
ar
X

iv
:2

30
2.

12
06

5v
1

 [
m

at
h.

N
A

]
 2

3
Fe

b
20

23 A fast and simple algorithm for the

computation of the Lerch transcendent

Eleonora Denich ∗ Paolo Novati †

Abstract

This paper deals with the computation of the Lerch transcendent

by means of the Gauss-Laguerre formula. An a priori estimate of the

quadrature error, that allows to compute the number of quadrature

nodes necessary to achieve an arbitrary precision, is derived. Exploit-

ing the properties of the Gauss-Laguerre rule and the error estimate,

a truncated approach is also considered. The algorithm used and its

Matlab implementation are reported. The numerical examples con-

firm the reliability of this approach.

1 Introduction

In this work we consider the Lerch transcendent introduced in [10] and de-
fined as (see [14, p.628 n.25.14.1])

Φ(z, s, a) =
∞
∑

j=0

zj

(j + a)s
,

where a 6= 0,−1,−2, . . ., |z| < 1 or ℜ(s) > 1, |z| = 1. For other values of z,
Φ(z, s, a) is defined by analytic continuation. For a recent investigation on
the analytic properties of Φ(z, s, a), we refer to [11].

∗Dipartimento di Matematica e Geoscienze, Università di Trieste, Trieste, Italy,

eleonora.denich@phd.units.it
†Dipartimento di Matematica e Geoscienze, Università di Trieste, Trieste, Italy, no-

vati@units.it

1

http://arxiv.org/abs/2302.12065v1

The Lerch transcendent and its special cases, such as the polylogarithm
(corresponding to a = 1), appears for instance in quantum Bose and Fermi
statistics. In particular, the particle number density, the pressure, the inter-
nal energy and the entropy of the ideal quantum gases of Fermi and Bose
can be expressed in terms of the polylogarithm [5]. Another application
of the Lerch transcendent is in biophysics. Indeed, some discrete distribu-
tions, related to the Lerch transcendent by the normalization constant of the
associated probability mass functions, are used to establish the statistical
composition of DNA and protein sequences [2].

In order to evaluate the Lerch transcendent, some authors have used
series representations and asymptotic expansions. Among the others, we
quote [6, 3] for an overview of properties, identities and numerical methods
for the computation of the Lerch transcendent. Moreover, in [2], combined
non-linear condensation transformation, which is an algorithm that allows
to evaluate slowly convergent nonalternating series, is considered. More re-
cently, in [13], starting from the Hermite-type integral representation of the
Lerch transcendent, a new uniform asymptotic expansion of Φ(z, s, a), for
large order of the parameters a, s and argument z, is derived.

In this work, exploiting the integral representation

Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

xs−1e−ax

1− ze−x
dx, z ∈ C \ [1,+∞),ℜ(s) > 0,ℜ(a) > 0, (1)

where Γ is the Gamma function, we compute Φ(z, s, a) by employing the
Gauss-Laguerre formula and, starting from the analysis given in [4], we de-
rive an accurate error estimate for the quadrature error. To the best of our
knowledge, the Gauss-Laguerre formula has never been used to this purpose,
even if the generalized Laguerre weight clearly appears in the integral repre-
sentation (1). Moreover, after removing the weight, what remains is bounded,
and therefore the use of the Gauss-Laguerre method appears a natural choice
for this problem. Finally, since the weights of this rule decay exponentially,
we present a reliable algorithm which allows to reduce the number of function
evaluations, without significant loss of accuracy in the computation of the
integral.

Throughout this work we use the symbol ≈ to indicate a generic approx-
imation. Whereas, the symbol ∼ is used to express the asymptotic equality.

The paper is organized as follows. In Section 2, working with s and
a real, we present the Gauss-Laguerre approach, together with the error
analysis and some numerical experiments. In Section 3 we introduce the

2

truncated approach and the algorithm that allows to compute the Lerch
transcendent with a prescribed accuracy. Some tables with experiments are
given in Section 4. In Section 5 we show how to extend the method for s and
a complex. An appendix contains an auxiliary result and the Matlab code
we have used.

2 The Gauss-Laguerre approach

For simplicity we assume s, a ∈ R. In order to employ the Gauss-Laguerre
rule, we consider the change of variable ax = t in (1), that leads to

Φ(z, s, a) =
1

Γ(s)as
I(z),

where

I(z) =

∫ ∞

0

ts−1e−t

1− ze−
t
a

dt.

Denoting by

In(z) =

n
∑

j=1

w
(n)
j fz

(

t
(n)
j

)

, fz(t) =
1

1− ze−
t
a

, (2)

the corresponding n-point Gauss-Laguerre rule, where t
(n)
j and w

(n)
j , j =

1, . . . , n, are the nodes and the weights respectively, we obtain the approxi-
mation

Φ(z, s, a) ≈ Φn(z, s, a) =
1

Γ(s)as
In(z).

2.1 Error analysis

In order to derive an estimate for the error

En = Φ(z, s, a)− Φn(z, s, a) =
1

Γ(s)as
en, (3)

with
en = I(z)− In(z), (4)

3

we first need to locate the poles of the function fz defined in (2). By solving
1− ze−t/a = 0, we obtain

tk = a(ln |z|+ i(arg(z) + 2kπ)), −π ≤ arg(z) ≤ π, k ∈ Z. (5)

It is known that for the error of the Gauss-Laguerre formula it holds

en =
1

2πi

∫

Γ

qn(w)

L
(s−1)
n (w)

fz(w)dw, (6)

where L
(s−1)
n is n-th degree generalized Laguerre polynomial and qn is the

corresponding associated function (see [7, 15]). Γ is a contour in the complex
plane containing the set [0,+∞) but no singularity of the function fz can
lie on or within Γ. For a suitable choice of Γ, we consider, for R > 1, the
parabola of the complex plane defined by the equation

ℜ
√
−w = lnR. (7)

It is immediate to verify that the parabola, which we denote by ΓR, can be
rewritten as

w =
y2

4 (lnR)2
− (lnR)2 + iy, y ∈ R. (8)

It is symmetric with respect to the real axis, with vertex in − (lnR)2 and
convexity oriented towards the positive real axis. The parabola degenerates
to [0,+∞) as R → 1.

Let Ck be an arbitrary small circle surrounding the pole tk. Assuming
−π < arg(z) < π, the pole closest to the real axis is t0 (see (5)), and therefore
for any non negative integer N we can define

Γ = ΓR

⋃

(

N
⋃

k=−N

Ck

)

, (9)

with R such that the parabola ΓR contains in its interior the poles t−N , ..., tN
but none of the others.

In order to evaluate (6), with Γ as in (9), we first observe that, for n
→ +∞, [7, p.33]

qn(w)

L
(s−1)
n (w)

∼ −2e−iπ(s−1)ws−1e−wKs−1

(

2
√
me−iπ/2

√
w
)

Is−1 (2
√
me−iπ/2

√
w)

, (10)

4

where m = n+ s
2
and I, K are the modified Bessel functions of the first and

second kind, respectively. Since 0 < arg(w) < 2π, we can use for α > −1 the
asymptotic expansions (see [1, p.377 n.9.7.1-2])

Iα(t) =
et√
2πt

(

1 +O
(

1

t

))

,

Kα(t) = e−t

√

π

2t

(

1 +O
(

1

t

))

,

valid for large |t|, |arg(t)| < π
2
, and therefore,

Kα(t)

Iα(t)
∼ πe−2t

(

1 +O
(

1

t

))

. (11)

By using (11) in (10), we find

qn(w)

L
(s−1)
n (w)

∼ 2πe−isπws−1e−we−4
√
m
√
−w, n → +∞, (12)

and therefore

en ∼ −ie−isπ

∫

Γ

ws−1e−we−4
√
m
√
−wfz(w)dw.

By defining for simplicity

g(w) := ws−1e−we−4
√
m
√
−w,

and with Γ as in (9), we obtain

en ∼ −ie−isπ

[

∫

ΓR

g(w)fz(w)dw − 2πi
N
∑

k=−N

Res (g(w)fz(w), tk)

]

, (13)

where Res(·, ·) denotes the residue. At this point, by (12) and (7)

∫

ΓR

g(w)fz(w)dw =

∫

ΓR

ws−1e−we−4
√
m
√
−wfz(w)dw

= R−4
√
m

∫

ΓR

ws−1e−wχ(w)fz(w)dw,

5

where
χ(w) = e−4i

√
mℑ

√
−w. (14)

We remark that, since |fz| is bounded, the above integral is also bounded.
Moreover, since Res (fz(w), tk) = a, k ∈ Z, by (5) we have

Res (g(w)fz(w), tk) = g(tk)Res (fz(w), tk)

= as [lnk(z)]
s−1 z−aχ(tk)R

−4
√
m

k ,

where we use the notation

lnk(z) = ln |z| + i(arg(z) + 2kπ), k ∈ Z,

and Rk < R (for −N ≤ k ≤ N) represents the parabola passing through tk,
that is, Rk solves ℜ

√−tk = lnRk. Joining the above results we finally obtain

en ∼ −ie−isπ

[

R−4
√
m

∫

ΓR

ws−1e−wχ(w)fz(w)dw

− 2πiasz−a

N
∑

k=−N

[lnk(z)]
s−1 χ(tk)R

−4
√
m

k

]

.

Under the assumption |arg(z)| < π, we have R0 < Rk < R, for |k| = 1, ..., N ,
and therefore, by collecting the term involving R0,

en ∼ −2πe−isπas [ln0(z)]
s−1 z−aχ(t0)R

−4
√
m

0 . (15)

This situation in shown in Figure 1a, where z =
√
2ei

π
4 . In the case of

arg(z) = ±π we have that the poles are symmetric with respect to the real
axes and it holds tk = t−k−1 if arg(z) = π, whereas t−k = tk+1 if arg(z) = −π,
k ≥ 0 (see Figure 1b, in which z = eiπ). In both situations, formula (15)
needs to be replaced by the sum of the terms corresponding to the poles t0
and t−1, for arg(z) = π, and t0 and t1 for arg(z) = −π. In both cases, we
obtain the same result. Assuming for instance arg(z) = π, we have that
t0 = t−1, R0 = R−1 and therefore

en ∼ −2πe−isπasz−aR
−4

√
m

0

[

[ln0(z)]
s−1 χ(t0) + [ln−1(z)]

s−1 χ(t−1)
]

= −4πe−isπasz−aR
−4

√
m

0 ℜ
[

[ln0(z)]
s−1 χ(t0)

]

.

Working with the modulus, the only essential difference between the above
formula and (15) is a factor 2. Moreover, since the latter should also be

6

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-9.4248

-6.2832

-3.1416

0

3.1416

6.2832

9.4248

(a)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-9.4248

-6.2832

-3.1416

0

3.1416

6.2832

9.4248

(b)

Figure 1: The parabola ΓR and the poles of the function fz(t) for z =
√
2ei

π
4

(left) and z = eiπ (right). In both cases a = 1.

used for arg(z) close to ±π, independently of z we finally consider the error
estimate

|en| ≈ 4πas|z|−a|ln0(z)|s−1R
−4

√
m

0

= 4πas|z|−a|ln0(z)|s−1e−4
√
mℜ(

√−t0) =: ǫn, (16)

for the integral, and therefore (see (3))

|En| ≈
4π

Γ(s)
|z|−a|ln0(z)|s−1e−4

√
mℜ(

√
−t0) =: En. (17)

2.2 Some numerical experiments

In Figure 2 we show the quality of estimate (17) on some examples. Specifi-
cally, we consider the polylogarithm [14, n.25.12] (Figure 2a)

Lis(z) =

∞
∑

j=1

zj

js
,

the Dirichlet beta function [1, p.807, n.23.2.21] (Figure 2b)

β(s) =

∞
∑

j=0

(−1)j

(2j + 1)s
,

7

and the Dirichlet eta function [1, p.807, n.23.2.19] (Figure 2c)

η(s) =

∞
∑

j=1

(−1)j−1

js
.

These functions can be written in terms of Φ(z, s, a) for particular values of
the parameters, that is,

Lis(z) = zΦ(z, s, 1),

β(s) = 2−sΦ(−1, s, 1/2),

η(s) = Φ(−1, s, 1).

We remark that the value s = 3/2 chosen for the polylogarithm represents
the case of the three-dimensional Bose gas in a box. Finally, in Figure 2d we
consider a general situation. As for the computation of the nodes and weights
of the generalized Gauss-Laguerre rule (c.f. (2)), we employ the Matlab
routine lagpts.m [16], based on the traditional Golub-Welsch algorithm (see
[8, 7]). We point out that the oscillations of the error in Figure 2a-b-c are
due to the term χ(t0) (cf. (14)- (15)).

3 A truncated approach

Having at disposal an accurate error estimate, in this section we derive a
reliable algorithm that allows to reduce the number of evaluations of the
function fz (see (2)), required by the quadrature rule. This is possible because
the weights of the Gauss-Laguerre rule decay exponentially and, moreover,
because the function fz is bounded. Indeed, a simple analysis, reported in
Appendix, shows that

|fz(t)| =
∣

∣1− ze−t/a
∣

∣

−1 ≤ Kz :=

1 ℜ(z) ≤ 0
|z|

|ℑ(z)| ℜ(z) > 0,ℜ(z) ≤ |z|2

|1− z|−1 ℜ(z) > 0,ℜ(z) > |z|2
.

(18)
Now, let τn be the solution of

Kz

∫ +∞

τn

ts−1e−tdt = ǫn, (19)

8

0 50 100 150

10-15

10-10

10-5

100
(a)

error
estimate

0 20 40 60 80 100 120

10-15

10-10

10-5

100
(b)

0 10 20 30 40 50 60 70 80

10-15

10-10

10-5

100
(c)

0 50 100 150 200 250

10-15

10-10

10-5

100
(d)

Figure 2: Error and error estimate (17) in the case of (a) the polylogarithm
for s = 3/2, (b) the Dirichlet beta function, (c) the Dirichlet eta function
and (d) the Lerch transcendent for s = 1.5 and a = 2.5.

where ǫn is defined in (16). By using the relation [9, p.942 n.8.357]

∫ +∞

τn

ts−1e−tdt = τ s−1
n e−τn

(

1 +O
(

1

τn

))

,

we approximate τn by solving with respect to x the equation

xs−1e−x =
ǫn
Kz

.

The solution is given by

x = (1− s)W

(

1

1− s

(

ǫn
Kz

)
1

s−1

)

,

where W denotes the Lambert W function. In particular, we obtain

x = (1− s)W0

(

1

1− s

(

ǫn
Kz

)
1

s−1

)

, (20)

9

for 0 < s < 1, and

x = (1− s)W−1

(

1

1− s

(

ǫn
Kz

)
1

s−1

)

, (21)

for s > 1. It is known that ([14, n. 4.13.10-11])

W0(y) ∼ ln(y), for y → +∞,

W−1(−y) ∼ − ln(y), for y → 0+,

and therefore x ∼ gn(s), where

gn(s) = − ln

(

ǫn
Kz

)

+ (s− 1) ln |1− s|. (22)

Note that gn(s) has a removable singularity in s = 1, so that we can define

gn(1) = − ln

(

ǫn
Kz

)

,

that is also the exact solution of (19), with respect to τn, for s = 1. In
conclusion, we have that τn ∼ gn(s), for s > 0.

We are now on the point to introduce the truncated rule

Ikn(z) =

kn
∑

j=1

w
(n)
j fz

(

x
(n)
j

)

, (23)

where kn is the smallest integer such that x
(n)
j ≥ gn(s), for each j ≥ kn. As

for the error, we have

|I(z)− Ikn(z)| =
∣

∣

∣

∣

∣

I(z)− In(z) +

n
∑

j=kn+1

w
(n)
j fz

(

x
(n)
j

)

∣

∣

∣

∣

∣

. ǫn +

n
∑

j=kn+1

w
(n)
j

∣

∣

∣
fz

(

x
(n)
j

)
∣

∣

∣

≤ ǫn +Kz

n
∑

j=kn+1

w
(n)
j .

10

Now, using the bound [12, eqs. 2.4-2.7]

w
(n)
j ≤ c

(

x
(n)
j − x

(n)
j−1

)(

x
(n)
j

)s−1

e−x
(n)
j ,

where c is a constant independent of j, n and close to 1 for large n, we have

n
∑

j=kn+1

w
(n)
j ≤ c

n
∑

j=kn+1

(

x
(n)
j − x

(n)
j−1

)(

x
(n)
j

)s−1

e−x
(n)
j

≤ c

∫ +∞

x
(n)
kn

xs−1e−xdx (for kn large enough)

≤ c

∫ +∞

gn(s)

xs−1e−xdx.

Finally, for the truncated rule we obtain the estimate

|I(z)− Ikn(z)| . (1 + c)ǫn ≈ 2ǫn. (24)

In order to understand the decay rate with respect to kn we use the
relations [1, n. 22.16.8]

x
(n)
k =

j2s−1,k

4n+ 2s

(

1 +O
(

1

n2

))

,

and [1, n. 9.5.12]

js−1,k =

(

k +
s

2
− 3

4

)

π

(

1 +O
(

1

k

))

,

to finally obtain

x
(n)
k ≈ k2π2

4m
. (25)

At this point, it is possible to derive an analytical approximation of kn by
imposing x

(n)
k = gn(s) with the help of (25). In order to detect the new

asymptotic behavior, we further simplify the computation by neglecting the
term involving s in (22), that is, we solve with respect to k

k2π2

4m
= − ln

(

ǫn
Kz

)

.

11

We remark, however, that this simplification is not used in the algorithm
presented below. By (16) and defining

C := 4πas|z|−a|ln0(z)|s−1,

we find
k2π2

4m
= ln

(

Kz

C

)

+ 4
√
m ln(R0),

so that, for n large enough,

kn ≈ 4

π
m

3
4 (ln(R0))

1
2 . (26)

By using this relation in (16) we finally obtain

ǫn ≈ Ce−d k
2
3
n , d = (2π ln(R0))

2
3 ,

which expresses the speed up attainable with the truncation. Indeed, the
number of function evaluations is now raised to the power of 2/3, whereas in
(16) the power is 1/2. This decay rate is well visible in Figure 3, where we
show the benefits of the truncated rule on some examples. In particular, as
in Section 2.2, we consider the polylogarithm (Figure 3a), the Dirichlet beta
function (Figure 3b), the Dirichlet eta function (Figure 3c) and a general
situation (Figure 3d).

We summarize the basic steps for the computation of the Lerch tran-
scendent by using the truncated Laguerre rule and with a prescribed error
tolerance E in the following algorithm.

Algorithm 1 (Truncated Laguerre rule) Given z, s, a, E
1. compute the corresponding tolerance for the integral ǫ = asΓ(s)E

2
(see

(3) and (24))

2. compute Kz as in (18)

3. compute R0 such that t0 ∈ ΓR0 by using (8)

4. solve ǫn = ǫ with respect to m (see (16)) and then set n = m− s/2

5. estimate kn by solving, with respect to k, x
(n)
k = gn(s), by using (25) and

(22) (in the implementation it is convenient to add one or two more
points in order to prevent the under estimation of the error, because of
the large number of approximations used)

12

0 50 100 150

10-15

10-10

10-5

100
(a)

0 10 20 30 40 50 60 70 80 90

10-15

10-10

10-5

100
(b)

0 10 20 30 40 50

10-15

10-10

10-5

100
(c)

0 20 40 60 80 100

10-15

10-10

10-5

100
(d)

Figure 3: Comparison between the error of the generalized Laguerre formula
(black) and the truncated approach (red) for (a) the polylogarithm with
s = 3/2 and z = 0.5, (b) the Dirichlet beta function with s = 0.2, (c) the
Dirichlet eta function with s = 0.01 and (d) the Lerch transcendent with
s = 1.5, a = 2.5 and z = 5eiπ/2.

13

6. compute the first kn nodes and weights x
(n)
j , w

(n)
j , j = 1, ..., kn, of the

n-point Laguerre rule

7. approximate Φ(z, s, a) with Φkn(z, s, a) =
1

Γ(s)as
Ikn(z) (see (23))

4 Numerical experiments

In this section, working with prescribed error tolerances E = 1e−10 and E =
1e− 14, we test Algorithm 1 on several examples. In particular, we present
some tables in which, for each set of parameters, we report the corresponding
values of n and kn, given by steps 4-5, together with the final error obtained
by using a reference solution. Specifically, we consider the polylogarithm
Lis (re

iτπ) in Table 1, the Dirichlet beta function β(s) in Table 2, the Dirichlet
eta function η(s) in Table 3 and general cases of the Lerch transcendent
Φ (reiτπ, s, a) in Table 4, for different values of the parameters r, τ, s, a. In
Tables 1 and 4, τ is set in order to consider the arguments π, 3

4
π, π

2
, π
4
. We

can see that, except in few rare cases, the prescribed tolerance is achieved.

5 Complex case

Starting from the integral representation (1)

Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

xs−1e−ax

1− ze−x
dx, z ∈ C \ [1,+∞),ℜ(s) > 0,ℜ(a) > 0,

by using the change of variable x = t
ℜ(a)

, we obtain

Φ(z, s, a) =
e−iℑ(s) lnℜ(a)

ℜ(a)ℜ(s)Γ(s)

∫ ∞

0

tℜ(s)−1e−t

1− ze−i
ℑ(a)
ℜ(a)

t
e
i(ℑ(s) ln t−ℑ(a)

ℜ(a)
t)dt.

The function
ϕ(t) = ei(ℑ(s) ln t−ℑ(a)

ℜ(a)
t)

inside the integral is the main difference with respect to the case of s, a ∈ R.
Some experiments have revealed that the case of ℑ(a) 6= 0 does not constitute
a problem for the Laguerre rule, unless ℑ(a) ≫ ℜ(a). On the other side, the
case of ℑ(s) 6= 0 may be difficult to handle. Indeed, as t → 0, the real and
the imaginary part of the function ϕ(t) oscillate with increasing frequency

14

E = 1e− 10 E = 1e− 14
r τ s n kn error n kn error

0.5 1 1.5 25 18 2.49e− 11 44 27 1.06e− 15
0.75 31 20 1.21e− 11 54 29 2.11e− 15
0.5 39 22 1.78e− 11 70 33 3.83e− 15
0.25 53 25 1.89e− 11 95 38 1.62e− 15

2 1 1.5 35 21 1.13e− 11 63 31 4.22e− 15
0.75 49 24 1.90e− 11 89 37 4.46e− 15
0.5 83 31 2.09e− 11 151 47 3.98e− 15
0.25 233 50 2.58e− 11 430 78 4.91e− 15

0.7 1 0.5 24 18 1.73e− 11 43 26 7.66e− 15
0.75 30 19 2.28e− 11 56 30 1.51e− 15
0.5 43 23 1.90e− 11 78 35 3.24e− 15
0.25 70 29 2.34e− 11 128 44 6.24e− 15

3 1 0.5 33 20 2.95e− 11 62 31 8.27e− 15
0.75 49 24 2.22e− 11 93 38 1.51e− 15
0.5 90 32 2.48e− 11 172 50 2.33e− 14
0.25 297 56 2.09e− 11 562 89 2.51e− 15

Table 1: Results of Algorithm 1 for the polylogarithm Lis (re
iτπ).

15

E = 1e− 10 E = 1e− 14
s n kn error n kn error

0.5 51 25 3.44e− 11 94 38 1.99e− 14
1 55 26 4.20e− 11 101 40 7.55e− 15
1.5 58 27 3.94e− 11 105 40 5.33e− 15
2 59 27 3.65e− 11 106 41 1.33e− 15
2.5 60 28 1.84e− 11 108 42 8.88e− 16
3 61 28 2.56e− 12 109 42 4.44e− 15
3.5 61 29 3.57e− 11 109 43 1.78e− 15
4 60 29 6.83e− 11 108 43 5.33e− 15
4.5 60 29 5.18e− 11 108 44 3.55e− 15
5 59 30 9.07e− 12 107 44 7.11e− 15

Table 2: Results of Algorithm 1 for the Dirichlet beta function β(s).

E = 1e− 10 E = 1e− 14
s n kn error n kn error

0.5 26 18 3.28e− 12 47 27 1.37e− 14
1 28 19 5.82e− 12 51 29 2.22e− 16
1.5 29 19 8.89e− 13 53 29 1.22e− 15
2 29 19 3.36e− 11 53 29 2.66e− 15
2.5 30 20 3.21e− 11 54 30 4.33e− 15
3 30 20 4.78e− 11 54 30 4.22e− 15
3.5 30 20 4.39e− 11 54 30 3.44e− 15
4 29 20 5.02e− 12 53 30 1.22e− 15
4.5 29 20 3.29e− 11 53 30 4.11e− 15
5 29 21 5.25e− 11 53 31 5.33e− 15

Table 3: Results of Algorithm 1 for the Dirichlet eta function η(s).

16

E = 1e− 10 E = 1e− 14
r τ s a n kn error n kn error

0.5 1 0.5 0.7 30 19 4.11e− 11 56 30 3.33e− 16
0.75 38 22 1.97e− 11 70 33 1.08e− 15
0.5 50 24 2.16e− 11 92 38 6.97e− 15
0.25 71 29 2.01e− 11 129 44 7.65e− 15

2 1 1.4 2 17 15 3.19e− 12 30 22 3.91e− 15
0.75 23 17 2.12e− 11 43 26 1.48e− 15
0.5 39 21 2.17e− 11 73 33 2.71e− 15
0.25 111 35 2.14e− 11 207 54 5.27e− 15

5 1 0.2 1.1 29 19 5.07e− 11 58 30 5.33e− 15
0.75 45 23 2.61e− 11 90 36 1.46e− 14
0.5 89 31 2.45e− 11 177 50 3.11e− 14
0.25 317 57 2.35e− 11 630 93 2.17e− 15

8 1 4 3 11 11 4.88e− 11 23 20 1.16e− 14
0.75 17 15 5.88e− 11 36 24 4.46e− 15
0.5 34 20 3.56e− 11 71 32 3.18e− 15
0.25 122 35 5.70e− 11 257 59 3.37e− 14

Table 4: Results of Algorithm 1 for general cases of the Lerch transcendent
Φ (reiτπ, s, a).

17

0 50 100 150 200 250

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
(a)

0 50 100 150 200 250
10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
(b)

Figure 4: Real and imaginary part of the error for s = 2+ i, a = 1, z = −1.1
(left) and s = 8 + i, a = 1, z = −1.1 (right).

and the Laguerre rule appears to be inadequate (Figure 4a). The situation
is overtaken whenever ℜ(s) ≫ |ℑ(s)| and ℜ(s) > 1, since the term tℜ(s)−1

makes the oscillations negligible near zero (see Figure 4b).

6 Conclusion

In this work we have employed the generalized Gauss-Laguerre formula to
compute the Lerch transcendent Φ(z, s, a) for z ∈ C \ [1,+∞) and s, a > 0.
We have derived sharp error estimates that enable to know a priori the num-
ber of quadrature points necessary to achieve a prescribed accuracy and to
truncate the rule. We have tested the arising algorithm on several examples
and the results confirm the reliability of this approach. The extension to s
and a complex is not theoretically analyzed. Anyway, at a first glance the
Laguerre rule appears robust if the imaginary parts are relatively small with
respect to the moduli. On the contrary, the high frequency of the oscillations
makes the method unsuited.

18

A Bounds for the integrand function

In order to derive the bound (18), we define x = e−t/a, t ∈ [0,+∞), so that

|fz(t)| = |1− zx|−1 =
(

1 + |z|2x2 − 2ℜ(z)x
)−1/2

, x ∈ [0, 1].

The function g(x) = 1 + |z|2x2 − 2ℜ(z)x is a parabola and its minimum in

[0, 1] defines Kz. The vertex is at xV = ℜ(z)
|z|2 and we have three cases. Let

D = C\ [0,+∞) be the domain of definition of integral (1) with respect to z.
Let A = {z ∈ C | ℜ(z) ≤ 0}, B =

{

z ∈ C |
∣

∣z − 1
2

∣

∣ < 1
2

}

and C = D\(A∪B).
Note that A,B,C are mutually disjoint and A ∪ B ∪ C = D. Moreover, the
set B is the solution of the inequality ℜ(z) > |z|2. At this point, if z ∈ A,
then xV ≤ 0 and g(x) ≥ g(0), and therefore

|fz(t)| ≤ 1.

If z ∈ B, then xV > 1, g(x) ≥ g(1) and we find

|fz(t)| ≤ |1− z|−1.

Finally, if z ∈ C, then 0 < xV ≤ 1, g(x) ≥ g(xV) and we obtain

|fz(t)| ≤
|z|

|ℑ(z)| .

B Matlab code

1 function [lerch ,kn] = LerchT(z,s,a,Epsilon)

2 % LERCHT evaluates the Lerch transcendent \Psi(z,s,a) (s,a

real), with accuracy

3 % Epsilon , using the Gauss -Laguerre rule. The result is

contained in the

4 % output lerch , whereas kn is the number of function

evaluations.

5 % The code implements the algorithm (Truncated Laguerre rule)

of Section 3.

6

7 % corresponding tolerance for the integral (step 1)

8 tol = a^s*gamma(s)*Epsilon/2;

9

10 % computation of K_z (step 2)

19

11 if real(z) <= 0

12 Kz = 1;

13 else

14 if real(z) <= abs(z)^2

15 Kz = abs(z)/imag(z);

16 else

17 Kz = 1/abs(1-z);

18 end

19 end

20

21 % steps 3-4

22 t0 = a*(log(abs(z))+1i*angle(z));

23 C = 4*pi*a^s*abs(z)^(-a)*abs(t0/a)^(s-1);

24 m = ceil(((log(C)-log(tol))/(4*real(sqrt(-t0))))^2);

25 n = ceil(m-s/2);

26

27 % step 5

28 if s == 1

29 gn = -log(tol/Kz);

30 else

31 gn = -log(tol/Kz)+(s-1)*log(abs(1-s));

32 end

33 kn = min(ceil(sqrt(4*m*gn)/pi)+2,n); % number of functions

evaluation; the +2 is to avoid under estimation

34

35 % step 6

36 [x,w] = lagpts(n,s-1);

37 xT = x(1:kn); wT = w(1:kn);

38

39 % step 7

40 A = 1/(gamma(s)*a^s);

41 f = @(t) (1-z*exp(-t/a)).^(-1);

42 lerch = A*(wT*f(xT));

43

44 end

Acknowledgements

This work was partially supported by GNCS-INdAM, FRA-University of
Trieste and CINECA under HPC-TRES program award number 2019-04.
The authors are member of the INdAM research group GNCS.

20

References

[1] M. Abramowitz and I. A. Stegun (1970), Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, 7th Edi-
tion, Dover Publications, Inc., New York.

[2] S. V. Aksenov, A. S. Michael, D. J. Ulrich, and J. Becher, G. Soff and
P. J. Mohr, Application of the combined nonlinear-condensation trans-
formation to problems in statistical analysis and theoretical physics,
Computer Physics Communications 150(1) (2003), 1-20.

[3] D. H. Bailey and J. M.Borwein, Crandall’s computation of the incom-
plete Gamma function and the Hurwitz zeta function, with applications
to Dirichlet L-series, Applied Mathematics and Computation 268 (2015),
462-477.

[4] W. Barrett, Convergence properties of Gaussian quadrature formulae,
Comput. J. 3 (1960/1961), 272–277.

[5] S. Ciccariello, The Lerch function and the thermodynamical functions
of the ideal quantum gases, J. Math. Phys. 45 (2004), 3353.

[6] R. E. Crandall (2012), Unified algorithms for polylogarithms, L-series,
and zeta variants.

[7] P. J. Davis and P. Rabinowitz (1975), Methods of numerical integration,
Academic Press, Inc., New York.

[8] G.H. Golub and J.H. Welsch, Calculation of Gauss Quadrature Rules,
Mathematics of Computation, 23(106) (1969), 221-230.

[9] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Prod-
ucts, 4th ed., Academic Press, New York, 1980.

[10] M. Lerch, Note sur la fonction K(w, x, s) =
∑∞

k=0
e2kπix

(w+k)s
, Acta Math.

11(1-4) (1924, 1887).

[11] A. Laurincikas and R. Garunkstis (2002), The Lerch zeta-function,
Springer.

21

[12] G. Mastroianni and D. Occorsio, Lagrange interpolation at Laguerre
zeroes in some weighted uniform spaces, Acta Math. Hungar. 91(1-2)
(2001), 27-52.

[13] G. Navas-Palencia, Numerical methods and arbitrary-precision compu-
tation of the Lerch transcendent, arXiv:2302.05928 (2023).

[14] F. Olver, D. Lozier, R. Boisvert and C. Clark (2010), The NIST Hand-
book of Mathematical Functions, Cambridge University Press, New York,
NY.

[15] G. Szego (1939), Orthogonal polynomials, American Mathematical So-
ciety Colloquium Publications, Vol. XXIII.

[16] N. Trefethen, Approximation Theory and Approximation Practice, Ex-
tended Edition, SIAM, Philadelphia, 2019.

22

http://arxiv.org/abs/2302.05928

	1 Introduction
	2 The Gauss-Laguerre approach
	2.1 Error analysis
	2.2 Some numerical experiments

	3 A truncated approach
	4 Numerical experiments
	5 Complex case
	6 Conclusion
	A Bounds for the integrand function
	B Matlab code

