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Abstract In this paper, based on the limited memory techniques and subspace minimization conjugate gra-

dient (SMCG) methods, a regularized limited memory subspace minimization conjugate gradient method is

proposed, which contains two types of iterations. In SMCG iteration, we obtain the search direction by min-

imizing the approximate quadratic model or approximate regularization model. In RQN iteration, combined

with regularization technique and BFGS method, a modified regularized quasi-Newton method is used in

the subspace to improve the orthogonality. Moreover, some simple acceleration criteria and an improved

tactic for selecting the initial stepsize to enhance the efficiency of the algorithm are designed. Additionally,

an generalized nonmonotone line search is utilized and the global convergence of our proposed algorithm

is established under mild conditions. Finally, numerical results show that, the proposed algorithm has a

significant improvement over ASMCG PR and is superior to the particularly well-known limited memory

conjugate gradient software packages CG DESCENT (6.8) and CGOPT(2.0) for the CUTEr library.

Keywords Limited memory · Subspace minimization conjugate gradient method · Orthogonality ·

Regularization model · Quasi-Newton method

Mathematics Subject Classification (2000) 49M37 · 65K05 · 90C30

1 Introduction

Consider problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a continuously differentiable nonlinear function.
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Throughout the article, we use the following notations. sk−1 = xk − xk−1, fk = f(xk), gk = g(xk),

yk−1 = gk−gk−1, ‖·‖ represents the Euclidean norm and λmax denotes the maximum eigenvalue. Moreover,

dist{x,S} = inf{‖y − x‖, y ∈ S}, where x ∈ R
n and S ∈ R

n.

Nonlinear conjugate gradient(CG) method is a well-known method for solving the problem (1.1), which

main iteration is

xk+1 = xk + αkdk, k = 0, 1, 2, · · · , (1.2)

where xk is the kth iteration point, αk > 0 is the stepsize and dk is the search direction obtained by

d0 = −g0, dk = −gk + βkdk−1, k ≥ 1, (1.3)

where gk is the gradient of f(xk) and βk is the conjugate parameter.

It is shown in theory that the convergence and numerical performance variation of different CG meth-

ods depend on the selection of conjugate parameters. Some very classical choices of the conjugate param-

eter βk are Fletcher-Reeves(FR) [9], Polak-Ribière-Polyak(PRP) [30,31], Dai-Yuan(DY) [7] and Hestenes-

Stiefel(HS) [16], and are given by

βFR
k =

‖gk+1‖
2

‖gk‖
2

, βPRP
k =

gTk+1yk

‖gk‖
2
, βDY

k =
‖gk+1‖

2

dT
k
yk

, βHS
k =

gTk+1yk

dT
k
yk

.

CG algorithms have evolved considerably, and some well-known CG packages such as CG DESCENT [12,

14] and CGOPT [5] have been proposed in recent years. Other recent related studies on nonlinear CG

algorithms can be found in [4,13].

The subspace minimization conjugate gradient (SMCG) algorithm, as a generalization of the CG algo-

rithm, has received much attention from scholars [1,37], which can be traced back to the work of Yuan and

Stoer [39]. The search direction of SMCG method is obtained by minimizing the following problem:

min
d∈Ωk

gTk d+
1

2
dTBkd, (1.4)

where Ωk is a subspace spanned by the vectors gk and sk−1, i.e., Ωk = Span{gk, sk−1}, and Bk ∈ R
n×n is

an approximation of Hessian matrix, which is positive definite and symmetric. Then the search direction d

is given by

d = ugk + vsk−1, (1.5)

where u and v are both real parameters. Substituting (1.5) to (1.4) and combined with the standard secant

equation Bksk−1 = yk−1, formula (1.4) is reorganized as follows:

min
u,v∈R





‖gk‖
2

gTk sk−1





T



u

v



+
1

2





u

v





T



ρk gTk yk−1

gTk yk−1 sk−1yk−1









u

v



 . (1.6)

where ρk ≈ gTk Bkgk.

On the basis of the Barzilai-Borwein(BB) method [2], Dai and Kou [6] proposed an effective BBCG3

method for strictly convex quadratic minimization problem. Afterwards, based on BBCG3 method, Liu

and Liu [26] proposed SMCG BB method for solving general unconstrained optimization problems.
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Liu and Liu [26] proposed SMCG BB method, which extended BBCG3 method to solve general uncon-

strained optimization problems. Motivated by SMCG BB method, some efficient SMCG methods [20,21,

36,42] were later proposed, among which the method based on the regularization model presented by Zhao

et al. [42] is the best in the numerical performance.

The nonlinear CG method is very effective for unconstrained optimization problems. However, the

convergence of the algorithm can be very slow for some ill-posed problems and even for quadratic problems

with very small dimensions, which may be due to the loss of orthogonality [15]. Hager and Zhang [15] pointed

out theoretically that the generated successive gradients either in the CG method or the L-BFGS method

for the quadratic test problem should be orthogonal. Yet, Hager and Zhang [15] observed that, when solving

the quadratic strictly convex minimization problem PALMER1C in the CUTEr library [10], the CG method

loses orthogonality due to the rounding errors, while L-BFGS method preserves the orthogonality. In view

of this, they developed the limited memory CG method (CG DESCENT(6.8)) to correct the possible loss

of orthogonality in ill conditioned optimization problems. For the test problems in the CUTEr library [10],

their performance results indicated that CG DESCENT(6.8) has an significant improvement over their

previously proposed package CG DESCENT(5.3).

Although CG DESCENT(6.8) [15] is an efficient method for unconstrained optimization, it still suffers

from the following shortcomings:

(i) In the numerical implementation, the AWolfe line search [14] utilized in the algorithm CG DESCENT(6.8)

does not guarantee global convergence.

(ii) CG DESCENT(6.8) contains the following three pre-conditioners, corresponding to three different it-

erations:

Pk = I, Pk = ZkB̂
−1
k+1Z

T
k , Pk = ZkB̂

−1
k+1Z

T
k + σkZ̄kZ̄

T
k , (1.7)

where σk is determined by (4.2) of [15], B̂k+1, Zk and Z̄k are given by the matrices in literature [15]. These

three pre-conditioners make the algorithm CG DESCENT(6.8) look complex.

(iii) In the convergence analysis, the algorithm CG DESCENT(6.8) needs to impose the following assump-

tions on the pre-conditioners:

‖Pk‖ ≤ γ0, g
T
k+1Pkgk+1 ≥ γ1‖gk+1‖

2, dTk P
−1
k dk ≥ γ2‖dk‖

2, (1.8)

where γ0 > 0, γ1 > 0 and γ2 > 0. These assumptions are comparatively strict and difficult to be verified in

actual practice.

To address the above-mentioned shortcomings, Liu et al. [27] presented an improved DaiõKou CG

algorithm called CGOPT(2.0), which combines limited memory technology and Dai-Kou CG method.

In CGOPT(2.0) [27], they utilized a modified quasi-Newton method to restore the lost orthogonality, and

established the convergence of CGOPT(2.0) with fewer assumptions. Some numerical experiments indicated

that CGOPT(2.0) is better than the famous CG software package CG DESCENT(6.8) [15].

In view of the above discussion, a regularized limited memory subspace minimization conjugate gradient

method on the basis of SMCG method and limited memory technique is studied in this paper. To recover

orthogonality, we propose a modified regularized quasi-Newton method. The major contributions of this

paper are the following.
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1. A regularized limited memory subspace minimization conjugate gradient algorithm is proposed, which

combines limited memory technology and SMCG method.

2. Based on the idea of regularization and BFGS method, an improved regularized quasi-Newton method

is exploited to improve orthogonality.

3. Some simple acceleration criteria and an improved initial stepsize selection strategy are designed to

enhance the efficiency of the algorithm. Additionally, an generalized nonmonotone line search condition

is presented, which may be regarded as an extension of the Zhang-Hager’s [41] nonmonotone line search.

4. The convergence of the method is built under mild conditions and the corresponding numerical perfor-

mance shows that the new method is much more effective than the existing methods.

The structure of the paper is as follows. In Section 2, we describe the detail of the regularized limited

memory subspace minimization conjugate gradient algorithm, including the direction selection of SMCG

iteration and regularized Quasi-Newton iteration and an effective acceleration technique. Moreover, the de-

cision of the initial step size and the generalized nonmonotone Wolfe line search are also given in this section.

In Section 3, some important properties of the search direction are analyzed and the global convergence of

the proposed algorithm is established. Conclusions are given in the last section.

2 A Regularized Limited Memory Subspace Minimization Conjugate Gradient Algorithm

In the section, combining the idea of subspace minimization and regularization quasi-Newton method,

we present a regularized limited memory subspace minimization conjugate gradient algorithm. Firstly,

we give the choices of search direction under different iterations. Subsequently, we develop a very effec-

tive acceleration technique, a modified initial step selection strategy and generalized nonmonotonic line

search technology to optimize the performance of the proposed algorithm. Finally, the details of algorithm

RL SMCG are described.

2.1 Direction Selection of SMCG Iteration and Regularized Quasi-Newton Iteration

The regularized limited memory subspace minimization conjugate gradient method mainly contains two

kinds of iterations which are SMCG iteration and regularized quasi-Newton(RQN) iteration, respectively.

Furthermore, the search direction derivation of the two iterations is also different.

2.1.1 SMCG iteration

The search direction selection of SMCG iteration is closely related to the properties of the objective function

f(x) at the iteration point xk. By reference [3,38], defined

tk =
∣

∣

∣
2
(

fk−1 − fk + gTk sk−1

)

/
(

sTk−1yk−1

)

− 1
∣

∣

∣
, (2.1)

to describe how f(x) approaches a quadratic function on a line segment between xk−1 and xk. Literature

[24] indicates that if the condition

tk ≤ ξ̄4 or
(

tk ≤ ξ̄5 and tk−1 ≤ ξ̄5
)

, (2.2)
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is satisfied, where ξ̄4 and ξ̄5 are the smaller positive constants and ξ̄4 < ξ̄5, f(x) may be near to a quadratic

function on a line between xk−1 and xk. Moreover, According to [32], we know that if the following condition

ξ̄1 ≤
sTk−1yk−1

‖sk−1‖
2

≤
‖yk−1‖

2

sT
k−1yk−1

≤ ξ̄2, (2.3)

is satisfied, then the condition number of the Hessian matrix of the normal function may be not very large,

here ξ̄1 and ξ̄2 are positive constants.

Similar to [42], based on some certain properties of the function f(x) at the current point xk, we derive

different search direction by dividing it into the following four cases.

(i) If the condition (2.3) is satisfied while the condition (2.2) are not, this implies that the quadratic

model may not be able to approach the objective function f(x) well at the present iteration point xk. Then,

search direction dk will be obtained by minimizing the following cubic regular subproblem, i.e.

min
dk∈Ωk

mk (dk) = dTk gk +
1

2
dTk Bkdk +

1

3
σk ‖dk‖

3
Bk

, (2.4)

where Ωk is a subspace spanned by the vectors gk and sk−1, Bk ∈ R
n×n is an approximation of Hessian

matrix, which is positive definite and symmetric and satisfying the secant condition Bksk−1 = yk−1, σk ≥ 0

is an adaptive regularization parameter obtained from interpolation condition and dk is determined by

dk = ukgk + vksk−1, (2.5)

where vk and uk are parameters to be established. Obviously, we could obtain (2.4) by giving (1.4) a

weighted regularization term 1
3σk ‖dk‖

3
Bk

. Substituting (2.5) to (2.4), it is easy to obtain that (2.4) is

equivalent to

min
uk,vk∈R





‖gk‖
2

gTk sk−1





T



uk

vk



+
1

2





uk

vk





T

B̄k





uk

vk



+
σk
3

∥

∥

∥

∥

∥

∥





uk

vk





∥

∥

∥

∥

∥

∥

3

B̄k

. (2.6)

where B̄k =





ρk gTk yk−1

gTk yk−1 sk−1yk−1



 is a positive definite and symmetric matrix, ρk is an estimate of

gTk Bkgk. Similar to BBCG3 [6], we also use 3
2

‖yk−1‖
2

sT
k−1

yk−1

I to estimate Bk in the term ρk, which means

ρk = 3
2

‖yk−1‖
2

sT
k−1

yk−1

‖gk‖
2. Then, by solving problem (2.6) we obtain the following solutions about uk and vk:





uk

vk



 =





1
(1+σk(̟∗))∆k

(

gTk yk−1g
T
k sk−1 − sTk−1yk−1‖gk‖

2
)

1
(1+σk(̟∗))∆k

(

gTk yk−1‖gk‖
2 − ρkg

T
k sk−1

)



 , (2.7)

among them,

∆k =

∣

∣

∣

∣

∣

∣

ρk gTk yk−1

gTk yk−1 sk−1yk−1

∣

∣

∣

∣

∣

∣

= ρksk−1yk−1 − (gTk yk−1)
2 > 0, (2.8)

σk and ̟∗ are the same as those in literature [42], which will not be repeated here.

(ii) If both conditions (2.3) and (2.2) hold, this indicates that the objective function f(x) may approach

the quadratic model at the current iteration point xk. Since that is the case, let σk = 0, i.e. we consider deriv-

ing the search direction by solving the minimization problem (1.6). Like (i), we choose ρk = 3
2

‖yk−1‖
2

sT
k−1

yk−1

‖gk‖
2
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and ∆k is determined by (2.8), then we obtain the following unique solution of quadratic approximate prob-

lem (1.6):




ūk

v̄k



 =





1
∆k

(gTk yk−1g
T
k sk−1 − sTk−1yk−1‖gk‖

2)

1
∆k

(gTk yk−1‖gk‖
2 − ρkg

T
k sk−1)



 , (2.9)

here the search direction is calculated by dk = ūkgk + v̄ksk−1, where ūk and v̄k are determined by (2.9).

(iii) If condition (2.3) is not satisfied and the conditions

∣

∣

∣
gTk yk−1g

T
k sk−1

∣

∣

∣
≤ ξ̄3s

T
k−1yk−1‖gk‖

2 and sTk−1yk−1 ≥ ξ̄1‖sk−1‖
2, (2.10)

are satisfied, where 0 ≤ ξ̄3 ≤ 1, the condition number of the Hessian matrix may be lager, hence the search

direction obtained in cases (i) and (ii) may not be better. However, the condition (2.10) can ensure sufficient

descent and linear growth in HS conjugate gradient method. Moreover, because of the finite termination

nature of the HS conjugate gradient method for solving exact convex quadratic minimization problems, this

choice of direction allows for faster convergence of the algorithm. Then, in this case, the search direction is

determined by (1.3) and βk = βHS
k .

(iv) If neither condition (2.3) nor (2.10) holds, then we pick the following direction, i.e. :

dk = −gk. (2.11)

In summary, the search direction in the SMCG iteration can be described as in the following:

dk =































ukgk + vksk−1, if (2.3) holds and (2.2) does not hold,

ūkgk + v̄ksk−1, if (2.3) holds and (2.2) holds,

−gk + βHS
k dk−1, if (2.3) does not hold and (2.10) holds,

−gk, if neither (2.3) nor (2.10) holds,

(2.12)

where uk and vk are determined by (2.7); ūk and v̄k are determined by (2.9).

If the successive gradients have orthogonality or the lost orthogonality is restored, the algorithm performs

SMCG iteration. On the contrary, if the orthogonality is lost, the iteration will turn to the following

regularized quasi-Newton iteration to improve the orthogonality.

2.1.2 Regularized Quasi-Newton(RQN) iteration

When the successive gradients lose their orthogonality, the iteration switches from SMCG iteration to RQN

iteration. In other words, a modified regularized BFGS algorithm in subspace Sk is proposed to restore the

orthogonality, where Sk is a subspace generated by the following limited memory m search directions

Sk = span {dk−1, dk−2, · · · , dk−m} ,

where m > 0 and m is the number of limited memory. In this article, the limited memory m selected in our

algorithm does not exceed 11. Then, as soon as orthogonality is corrected, the RQN iteration is terminated

and the SMCG iteration is triggered immediately.

First, we introduce some preparations for turning to RQN iteration. Let Sk ∈ R
n×m be a matrix which

has columns consisting of dk−1, dk−2, · · · , dk−m. In similar fashion to limited memory CG method [15], we
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also assume that columns of Sk are line-independent. Let the QR factorization of Sk be Sk = ZkR̄k, where

the columns of Zk ∈ R
n×m form the normal orthogonal bases for subspace Sk and R̄k ∈ R

m×m is the upper

triangular matrix with positive diagonal terms.

If gk is included almost in subspace Sk, then we think that the orthogonality property of the algorithm

may be lost. In this case, we interrupt the SMCG iteration and move to minimize the objective function in

the subspace Sk:

min
z∈Sk

f(xk + z). (2.13)

The solution to the subspace problem (2.13) will improve the orthogonality and guide us to a suitable

search direction that will lead us out of the subspace Sk. Similar to [15], we utilize the distance from gk to

subspace Sk to judge whether orthogonality is lost. If the condition

dist {gk,Sk} ≤ η̃0‖gk‖ (2.14)

is satisfied, where 0 < η̃0 < 1 and η̃0 is small, we think gk is almost contained in Sk, it means that the

orthogonality of the successive gradients has lost. Then, we switch to RQN iteration to solve the subspace

problem (2.13) until the gradient is nearly orthogonal enough to the subspace to meet the condition

dist {gk,Sk} ≥ η̃1‖gk‖, (2.15)

where 0 < η̃0 < η̃1 < 1. At this time, the algorithm iteration will go away subspace Sk and turn to the

SMCG iteration. Because the column of Zk is the orthonormal basis of Sk, it’s not hard to know from the

definition of dist {gk,Sk} that (2.14) and (2.15) can be expressed as

(

1− η̃20

)

‖gk‖
2 ≤

∥

∥

∥
ZT
k gk

∥

∥

∥

2

, (2.16)

and
(

1− η̃21

)

‖gk‖
2 ≥

∥

∥

∥
ZT
k gk

∥

∥

∥

2

. (2.17)

In [15], Hager and Zhang utilized the limited memory BFGS (L-BFGS) [22,28] method to solve the subspace

problem (2.13) for restoring the orthogonality, and achieved better numerical results. However, it should

be noted that the convergence analysis of the limited memory CG method [15] requires imposing strict

assumptions (1.8) on the preprocessors (1.7). Because the dimension m of the chosen subspace Sk is usually

small and when orthogonality is lost, the properties of the function at the iteration point maybe not

very good. Based on these, we consider a regularized L-BFGS method in the subspace Sk for solving the

subproblem (2.13).

The search direction of general quasi-Newton method [40] for unconstrained optimization (1.1) is the

form of dk = −B−1
k

gk, where Bk is a positive definite and symmetric approximation to the Hessian matrix.

As one of the most popular methods of quasi-Newton method, L-BFGS method stores the approximate

Hessian matrix of the objective function using small memory and computes the search direction dk using

the nearest m vector pairs of (sk−i, yk−i), i = 0, 1, . . . ,m− 1.
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Ueda and Yamashita [35] presented a regularized Newton method for nonconvex unconstrained opti-

mization, whose search direction dk is obtained by solving the following linear equations:

(

∇2f(xk) + µI
)

dk = −∇f(xk), (2.18)

where µ > 0 is referred to as the regularized parameter. The regularized Newton method [35] generally

defaults to a step size of 1, and global convergence is guaranteed by controlling the parameter µk. However,

as a type of Newton method, the regularized Newton method in [35] must solve the Hessian matrix of

f which is particularly computationally complex. To address this drawback, some scholars proposed the

regularized limited memory BFGS-type method [33,23] for solving unconstrained optimization problems,

i.e. the search direction dk is the solution of the following equations

(Bk + µI) dk = −∇f(xk), (2.19)

where matrix Bk is an approximate Hessian determined by a particular quasi-Newton method. Regular-

ization technology can effectively improve the efficiency of quasi-Newton method in solving ill-conditioned

problems. Nevertheless, when computing Bk by the L-BFGS method, it is very hard to calculate (Bk + µI)−1.

Hence, motivated by [34], we present a regularized quasi-Newton method which combines the BFGS method

with the regularized technique to improve orthogonality in the m-dimensional subspace Sk. In this paper,

we consider Bk + µI as an approximation of ∇2f(xk) + µI. Because the matrix Bk is the approximate

Hessian of f(xk) and Bk + µI can be used as an approximate Hessian of f(xk) +
µ
2 ‖x‖

2. At this point, we

utilize (sk, yk(µ)) instead of (sk, yk), where

yk(µ) = (∇f(xk+1) + µxk+1)− (∇f(xk) + µxk) = yk + µsk.

Note that the regularized BFGS method stores as many vector pairs as the traditional BFGS method and

hence it does not require additional memory.

In [19], a effective BFGS quasi-Newton method for solving nonconvex unconstrained minimization was

proposed by Li and Fukushima [19], in which the matrix Bk+1 is updated by

Bk+1 =







Bk −
Bksks

T

k
Bk

sT
k
Bksk

+
yky

T

k

sT
k
yk

, if
sT
k
yk

‖sk‖2 > υ‖gk‖
α,

Bk, otherwise ,

where υ > 0 and α > 0. Some recent advances about modified BFGS method can be found in [18,11,34].

Inspired by the quasi-Newton methods described above, we propose an improved regularized BFGS

method to solve the subproblem (2.13) in subspace Sk.

Remark 1. In what follows, the variables with hats belong to subspace Sk , distinguished from the ones

found in the full space R
n.

Let x̂ = (x̂1, x̂2, · · · , x̂m, )T ∈ R
m. The subproblem (2.13) can be expressed as

min
x̂∈Rm

f(xk + x̂1dk−1 + x̂2dk−2 + · · ·+ x̂mdk−m). (2.20)
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Similar to [27], because the regularized quasi-Newton directions in the subspace Sk always transform to

the full space R
n and QR decomposition of matrix Sk, we can obtain dk = Zkd̂k, ĝk = ZT

k gk, ŷk = ZT
k yk,

ŝTk ŷk = sTk yk, ‖ŝk‖
2 = ‖sk‖

2 and f̂k = fk.

Let Bk(µ) = Bk + µI, then inspired by Li and Fukushima [19], we develop an improved regularized

BFGS method to solve the above subproblem (2.20) with a search direction of the form

d̂k+1 = −B̂−1
k+1(µ)ĝk+1, (2.21)

where B̂k+1(µ) is given by

B̂k+1(µ) =







B̂k(µ)−
B̂k(µ)ŝk ŝ

T

k
B̂k(µ)

ŝT
k
B̂k(µ)ŝk

+
ŷk(µ)ŷ

T

k
(µ)

ŝT
k
ŷk(µ)

, if mod(k, l) 6= 0 and
ŝT
k
ŷk(µ)

ŝT
k
ŝk

≥ υ [27],

Î, otherwise ,
(2.22)

where υ > 0, mod(k, l) 6= 0 represents the remainder for k modulo n, ŷk(µ) = ŷk + µŝk and µ > 0 is an

important regularized parameter. The condition mod(k, l) 6= 0 means the matrix B̂k(µ) will be reset to

the identity matrix Î after updating l times, which ensures the good convergence of the algorithm. In the

paper, we set l = max(m2, 20). Obviously, ŝTk ŷk(µ) > 0, and as soon as the matrix B̂k(µ) is symmetric and

positive definitive, it is not hard to prove that the matrix B̂k+1(µ) is symmetric and positive definitive.

As a very important regularization parameter, µ is closely related to the convergence analysis of the

regularized BFGS method. In this paper, the idea of the trust-region radius is used to find the suitable

search direction by controlling µ, in other words, The ratio of objective function value reduction to model

function value reduction is utilized. Then, give the definition of a ratio function rk(d̂k, µ) as follows

rk(d̂k, µ) =
f̂(xk)− f̂(xk + αkd̂k)

f̂(xk)− q̂k(d̂k, µ)
, (2.23)

where q̂k : Rm × R → R is a function of the form

q̂k(d̂k, µ) = f̂(xk) + αk ĝ
T
k d̂k +

1

2
α2
kd̂

T
k B̂k(µ)d̂k. (2.24)

Then, if the ratio function rk(d̂k, µ) is relatively large, this means that compared with the reduction of the

model function, the reduction of the objective function is large enough, we choose to reduce the parameter

µ. On the flip side, if the ratio function rk(d̂k, µ) is relatively small, i.e., f̂(xk) − f̂(xk + αkd̂k) is small,

we will increase µ. In addition, to ensure that the algorithms converge well, we limit µ to an interval, i.e.

0 < µmin < µ < µmax. In general, if the next iteration point is closer to the current iteration point, the

reduction of the function value may not be obvious. At this time, we hope to get a new iteration point by

modifying the search direction, then the search direction improved by regular parameter µ may be a good

choice. Therefore, if ‖ŝk‖
2 ≤ τ̂ (τ̂ > 0), our choice and update of µ are as follows:

µk+1 =







max {µmin, σ1µk} , if rk(d̂k, µ) ≥ σ3,

min {µmax, σ2µk} , otherwise,
(2.25)

where 0 < σ1 ≤ 1, σ2 > 1 and 0 < σ3 ≤ 1. Otherwise, we choose µ = 0, i.e., the regularized BFGS method

is reduced to a general BFGS method.
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Remark 2. In order to simplify the symbol and facilitate writing, we still record the updated symbol

µk+1 as µ.

In the process of algorithm implementation, the search direction (2.21) in subspace Sk always converts

to the full space R
n at each RQN iteration, i.e.,

dk+1 = −Pkgk+1, (2.26)

where

Pk = ZkB̂
−1
k+1(µ)Z

T
k (2.27)

and B̂k+1(µ) is given by (2.22).

In Section 3, we will show that matrices B̂k+1(µ) and Pk have some good properties in the RQN iteration,

which is critical for the convergence analysis.

2.2 An Effective Acceleration Technique

In order to optimize the performance of the algorithm, Sun et al. [32] proposed an acceleration technique,

which replaces (1.2) with the following new iterative form

xk+1 = xk + η̄kαkdk, (2.28)

where η̄k ≥ 0 is an acceleration parameter obtained from an interpolation function. In view of the numerical

effect of the acceleration technique, our algorithm also takes it into account. Similar to reference [32], we

minimize the following interpolation function to get the acceleration parameter η̄k:

η̄k = arg min q(ϕk(η̄)), (2.29)

where η̄ ≥ 0, ϕk(η̄) = f(xk + η̄αkdk), and q(ϕk(η̄)) represents the interpolation function by. In the paper,

we consider minimizing the quadratic interpolation function [29] q(ϕk(0), ϕ
′
k(0), ϕ

′
k(1)), then,

η̄k = arg min q(ϕk(0), ϕ
′
k(0), ϕ

′
k(1)), (2.30)

By minimizing (2.30) we have

η̄k = −
āk
b̄k

, b̄k ≥ ǭ, (2.31)

where āk = αkg
T
k dk, b̄k = αk(gz̄ − gk)

T dk, gz̄ = ∇f(z̄), z̄ = xk + αkdk and ǭ > 0 is a small constant.

We propose the following acceleration criterion, which is simpler than the rule in reference [32], that is

b̄k ≥ ǭ, ‖sz̄‖
2 ≤ τ̄ , ‖gk‖

2 ≤ τ̂ , |t̄k+1| < c̄, and |sTk gz̄ | ≥ Max(ς, ς̄ · b̄k) (2.32)

where ǭ, τ̄ , τ̂ , c̄, ς and ς̄ are all small positive constants, b̄k = αk(gz̄ − gk)
T dk, sz̄ = z̄ − xk, z̄ = xk +

αkdk, |t̄k+1| = |
2(fk−fz̄+gT

z̄
sz̄)

sTz̄ gz̄
− 1|, fz̄ = f(z̄) and gz̄ = ∇f(z̄). When the condition (2.32) holds, we

accelerate the algorithm and update the relevant variables. In addition, one of the necessary conditions for

successful acceleration is that the trial iteration point must satisfy the line search condition. Therefore, if the
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algorithm accelerates successfully, update the iteration point xk+1 by using (2.28). Otherwise the algorithm

acceleration fails and returns to the original algorithm, at which point η̄k = 1, update the iteration point

xk+1 with (1.2).

In reference [32], the acceleration criterion is divided into three cases, which seems to be more complex,

while our acceleration criterion has only one case and the form is simpler.

2.3 Choices of the Initial Stepsize and the Generalized Nonmonotone Wolfe Line Search

It is well known that the design of the search direction and the conditions of the line search are two

critical factors which affect the efficiency of the line search algorithm. In this subsection, we will develop

an improved nonmonotone Wolfe line search which can be regarded as an extension of the Zhang-Hager’s

[41] nonmonotone line search. In addition, an improved initial step selection strategy is designed.

For the sake of convenience, we express the one-dimensional line search function as

φk(α) = f(xk + αdk), α ≥ 0.

The choice of the initial stepsize α0
k is of great importance for a line search in an optimization method. For

the Newton-like methods, choosing the initial step α0
k = 1 is important to speed up convergence. For the

conjugate gradient methods, it is essential to use information from the current iteration of the problem to

make initial guesses [29]. In the conjugate gradient method, there have been various ways to choose the

initial stepsize, for example, see [5,12,15,29]. However, it did not have an agreement on which is the best.

In particular, Hager and Zhang [15] select the initial step in CG DESCENT as below:

α0
k =







argmin q̄
(

φk (0) , φ
′
k (0) , φk (τ̄1αk−1)

)

, if φk (τ̄1αk−1) ≤ φk (0) ,

τ̄2αk−1, otherwise,
(2.33)

where q̄
(

φk (0) , φ
′
k (0) , φk (τ1αk−1)

)

represents the interpolation function given by the three values φk (0) ,

φ′
k (0) and φk (τ1αk−1) , τ̄1 and τ̄2 are positive parameters. In CGOPT, Dai and Kou [5] determined the

initial stepsize in the following way:

α0
k =







α if |φk (α)− φk (0)| / (τ3 + φk (0)) > τ4,

argmin q̄
(

φk (0) , φ
′
k (0) , φk (α)

)

, otherwise,
(2.34)

where α = max
{

τ5αk−1,−2 |fk − fk−1| /g
T
k dk

}

, τ3 > 0, τ4 > 0 and τ5 > 0. Most recently, Liu and Liu

[26] discussed the development a very effective initial stepsize selection strategy for SMCG method by

combining the BB methods and the interpolation technique.

Based on the above research, we devise an improved strategy to obtain the initial stepsize. We first

consider the initial stepsize for the search direction in the RQN iteration.

(i) Initial stepsize of the search direction (2.26) with Bk+1(µ) 6= I.
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Since the search direction d̂ is a quasi-Newton direction in the subspace Sk, then the initial stepsize

α0
k = 1 may be a good choice. Therefore, the trial initial stepsize can be stated as

α0
k =







α̂k, if ((2.2) or ̟ ≤ τ2) holds and ᾱk > 0,

1, otherwise,
(2.35)

where

α̂k = min{max{ᾱk, αmin}, αmax}, ᾱk = min q̄(φk(0), φk
′(0), φk(1)),

̟ = |φk (1)− φk (0)| / (τ1 + φk (0)) , τ1 > 0, τ2 > 0 and αmax > αmin > 0.

Here, q̄
(

φk (0) , φ
′
k (0) , φk (1)

)

is a quadratic interpolation function for φk (0) , φ
′
k (0) , and φk (1) , and αmax

and αmin represent two positive constants.

(ii) Initial stepsize of the search direction (2.26) with Bk+1(µ) = I.

α0
k =







α̂k, if ((2.2) or ̟ ≤ τ2) holds and ᾱk > 0,

¯̄αk, otherwise,
(2.36)

where

¯̄αk =







max{min{αBB2

k
, αmax}, αmin}, if gTk sk−1 > 0,

max{min{αBB1

k
, αmax}, αmin}, if gTk sk−1 ≤ 0,

(2.37)

For the initial stepsize of the search direction in the SMCG iteration. If the search direction dk is

calculated by (2.12) with dk 6= −gk, the initial stepsize is chosen in the same way as the RQN iteration,

which is determined by (2.35). If the search direction dk is given by (2.11), the initial stepsize is determined

by

α0
k =







min{max{ ˜̃αk, αmin}, αmax}, if (2.2) holds, ‖gk‖
2 ≤ 1, dk−1 6= −gk−1 and ˜̃αk > 0,

¯̄αk, otherwise,
(2.38)

where ¯̄αk is determined by (2.37) and ˜̃αk = min q(φk(0), φk
′(0), φk(¯̄αk)).

Next, we introduce a generalized line search condition, which can be regarded as a development of the

Zhang-Hager’s nonmonotone line search. We recall the nonmonotone line search introduced by Zhang and

Hager [41]

f(xk + αkdk) ≤ Ck + δαkg
T
k dk, (2.39)

where

Ck+1 =
ηkQkCk + fk+1

Qk+1
, Qk+1 = ηkQk + 1, (2.40)

0 < δ < 1, and ηk ∈ [0, 1]. From (2.40), it is easy to see that Ck+1 is a convex combination of fk+1 and

Ck. If C0 = f(x0), it is thus clear that Ck can be regard as a convex combination of the function values

f(x0), f(x1), · · · , f(xk). It means that Ck can employ information about the known function values from the

previous iteration. The Zhang-Hager’s nonmonotone line search (2.39) is reduced to the standard Armijo

line search condition when ηk = 0 for each k.
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As it was reported in [41], the nonmonotone line search proposed by Zhang and Hager plays a crucial

role in generating an appropriate stepsize compared to the monotone line search method. Based on (2.39)

and (2.40), Huang et al. [17] presented a very effective nonmonotone line search technique, which can be

regard as an extension of Zhang-Hager’s nonmonotone line search, that is

Ck+1 =
ηkQkCk + fk+1

Qk+1
≤ Ck + δkαkg

T
k dk, (2.41)

where ηk ∈ [ηmin, ηmax], δmax < 1, 0 < δmin < (1− ηmax)δmax, δmin ≤ δk ≤ δmax

Qk+1
and Qk+1 is computed by

(2.40).

Inspired by the previous discussion, we will study a generalized nonmonotone Wolfe line search technique

based on (2.40) and (2.41). Considering the acceleration technique, the generalized nonmonotone Wolfe line

search conditions are as follows:

Ck+1 ≤ Ck + δkη̄kαkg
T
k dk, (2.42)

gTk+1dk ≥ σgTk dk, (2.43)

where 0 < δmin < δk < δmax < 1, σ ∈ (0, 1), Q0 = 1, C0 = f0, η̄k is an acceleration parameter determined

by (2.31), Ck and Qk are updated as follows

Ck+1 =
ηkQkCk + f(xk+1)

Qk+1
, Qk+1 = ηkQk + 1, f(xk+1) = f(xk + η̄kαkdk), (2.44)

where ηk ∈ [0, 1]. Specially,

Q1 = 2.0, C1 = min{C0, f1 + 1.0}, (2.45)

when k ≥ 1, Ck+1 and Qk+1 are updated by (2.44), and ηk is given as

ηk =







1, if Ck − fk+1 > 0.95|Ck| and k > 100,

0.9, otherwise.
(2.46)

Here ηk is a parameter that controls the degree of non-monotonicity, referred to [25].

Furthermore, we demonstrate that the generalized nonmonotone Wolfe line search is an extension of

the Zhang-Hager’s nonmonotone Wolfe line search method. It follows from (2.42) that we get

f(xk + η̄kαkdk) ≤ (Qk+1 − ηkQk)Ck +Qk+1δkη̄kαkg
T
k dk. (2.47)

Since Qk+1 − ηkQk = 1, (2.42) is equivalent to

f(xk + η̄kαkdk) ≤ Ck +Qk+1δkη̄kαkg
T
k dk, (2.48)

It is easy to see that if δk = δ
Qk+1

, nonmonotone line search condition (2.48) reduces to the Zhang-Hager’s

nonmonotone Wolfe line search condition (2.39). This means that the Zhang-Hager’s nonmonotone Wolfe

line search condition in [41] can be considered as a particular version of (2.42).
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2.4 A Regularized Limited Memory Subspace Minimization Conjugate Gradient Algorithm(RL SMCG)

In this subsection, we describe the regularized limited memory subspace minimization conjugate gradient

algorithm in detail. As mentioned above, the regularized limited memory subspace minimization conjugate

gradient algorithm is made of two kinds of iterations. The “state” in Algorithm 1 represents for the type of

iteration, i.e., state= “SMCG” means that SMCG iteration will be carried out, and state= “RQN” means

that RQN iteration will be performed.

Algorithm 1 RL SMCG

Step 0. Chosen x0 ∈ R
n, ε > 0, η̃0, η̃1, υ, m, ξ1, ξ2, ξ3, ξ4, ξ5, σ1, σ2, σ3, µmin, µmax, τ, τ̄ , c̄, ς, ς̄, ǭ, τ1, τ2,

δk, σ, IterRestart := 0, IterQuad := 0 and MinQuad. Set state = “SMCG” and k := 0.

Step 1. If ‖gk‖∞ ≤ ε, stop.

Step 2. Compute the search direction.

If (state = “SMCG”), then

If k = 0, then d0 = −g0.

elseif (IterQuad = MinQuad and IterQuad 6= IterRestart), set

dk = −gk, IterQuad = 0, and IterRestart = 0.

else

Determine the search direction dk by (2.12).

end

elseif (state = “RQN”), then

Compute Pk by (2.27), and compute the search direction dk by (2.26).

end

Step 3. Determine the corresponding initial step size α0
k from (2.35), (2.36) and (2.38) according to the

different iteration directions in the Step 2.

Step 4. Determine a stepsize αk satisfying the generalized nonmonotone Wolfe line search (2.42) and (2.43)

with initial stepsize α0
k.

Step 5.Compute the trial iteration z̄ = xk + αkdk and gz̄ = ∇f(z̄). If ‖gz̄‖∞ ≤ ε, then stop; otherwise, go

to Step 6.

Step 6. Acceleration procedure.

If the condition (2.32) holds, then go to 6.1.

6.1. Compute āk = αkg
T
k dk, b̄k = αk(gz̄ − gk)

T dk and η̄k by (2.31).

6.2. Update the iteration point as xk+1 = xk + η̄kαkdk and compute fk+1 and gk+1.

6.3. If fk+1 satisfies (2.42) and gk+1 satisfies (2.43), go to Steps 8. Otherwise, go to Steps 7.

else

go to Steps 7.

end

Step 7. Update the variable as xk+1 = xk + αkdk. Compute fk+1 and gk+1.

Step 8. Update restart conditions.

Step 9. Update Qk+1 and Ck+1 with (2.44).

Step 10. Update iteration type.
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If (state = “SMCG”), then

If (2.16) holds, then state = “RQN”.

elseif (state = “RQN”), then

If (2.17) holds, then state = “SMCG”.

end

Step 11. Set k := k + 1 and go to Step 1.

Remark 3. Notably, when the lost orthogonality is corrected, our algorithm terminates the RQN itera-

tion and immediately calls the SMCG iteration. However, the limited memory CG method [15] first carries

out the complex preprocessing CG iteration after the orthogonality is improved. This means that algorithm

RL SMCG is more simple compared to the limited memory CG method [15].

3 Convergence Analysis

In the section, we establish the global convergence of the algorithm RL SMCG under the following assump-

tions and properties.

Define N to be an open neighborhood of the level set L (x0) = {x ∈ Rn : f (x) ≤ f (x0)} , where x0 is an

initial point.

Assumption 1 (i) The objective function f is continuously differentiable in N and the level set is bounded

from below. (ii) The gradient g of the objective function is Lipschitz continuous in N , i.e., there exists a

constant L > 0 such that ‖g(x)− g(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ N .

Under these assumptions, we have the following several properties.

Lemma 1 Suppose that Assumption 1 holds. Then, for B̂k+1(µ) in (2.22), there exist three constants ξ̂1 >

0, ξ̂2 > 0 and ξ̂3 > 0 such that

λmax

(

B̂k+1(µ)
)

≤ ξ̂1, λmax

(

B̂−1
k+1(µ)

)

≤ ξ̂2,
∥

∥

∥
B̂−1
k+1(µ)

∥

∥

∥
≤ ξ̂3.

Proof We know that Zk is a normal orthogonal basis of Sk and the dimension m < +∞, hence we have

ξ0 > 0 such that ‖Zk‖ ≤ ξ0. According to (2.22) and the property of the matrix norm in finite dimensional

spaces, we can get that λmax

(

B̂k(µ)
)

= 1 or

λmax

(

B̂k+1(µ)
)

≤ λmax

(

B̂k(µ)
)

+ λmax

(

−
B̂k(µ)ŝk ŝ

T
k B̂k(µ)

ŝT
k
B̂k(µ)ŝk

)

+ λmax

(

ŷk(µ)ŷ
T
k (µ)

ŝT
k
ŷk(µ)

)

(3.1)

≤ λmax

(

B̂k(µ)
)

+
ŷTk (µ)ŷk(µ)

ŝT
k
ŷk(µ)

.

Further, by ŷk(µ) = ŷk + µŝk, µ > 0, we get

ŷTk (µ)ŷk(µ)

ŝT
k
ŷk(µ)

=
‖ŷk‖

2 + µ2
k‖ŝk‖

2 + 2µŝTk ŷk
ŝT
k
ŷk + µ‖ŝk‖2

=
‖ŷk‖

2 + µŝTk ŷk

ŝT
k
ŷk + µ‖ŝk‖2

+
µŝTk ŷk + µ2

k‖ŝk‖
2

ŝT
k
ŷk + µ‖ŝk‖2

≤
‖ŷk‖

2 + µŝTk ŷk

ŝT
k
ŷk

+ µ
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≤
L2ξ20‖ŝk‖

2

ŝT
k
ŷk

+ 2µ

≤
L2ξ20
υ

+ 2µmax.

The fourth inequality above is obtained from ŷk = ZT
k yk, ‖Zk‖ ≤ ξ0 and Assumption 1 (ii). Because

B̂k(µ) will be set to Î after a maximum of l updates, combining with (3.1) easy to get λmax

(

B̂k+1(µ)
)

≤

1 +
lL2ξ2

0

υ + 2lµmax , ξ̂1.

Let P̂k(µ) = B̂−1
k+1(µ). According to (2.22) and some simple matrix operations, we have that P̂k(µ) = Î

or

P̂k(µ) =

(

Î −
ŷk(µ)ŝ

T
k

ŝT
k
ŷk(µ)

)T

P̂k−1(µ)

(

Î −
ŷk(µ)ŝ

T
k

ŝT
k
ŷk(µ)

)

+
ŝk ŝ

T
k

ŝT
k
ŷk(µ)

. (3.2)

It is not difficult to that λmax

(

(

Î −
ŷk(µ)ŝ

T

k

ŝT
k
ŷk(µ)

)T (

Î −
ŷk(µ)ŝ

T

k

ŝT
k
ŷk(µ)

)

)

= ‖ŷk(µ)‖
2‖ŝk‖

2

(ŝTk ŷk(µ))
2 . For any ẑ 6= 0 ∈ R

m and

P̂k(µ) in (3.2), we have

ẑT P̂k(µ)ẑ = ẑT
(

Î −
ŷk(µ)ŝ

T
k

ŝT
k
ŷk(µ)

)T

P̂k−1(µ)

(

Î −
ŷk(µ)ŝ

T
k

ŝT
k
ŷk(µ)

)

ẑ +

(

ŝTk ẑ
)2

ŝT
k
ŷk(µ)

≤ λmax

(

P̂k−1(µ)
)

ẑT
(

Î −
ŷk(µ)ŝ

T
k

ŝT
k
ŷk(µ)

)T (

Î −
ŷk(µ)ŝ

T
k

ŝT
k
ŷk(µ)

)

ẑ +

(

ŝTk ẑ
)2

ŝT
k
ŷk(µ)

≤ λmax

(

P̂k−1(µ)
)

λmax

(

(

Î −
ŷk(µ)ŝ

T
k

ŝT
k
ŷk(µ)

)T (

Î −
ŷk(µ)ŝ

T
k

ŝT
k
ŷk(µ)

)

)

‖ẑ‖2 +

(

ŝTk ẑ
)2

ŝT
k
ŷk(µ)

≤ λmax

(

P̂k−1(µ)
) ‖ŷk(µ)‖

2‖ŝk‖
2

(

ŝT
k
ŷk(µ)

)2
‖ẑ‖2 +

‖ŝk‖
2

ŝT
k
ŷk(µ)

‖ẑ‖2.

The above inequality is divided by ‖ẑ‖2, and the resulting inequality is maximized, then we have

λmax

(

P̂k(µ)
)

≤ λmax

(

P̂k−1(µ)
) ‖ŷk(µ)‖

2‖ŝk‖
2

(

ŝT
k
ŷk(µ)

)2
+

‖ŝk‖
2

ŝT
k
ŷk(µ)

≤ λmax

(

P̂k−1(µ)
)





‖ŷk(µ)‖
2

ŝT
k
ŷk(µ)

‖ŝk‖2

ŝT
k
ŷk(µ)



+
‖ŝk‖

2

ŝT
k
ŷk

≤ λmax

(

P̂k−1(µ)
)

(

L2ξ20
υ

+ 2µmax

)

‖ŝk‖
2

ŝT
k
ŷk

+
‖ŝk‖

2

ŝT
k
ŷk

≤

(

L2ξ20
υ2

+
2µmax

υ

)

λmax

(

P̂k−1(µ)
)

+
1

υ
.

The third inequality above is obtained from ŷk = ZT
k yk, ‖Zk‖ ≤ ξ0 and Assumption 1 (ii). Because P̂k(µ)

will be set to Î after a maximum of l updates, it is easy to know that there exists a constant ξ̂2 > 0 such

that λmax

(

B̂−1
k+1(µ)

)

= λmax

(

P̂k(µ)
)

≤ ξ̂2.

Since B̂−1
k+1(µ) is a positive definite and symmetric matrix, we have

∥

∥

∥
B̂−1
k+1(µ)

∥

∥

∥

2
= λmax

(

B̂−1
k+1(µ)

)

≤ ξ̂2.

As a result, using the equivalence property of matrix norm in a finite dimensional space, it follows that

there exists a constant ξ̂3 > 0 such that
∥

∥

∥
B̂−1
k+1(µ)

∥

∥

∥
≤ ξ̂3. The proof is completed. ⊓⊔
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Lemma 2 Suppose that Assumption 1 holds. Then, for Pk in (2.27), there exist three constants γ0 > 0, γ1 > 0

and γ2 > 0 such that

‖Pk‖ ≤ γ0, gTk+1Pkgk+1 ≥ γ1 ‖gk+1‖
2 , dTk P

−1
k dk ≥ γ2 ‖dk‖

2 , (3.3)

where P−1
k

denotes the pseudoinverse of Pk.

Proof By (2.17), (2.27) and Lemma 1, we obtain that

‖Pk‖ =
∥

∥

∥
ZkB̂

−1
k+1(µ)Z

T
k

∥

∥

∥
=
∥

∥

∥
B̂−1
k+1(µ)

∥

∥

∥
≤ ξ̂3 , γ0,

gTk+1Pkgk+1 = gTk+1ZkB̂
−1
k+1(µ)Z

T
k gk+1

= ĝTk+1B̂
−1
k+1(µ)ĝk+1

≥ λmin

(

B̂−1
k+1(µ)

)

‖ĝk+1‖
2

≥
1

ξ̂1

(

1− η̃21

)

‖gk+1‖
2
, γ1 ‖gk+1‖

2 ,

dTk P
−1
k dk = dTk ZkB̂

−1
k+1(µ)Z

T
k dk = d̂Tk B̂

−1
k+1(µ)d̂k ≥

1

ξ̂2

∥

∥

∥
d̂k

∥

∥

∥

2

=
1

ξ̂2
‖dk‖

2
, γ2 ‖dk‖

2 .

Therefore, we can get the conclusions. The proof is completed. ⊓⊔

Subsequently, we provide some properties of the search directions produced by the algorithm RL SMCG,

which are crucial for the following convergence analysis.

Lemma 3 Suppose that Assumption 1 holds. Then, there exists a constant c1 > 0 such that the search directions

(2.12) and (2.26) are calculated by algorithm RL SMCG satisfy the sufficient descent condition:

gTk dk ≤ −c̄1‖gk‖
2. (3.4)

Proof We divide the proof into the following two cases.

(i) SMCG iteration. Similar to the proof of Lemma 4.1 of [42], it is easy to have

gTk dk ≤ −c1‖gk‖
2,

where c1 = min
{

1
2 , 1− ξ̄3,

2
3ξ̄2

, 1
3ξ̄2

, 2
5ξ̄2

}

.

(ii) RQN iteration. According to Lemma 2, we have

gTk dk = −gTk Pk−1gk ≤ −γ1 ‖gk‖
2 .

By setting c̄1 = min {c1, γ1}, we can obtain (3.4). The proof is completed. ⊓⊔

Lemma 4 Suppose that Assumption 1 holds. Then, there exists a constant c1 > 0 such that the search directions

(2.12) and (2.26) are calculated by algorithm RL SMCG satisfy

‖dk‖ ≤ c̄2‖gk‖. (3.5)
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Proof We divide the proof into the following two cases.

(i) SMCG iteration. Referring to the proof procedure of Lemma 4.2 of [42], it is easy to get

‖dk‖ ≤ c2‖gk‖,

where c2 = max
{

1, 1 + L
ξ̄1
, 20
ξ̄1

}

.

(ii) RQN iteration. According to Lemma 2, we obtain ‖dk‖ = ‖−Pk−1gk‖ ≤ γ0 ‖gk‖.

By setting c̄2 = min {c2, γ0}, we can obtain (3.5). The proof is completed. ⊓⊔

The following lemmas are very critical for the convergence analysis of algorithm RL SMCG.

Lemma 5 Suppose that Assumption 1 holds, and the sequence {xk} is generated by the algorithm RL SMCG.

Then,

If acceleration succeeds:

η̄kαk ≥

(

1− σ

L

)

∣

∣

∣
gTk dk

∣

∣

∣

‖dk‖
2
. (3.6)

If acceleration fails:

αk ≥

(

1− σ

L

)

∣

∣

∣
gTk dk

∣

∣

∣

‖dk‖
2
. (3.7)

Where σ are given by (2.43).

Proof We divide the proof into the following two cases.

(i) If acceleration succeeds:

From (2.43) and Assumptions 1 (ii), we obtain that

(σ − 1)gTk dk ≤ g(xk + η̄kαkdk)
T dk − gTk dk = (g(xk + η̄kαkdk)− gk)

T dk ≤ Lη̄kαk‖dk‖
2,

which yields

η̄kαk ≥

(

σ − 1

L

)

gTk dk

‖dk‖
2
.

This means that (3.6) holds.

(ii) If acceleration fails:

Let η̄k = 1, and the rest of the proof procedure is the same as before. ⊓⊔

Lemma 6 Suppose that Assumption 1 holds, and the sequence {xk} is generated by the algorithm RL SMCG.

Then, there holds that fk ≤ Ck for each k.

Proof We divide the proof into the following two cases.

(i) If acceleration succeeds:

The new iterative update format is xk+1 = xk + η̄kαkdk, where η̄k = − āk

b̄k
. Through (2.48), we have

fk+1 = f(xk + η̄kαkdk) ≤ Ck + Qk+1δkη̄kαkg
T
k dk. Combining (2.44), δk > 0, lemma 5 and the sufficiently

descent property of the direction dk+1, we have fk+1 < Ck. The remaining proof process refers to Lemma

5.1 in [42], we can obtain fk+1 ≤ Ck+1, hence fk ≤ Ck is established for each k.

(ii) If acceleration fails:

Let η̄k = 1, and the rest of the proof procedure is the same as before. ⊓⊔
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Theorem 1 Suppose that Assumption 1 holds, the sequence {xk} is generated by the algorithm RL SMCG. Then,

lim
k→∞

‖gk‖ = 0. (3.8)

Proof We divide the proof into the following two cases.

(i) If acceleration succeeds:

By Assumptions 1, lemmas 3 - 5 and the generalized nonmonotone Wolfe line search conditions (2.42)

and (2.43), we get that

Ck+1 ≤ Ck + δkη̄kαkg
T
k dk (3.9)

≤ Ck + δminη̄kαkg
T
k dk

≤ Ck + δmin
1− σ

L

(gTk dk)
2

‖dk‖2

≤ Ck +
δmin(1− σ)c̄21

Lc̄22
‖gk‖

2

= Ck + β‖gk‖
2.

Where β =
δmin(1−σ)c̄21

Lc̄22
. Combined with (2.45), we have C1 ≤ C0 that means that Ck is monotonically

decreasing. According to lemma 6 and Assumption 1 (i), we know Ck is bounded from below. Then

∞
∑

k=0

β‖gk‖
2 < ∞,

therefore,

lim
k→∞

‖g(xk)‖ = 0.

(ii) If acceleration fails:

Let η̄k = 1, and the rest of the proof procedure is the same as before. ⊓⊔

4 Numerical Experiments

In this section, we compare the numerical performance of RL SMCG with ASMCG PR [32], CG DESCENT(6.8)

[15] and CGOPT(2.0) [27] for the 145 test problems from CUTEr library [10]. The codes of CG DESCENT(6.8)

[15] and CGOPT(2.0) [27] can be downloaded from http://users.clas.ufl.edu/hager/papers/Software and

https://web.xidian.edu.cn/xdliuhongwei/en/paper.html or http://lsec.cc.ac.cn/ dyh/software.html, respec-

tively.

In the numerical experiments, we set the parameters of RL SMCG as: ξ̄1 = 10−10, ξ̄2 = 1.2 × 104,

ξ̄3 = 5 × 10−5, ξ̄4 = 10−4, ξ̄5 = 0.08, η̃0 = 10−9, η̃1 = 0.5, υ = 5 × 10−7, m = min{n, 11}, σ1 = 0.1,

σ2 = 5, σ3 = 0.85, τ̂ = 1, τ̄ = 0.225, c̄ = 0.1, ς = 5 × 10−5(n ≤ 11), ς = 5 × 10−6(n > 11), ς̄ = 5 × 10−3,

τ1 = 0.1, τ2 = 135, δk = 0.0005 and σ = 0.9999. CG DESCENT(6.8) and CGOPT(2.0) take the default

parameters in their codes but the stopping conditions. Note that the number of memory m for RL SMCG is

min{n, 11} while the number of memory for CG DESCENT(6.8) is 11. All test methods in the experiment
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are terminated if ‖gk‖∞ ≤ 10−6 is satisfied, and we set the number of iterations for all test algorithms to

be no more than 200,000. In addition, all algorithms are running in Ubuntu 10.04 LTS.

We will show the performances of the test methods using the performance profiles introduced by Dolan

and Moré [8]. In the following Figs. 1-12, “Niter”,“Nf”,“Ng” and “Tcpu” represent the number of iterations,

the number of function evaluations, the number of gradient evaluations and CPU time(s), respectively.

We divided the numerical experiments in three teams.
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In the first set of numerical experiments, figures 1-4 illustrate the performance profiles of RL SMCG

and ASMCG PR [32]. From Figs. 1, 2, 3 and 4, we can observe that RL SMCG has a quite significant

improvement over ASMCG PR in terms of the number of iterations, the number of function evaluations,

the number of gradient evaluations and CPU time. It indicates that the limited memory technique equipped

in RL SMCG indeed brings quite significant numerical improvements.

In the second set of numerical experiments, we give a comparison of the performance profiles of R-

L SMCG with CG DESCENT(6.8) [15]. Regarding the number of iterations and the number of func-

tion evaluations in Fig. 5 and Fig. 6 respectively, we observe that RL SMCG is a little better than

CG DESCENT(6.8) for the number of iterations and the number of function evaluations. As shown in

Fig. 7, we can see that RL SMCG is much better than CG DESCENT(6.8) in terms of the number of
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gradient evaluations, because RL SMCG outperforms for about 71.5% of the CUTEr test problems, while

the percentage of software CG DESCENT(6.8) is below 40%. It can be observe from Fig. 8 that RL SMCG

is faster than CG DESCENT(6.8) in terms of CPU time. By Theorem 1, RL SMCG is globally convergent

with the generalized nonmonotone Wolfe line search, while CG DESCENT (6.8) does not guarantee glob-

al convergence when using the rather efficient approximate Wolfe (AWolfe) line search. This means that

RL SMCG is superior to CG DESCENT(6.8) for CUTEr library in theory and numerical performance.
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In the third set of the numerical experiments, comparing the performance of RL SMCG with CGOP-

T(2.0) [27]. As shown in Figs. 9 and 10, we can take a look at RL SMCG performs almost always better

than CGOPT(2.0) in terms of the number of iterations and the number of function evaluations. Figures. 11

and 12 indicates that RL SMCG outperforms CGOPT(2.0) in terms of the number of gradient evaluations

and CPU time for the CUTEr library.

From the results of the above three numerical experiments, it is clear that the proposed algorithm

RL SMCG is quite effective.
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5 Conclusions

In this paper, combined subspace minimization conjugate gradient method with limited memory technique,

we presented a regularized limited memory subspace minimization conjugate gradient method, which con-

tains two types of iteration. In the proposed algorithm, a modified regularized quasi-Newton method is

given in small dimensional subspace to correct the orthogonality, and an improved initial step size selection

strategy and some simple acceleration criteria are designed. Moreover, we establish the global convergence

of the proposed algorithm by utilizing generalized nonmonotone Wolfe line search under some mild as-

sumptions. Some numerical results suggest that our algorithm yields a tremendous improvement over the

ASMCG PR and outperforms the most up-to-date limited memory CG software packages CG DESCENT

(6.8) and CGOPT(2.0).
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