-precision, respectively. When the primal solution gets the limit of half-precision, we change the precision parameters in our
programming to compute the primal solution with single-precision and dual solution with double-precision, respectively. In this
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Figure 4.4.1: Primal solutions computed in float and double precision.

Adapt times 1 2 3 4 5
Minimal element volume 1.617e-2 1.010e-3 6.316e-05 4.34e-06 1.247e-06

Table 4.4.1: The minimal volume of elements in adaptation

way, we can make full use of the acceleration of the MP-DWR method to get a reliable numerical result. And such an algorithm can
also be an efficient preconditioned approach.

5 Conclusion
To accelerate the process of obtaining dual solution in the DWR methods, we utilize the properties of precision for-
mats and propose a novel DWR implementation based on multiple-precision named MP-DWR. Numerical experiments
confirm the effectiveness of the novel approach. Memory storage savings can be expected due to the low-precision cal-
culations involved. Furthermore, considerable reduction in CPU time compared with classic h- and p-approach is shown
in simulations, which makes the MP-DWR method quite competitive. Compared with i-approach, the MP-DWR may
lose some accuracy but it gains some acceleration in simulations, especially in the 3D case. By combining the MP-DWR
method and i-approach, both of the accuracy and efficiency might be improved in simulations, which is our ongoing
work. Although there is a limit to the MP-DWR method due to the property of precision formats in some situations, the
substantial improvements in data storage and CPU time suggest that it is still an efficient method.

In addition, some more precise floating-point data type than double, such as float128(long double), may be applied
in the MP-DWR framework to overcome the limit. Such an extension of the MP-DWR method will be implemented
in our future study. In our previous work, applications of the h-adaptive method to computational fluid dynamics,
micromagnetics, and density functional theory have been studied [7, 8, 21, 26, 34]. The introduction of the MP-DWR
method into these applications to further improve the efficiency is also our future work. Besides that, the dual weighted
residual method has been applied to many time-dependent problems [13, 22, 32], for which the MP-DWR is expected to
be used to improve the computational efficiency.
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