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Abstract
In this paper, we visualise and analyse the dynamics of fractals (Julia and Mandelbrot
sets) for complex polynomials of the form T (z) = zn + mz + r , where n ≥ 2 and
m, r ∈ C, by adopting the viscosity approximation type iteration process which is
most widely used iterative method for finding fixed points of non-linear operators. We
establish a convergence condition in the form of escape criterion which allows to adapt
the escape-time algorithm to the considered iteration scheme. We also present some
graphical examples of the Mandelbrot and Julia fractals showing the dependency of
Julia and Mandelbrot sets on complex polynomials, contraction mappings, and itera-
tion parameters. Moreover, we propose two numerical measures that allow the study
of the dependency of the set shape change on the values of the iteration parameters.
Using these two measures, we show that the dependency for the considered iteration
method is non-linear.

Keywords Viscosity approximation type method · Escape criterion · Julia set ·
Mandelbrot set

1 Introduction

For many years, people thought that objects surrounding us in nature, such as moun-
tains and ferns, could be described using classical Euclidean geometry. However, we
cannot do this because many natural objects do not follow simple rules. Most of them
share the self-similarity property, i.e., every small part contains a copy of the whole
shape, so classical Euclidean geometry cannot model such a property [17]. Fractal
geometry is a tool that provides a general framework to analyse such objects. Fractals
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found applications in various practical problems, for example, in the analysis of river
networks [33], image encryption [53] or compression [2], pattern recognition [13],
generating art [40], cryptography [1]. Fractal antennas have attracted increasing atten-
tion in recent years due to their compact design and superior wideband performance
[7, 23]. In biology andmedicine, fractals are used to study the nerve system, the culture
of micro organs, etc. [10].

One of the fractal types extensively studied in the literature is the Mandelbrot and
Julia sets. Mandelbrot introduced the images of these fractals in the late 1970s. The
Julia sets were introduced much earlier by French mathematicians Pierre Fatou [11],
and Gaston Julia [21], but they were unable to sketch themmanually. The invention of
computers brought a breakthrough in the visualisation of those sets. Mandelbrot was
the first who plotted the Julia set of the quadratic function z2 + c, where c ∈ C. Since
then, Mandelbrot and Julia’s sets have been extended in various directions. One such
direction is the replacement of complex numbers with other types of numbers such
as quaternions [8], bicomplex numbers [52], tricomplex numbers [42], and trinition
numbers [4]. Another direction was the use of various types of functions instead of the
quadratic polynomial function, e.g., trigonometric [22], exponential [34], rational [5],
and Möbius transformations [35]. Moreover, many methods of visualisation of those
sets were introduced, see [20, 30, 51].

The most significant contribution in the generation of fractals (especially Julia
and Mandelbrot sets) is presented by various fixed-point iterative methods. Fixed
point iterative methods provide ways for finding fixed points of non-linear mappings.
Most fixed-point iterative methods can be classified into two types: (1) the Mann-type
iterativemethod and (2) the Halpern-type iterativemethod. TheMann iterativemethod
is an averaged iterative method. It was introduced by Mann in 1953 [32]. However,
theMann iteration does not converge strongly in general [14, 47]. Many attempts have
been made to modify the Mann iteration method to guarantee strong convergence.

Halpern [16] in 1967 proposed a new iterative method for approximate finding of
fixed points of nonexpansive mappings. One of the important generalisations of the
Halpern method is the viscosity approximation method. This method was introduced
by Moudafi [36], and since its introduction it has been widely used for finding fixed
points of a nonexpansive mappings and other classes of non-linear mappings (see
[18, 37–39, 43] and references therein). There is extensive literature regarding the
convergence analysis of the viscosity approximation method with several types of
operators. Maingé [31] discussed the convergence of this method with respect to the
computation of fixed points of operators in the broad class of quasi-nonexpansive
mappings.

The literature review shows that previous studies have almost exclusively focused
on Mann and its similar type fixed-point iterative procedures for generating fractals
(especially Julia and Mandelbrot sets). In this group of methods, we can distinguish
two types of iterations, i.e., explicit and implicit iterations. For each of the types, we
can find many examples of iterations used in the generation of fractals, e.g., for the
explicit type, we find: the Mann iteration [45, 46], the Picard-Mann iteration [55], the
Ishikawa iteration [6], the Noor iteration [3], the CR iteration [29], the SP iteration
with s-convexity [26], the K-iteration [54], the F-iteration [49], the Fibonacci-Mann
iteration [41] and for the implicit ones: the Jungck-SP iteration [28], the Jungck-SP
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iteration with s-convexity [27], the Jungck-CR iteration [48], the Jungck-DK iteration
[15], the Jungck-Mann iteration [50]. Recently, two papers on the use of viscosity type
approximation methods appeared. In [25], Kumari et al. studied the use of theMoudafi
viscosity approximation method in the generation of Mandelbrot and Julia sets and
biomorphs. Then, in [24], Kumari et al. studied a generalised viscosity approximation
type method proposed by Nandal et al. in [39] for the generation of Mandelbrot and
Julia sets. Iteration methods are not only used in the generation of Mandelbrot and
Julia sets.We can find their use in the generation of other types of fractals, e.g., iterated
function system fractals [44], inversion fractals [12], biomorphs [19, 25].

Due to the explosive number of research articles in the last two decades on the
viscosity approximation method in the field of fixed point theory, we feel that this
method has great potential for other applications, such as the generation of fractals.
Motivatedby this fact, our paper proposes a newapproach to generate fractals (Julia and
Mandelbrot sets) based on the viscosity approximation method presented by Maingé
[31]. We adapt the escape-time algorithm to the considered viscosity approximation
method. Moreover, we propose two numerical measures that allow for the study of the
dependence of the set shape change on the values of the iteration parameters.

The remainder of the paper is organised as follows. Section 2 is dedicated to some
basic definitions. In Section 3,we define the viscosityMandelbrot and Julia sets.More-
over, we obtain the escape criterion, which is the main key to drawing viscosity Julia
and Mandelbrot sets. In Section 4, we introduce the adapted escape-time algorithms
to generate viscosity Mandelbrot and Julia sets and present some graphical examples
of sets generated with those algorithms. In Section 5, we introduce two numerical
measures that can be used to study the dependence of the change in shape of the set
on the values of the iteration method. Moreover, we present this dependency for the
considered iteration method. Finally, in Section 6, we conclude our findings.

2 Preliminaries

In this section, we recollect some basic definitions which are taken into account
throughout the paper.

Definition 1 (Julia set [9]) The filled Julia set F fr of a complex-valued function
fr : C → C, where r ∈ C is a parameter, is defined as

Ffr = {z ∈ C : {| f j
r (z)|}∞j=0 is bounded}, (1)

where f j
r denotes the j times composition of the function fr . The Julia set J fr of fr

consists of the boundary points of the filled Julia set Ffr , i.e., J fr = ∂Ffr .

Definition 2 (Mandelbrot set [9]) Let fr : C → C be a complex-valued function,
where r ∈ C is a parameter. The Mandelbrot set M is defined as the the set of all
numbers r ∈ C for which the filled Julia set Ffr is connected, i.e.,

M = {r ∈ C : Ffr is connected}. (2)
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Equivalently,
M = {r ∈ C : | f j

r (0)| � ∞ as j → ∞}. (3)

The first viscosity approximationmethodwas investigated byMoudafi in 2000 [36].
This method – in the complex plane – is defined as

Definition 3 (Viscosity approximation method) Let T : C → C be a complex map.
Consider a sequence z j given by

z j+1 = α j g(z j ) + (1 − α j )T (z j ), j ≥ 0, (4)

where z0 ∈ C is a starting point, α j ∈ (0, 1) and g : C → C is a contraction mapping.
The z j sequence is called viscosity approximation method.

Note that if in (4), we take a constant mapping g(z) = b, where b ∈ C, then the
sequence z j is known as the Halpern iteration [16].

Maingé [31] considered the following viscosity approximation method which is a
special variant of (4): starting with an arbitrary initial point z0 ∈ C, z j generated by

z j+1 = α j g(z j ) + (1 − α j )Tλz j , j ≥ 0, (5)

where Tλ = λI + (1−λ)T , with T quasi-nonexpansive mapping, I identity mapping
and α j , λ ∈ (0, 1).

For simplicity, throughout the article we consider α j = α, where α ∈ (0, 1).

3 Viscosity Mandelbrot and Julia sets

In complex space, we consider the following viscosity approximation-type orbit z j
given by Maingé [31]:

z j+1 = αg(z j ) + (1 − α)y j
y j = λz j + (1 − λ)T (z j ), j ≥ 0,

(6)

where z0 ∈ C is a starting point, T is a complex polynomial, g : C → C is a
contraction mapping and α, λ ∈ (0, 1) are parameters.

Let us consider the following complex polynomial of degree n:

Tr (z) = zn + mz + r , (7)

where n ≥ 2 and m, r ∈ C. Moreover, let g(z) = az + b be a complex contraction
with a, b ∈ C and |a| < 1.

Definition 4 (Viscosity Julia set) The viscosity filled Julia set F ′
Tr

of Tr given in (7),
is defined as

F ′
Tr = {z0 ∈ C : {z j }∞j=0 is bounded}, (8)
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where z j is defined by (6). The viscosity Julia set J ′
Tr

of Tr consists of the boundary
points of the viscosity filled Julia set F ′

Tr
, i.e., J ′

Tr
= ∂F ′

Tr
.

Definition 5 (Viscosity Mandelbrot set) Let Tr be a function given by (7), where
r ∈ C is a parameter. The viscosity Mandelbrot set M ′ is defined as

M ′ = {r ∈ C : |z j | � ∞ as j → ∞}, (9)

where z0 = 0 and z j for j > 0 is defined by (6) with Tr as the operator.

In the literature, various methods such as escape time, potential function, iterated
function systems, and distance estimator algorithms have been considered to construct
and analyse fractals. Among the methods the escape time algorithm is one of the most
importantmethods used in the generation of fractals. The escape criterion is a condition
which allows us to test whether the orbit of an initial point escapes to infinity or not.

Now, we derive the general escape criterion which can be used to generate the
viscosity Julia and Mandelbrot sets.

Theorem 1 Assume that

|z0| ≥ max {|r |, |b|} >

(
|m| + 2 + α

(1 − α)(1 − λ)

) 1
n−1

, (10)

where α, λ ∈ (0, 1). Let the sequence z j be defined as

z j+1 = αg(z j ) + (1 − α)y j
y j = λz j + (1 − λ)Tr (z j ), j ≥ 0.

(11)

Then lim j→∞ |z j | = ∞.

Proof Consider from (11)

|y0| = |λz0 + (1 − λ)Tr (z0)|
= |λz0 + (1 − λ)(zn0 + mz0 + r)|
= |(1 − λ)zn0 + (1 − λ)mz0 + (1 − λ)r + λz0|
≥ |(1 − λ)zn0 + (1 − λ)mz0 + λz0| − (1 − λ)|r |.

Our assumption |z0| ≥ max{|r |, |b|} yields that −|r | ≥ −|z0|, therefore, we have
|y0| ≥ |(1 − λ)zn0 + (1 − λ)mz0 + λz0| − (1 − λ)|z0|

≥ |(1 − λ)zn0 + (1 − λ)mz0| − |λz0| − (1 − λ)|z0|
= |(1 − λ)zn0 + (1 − λ)mz0| − |z0|
≥ |(1 − λ)zn0 | − |(1 − λ)mz0| − |z0|
= (1 − λ)|z0|n − (1 − λ)|m||z0| − |z0|
= |z0|

(
(1 − λ)|z0|n−1 − (1 − λ)|m| − 1

)
.
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Thus, we have
|y0| ≥ |z0|

(
(1 − λ)|z0|n−1 − (1 − λ)|m| − 1

)
. (12)

From (11), consider

|z1| = |αg(z0) + (1 − α)y0|
= |α(az0 + b) + (1 − α)y0|
≥ |(1 − α)y0| − |α(az0 + b)|
≥ (1 − α)|y0| − α|az0| − α|b|.

Our assumption |z0| ≥ max{|r |, |b|} yields that −|b| ≥ −|z0|, therefore, we have
|z1| ≥ (1 − α)|y0| − α|a||z0| − α|z0|

> (1 − α)|y0| − α|z0| − α|z0|.
Using (12), we have

|z1| > (1 − α)(|z0|
(
(1 − λ)|z0|n−1 − (1 − λ)|m| − 1

)
)

− 2α|z0| = |z0|
(
(1 − α)(1 − λ)|z0|n−1

−(1 − α)(1 − λ)|m| − α − 1) .

(13)

From the assumption |z0| >
(
|m| + 2+α

(1−α)(1−λ)

) 1
n−1

, we get

(1 − α)(1 − λ)|z0|n−1 − (1 − α)(1 − λ)|m| − α − 1 > 1. (14)

Thus, there exists a real number σ > 0 such that

(1 − α)(1 − λ)|z0|n−1 − (1 − α)(1 − λ)|m| − α − 1 > 1 + σ > 1.

From (13), we have
|z1| > (σ + 1) |z0|.

In particular, |z1| > |z0|, so we may apply the same argument repeatedly to obtain

|z j | > (σ + 1) j |z0|.

Hence, |z j | → ∞ as j → ∞. ��

In theproof ofTheorem1,wehaveusedonly the fact that |z0|>
(
|m|+ 2+α

(1−α)(1−λ)

) 1
n−1

and |z0| ≥ max{|r |, |b|}. So, we can refine it and obtain the following corollary.

Corollary 1 Let |z0| > max

{
|r |, |b|,

(
|m| + 2+α

(1−α)(1−λ)

) 1
n−1

}
, where a, b,m, r ∈ C

with |a| < 1, and α, λ ∈ (0, 1). Then lim j→∞ |z j | = ∞.
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Corollary 2 Suppose that:

|zk | > max

{
|r |, |b|,

(
|m| + 2 + α

(1 − α)(1 − λ)

) 1
n−1

}
(15)

for some k ≥ 0, where a, b,m, r ∈ C with |a| < 1, and α, λ ∈ (0, 1). Then, there
exists σ > 0 such that |zk+ j | > (1 + σ) j |zk | and we have lim j→∞ |z j | = ∞.

4 Graphical examples of the viscosity Mandelbrot and Julia sets

With the help of Corollaries 1 and 2, we generate viscosity filled Julia sets of nth
degree complex polynomials Tr (z) = zn + mz + r where n ≥ 2 and m, r ∈ C using
the escape-time algorithm as follows. If any point of the orbit z j lies outside the circle
of radius:

R = max

{
|r |, |b|,

(
|m| + 2 + α

(1 − α)(1 − λ)

) 1
n−1

}
, (16)

then we know that the orbit of |z0| escapes to infinity, and in consequence z0 does not
belong to the viscosityfilled Julia set. If z j does not exceed the circlewith radius R, then
the point z0 stays in a bounded area and in consequence it belongs to the viscosity filled
Julia set. Algorithm 1 presents the pseudocode of the described escape-time algorithm
for generating the viscosity Julia set. In the algorithm, we generate the viscosity Julia
set in the given area of the complex space A ⊂ C using some colour map. If a point is
a non-escaping point, then we need to perform an infinite number of iterations, which
leads to an infinite loop. Thus, to avoid the infinite loop, we limit the maximal number
of iterations to K iterations.

Algorithm 1 Viscosity Julia set generation.
Input: Tr (z) = zn + mz + r , where m, r ∈ C and n ≥ 2; A ⊂ C – area in which we draw the set;

K – the maximum number of iterations; α, λ ∈ (0, 1) – parameters for the viscosity
approximation type iterative method; g(z) = az + b, where a, b ∈ C and |a| < 1;
colourmap[0..K ] – colour map with K + 1 colours.

Output: Viscosity Julia set for area A.

1 R = max

{
|r |, |b|,

(
|m| + 2+α

(1−α)(1−λ)

) 1
n−1

}

2 for z0 ∈ A do
3 j = 0
4 while |z j | < R and j < K do
5 y j = λz j + (1 − λ)Tr (z j )
6 z j+1 = αg(z j ) + (1 − α)y j
7 j = j + 1

8 colour z0 with colourmap[ j]
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The pseudocode for the escape-time algorithm generating the viscosityMandelbrot
set is presented in Algorithm 2. Like in the case of Algorithm 1, it uses the criterion
derived in Section3. The set is generated in the area A ⊂ C using the maximal number
of iterations equal to K .

Algorithm 2 Viscosity Mandelbrot set generation
Input: Tr (z) = zn + mz + r , where m, r ∈ C and n ≥ 2; A ⊂ C – area in which we draw the set;

K – the maximum number of iterations; α, λ ∈ (0, 1) – parameters for the viscosity
approximation type iterative method; g(z) = az + b, where a, b ∈ C and |a| < 1;
colourmap[0..K ] – colour map with K + 1 colours.

Output: Viscosity Mandelbrot set for area A.

1 for r ∈ A do

2 R = max

{
|r |, |b|,

(
|m| + 2+α

(1−α)(1−λ)

) 1
n−1

}

3 j = 0
4 z0 = r
5 while |z j | < R and j < K do
6 y j = λz j + (1 − λ)Tr (z j )
7 z j+1 = αg(z j ) + (1 − α)y j
8 j = j + 1

9 colour r with colourmap[ j]

To generate the graphical examples presented in this section, we implemented
Algorithms 1 and 2 in Mathematica 12. The examples presented in this section were
generated using the same colour map (Fig. 1), image resolution 800× 800 pixels, and
K = 50.

4.1 Examples of viscosity Julia sets

In the first example, we generated a quadratic viscosity Julia set using Algorithm 1.
The parameters used to generate this set were the following: n = 2,m = 1.92+2.09i ,
r = 0.6− 1.02i , A = [−10, 5] × [−9, 6], K = 50, a = 0.3+ 0.6i , b = 0.07+ 0.5i .
In the example, we divided the images into two groups. In Fig. 2, we see the first group
in which we fixed the value of λ to 0.33, and changed the value of α: (a) 0.25, (b) 0.5,
(c) 0.65, (d) 0.75, (e) 0.8, and (f) 0.85. From the images, we see that the set becomes
larger with the increase of the α parameter. Thus, the α parameter has a significant
impact on the shape and size of the set. In Fig. 2(c) and (d), we can see some spiral
structures but they disappear when we take higher values of α, see Fig. 2(e) and (f).
Moreover, we can observe that the set has a 2-fold symmetry.

Fig. 1 Colour map used in the generation of viscosity Mandelbrot and Julia sets examples
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Fig. 2 Julia set for n = 2 generated via the viscosity approximation type iteration with λ = 0.33 and
varying α

In the second group, presented in Fig. 3, we fixed α to 0.7, and changed the value
of λ: (a) 0.1, (b) 0.25, (c) 0.4, (d) 0.45, (e) 0.5, and (f) 0.55. In this case, we also see
that the λ parameter has a great impact on the shape and size of the set. Moreover, we
can observe that for lower values of λ the shape change is smaller than in the case of
higher λ values.

In the next example, we generated viscosity Julia set for the fifth degree polynomial.
The parameters used to generate the set in this example were the following: n = 5,
m = 3.91 + i , r = 0.002 + 0.008i , A = [−2, 2]2, K = 50, a = 0.35, b = 0.001.
Similar to the first example, we divided the images into two groups:

– Figure 4 in which we fixed λ = 0.25 and changed the value of α: (a) 0.3, (b) 0.4,
(c) 0.55, (d) 0.65, (e) 0.75, and (f) 0.8,

– Figure 5 in which we fixed α = 0.6 and changed the value of λ: (a) 0.2, (b) 0.35,
(c) 0.5, (d) 0.65, (e) 0.67, and (f) 0.85.

From Figs. 4 and 5, we see that both the parameters (α, λ) have an impact on the set’s
shape, and even a slight change of the parameter’s value can considerably change the
set. Moreover, at first sight, it may seem that all sets have a 4-fold symmetry. However,
when we look closely, then we notice that, for instance, the spiral arm in the top-right
corner in Fig. 4(e) or the two upper spiral arms in Fig. 5(b) are different from the other
arms, so these sets do not have a 4-fold symmetry.

To show the variety of viscosity Julia sets that can be obtained by the proposed
method, in the last graphical example of viscosity Julia sets, we present some various
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Fig. 3 Julia set for n = 2 generated via the viscosity approximation type iteration with α = 0.7 and varying
λ

Julia sets generated via the viscosity approximation type iteration (Fig. 6). The values
of the parameters used to generate them were the following:

(a) n = 2, m = 1.92 + 2.09i , r = 0.6 − 1.02i , A = [−10, 4] × [−8, 6], α = 0.33,
λ = 0.75, a = 0.03, b = 0.07 + 0.13i ,

(b) n = 2, m = 0.0, r = −1.2 + 0.2i , A = [−2, 2]2, α = 0.07, λ = 0.09, a = 0.3,
b = 0.9i ,

(c) n = 3, m = 3.98 + 1.2i , r = 0.008 + 0.001i , A = [−3.5, 3.5]2, α = 0.7,
λ = 0.4, a = 0.35, b = 0.001,

(d) n = 3, m = −2.1 + 0.09i , r = 0.01 − 1.2i , A = [−1.9, 1.9]2, α = 0.05,
λ = 0.34, a = 0.5, b = −0.5 + 0.04i ,

(e) n = 5, m = 3.91 + 1.2i , r = 0.002 + 0.008i , A = [−2, 2]2, α = 0.69, λ = 0.4,
a = 0.35, b = 0.001,

(f) n = 10, m = 3.91 + 1.2i , r = 0.008 + 0.002i , A = [−1.5, 1.5]2, α = 0.7,
λ = 0.4, a = 0.35, b = 0.001.

4.2 Examples of viscosity Mandelbrot sets

Now, let us see analogous examples of viscosity Mandelbrot set generated using
Algorithm 2. We start with viscosity Mandelbrot set of quadratic polynomial. The
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Fig. 4 Julia set for n = 5 generated via the viscosity approximation type iteration with λ = 0.25 and
varying α

parameters used to generate this set were the following: n = 2, m = 4.29 + 0.009i ,
K = 50, A = [−10, 1.5] × [−5.75, 5.75], a = 0.25, b = 0.09i . Similar to the
viscosity Julia set case, we divide the images into two groups. In Fig. 7, we see the
first group in which we fixed the value of λ to 0.45, and changed the value of α: (a)
0.05, (b) 0.15, (c) 0.25, (d) 0.4, (e) 0.5, and (f) 0.7. The second group is presented
in Fig. 8. Images were generated for a fixed value of α equal to 0.2, and varying the
parameter λ: (a) 0.1, (b) 0.3, (c) 0.4, (d) 0.5, (e) 0.65, and (f) 0.8. From Figs. 7 and 8,
we see that both parameters have a large impact on the shape of the set. The set grows
and changes shape with increasing values of any of the two parameters. We can also
notice that the resulting sets have axial symmetry.

In the second example, we consider a quartic polynomial and generate the viscosity
Mandelbrot set with the following parameters: n = 4, m = 4.9 + 0.9i , K = 50,
A = [−3.5, 3.5]2, a = 0.7 + 0.35i , b = 0.3 + 0.3i . Figure 9 presents images
obtained with a fixed value of λ equal to 0.85, and varying the parameter α: (a) 0.1,
(b) 0.2, (c) 0.3, (d) 0.5, (e) 0.7, (f) 0.9, whereas Fig. 10 presents images generated for
a fixed α = 0.6, and varying λ: (a) 0.3, (b) 0.55, (c) 0.7, (d) 0.85, (e) 0.9, and (f) 0.95.
In this example, we can also observe a high dependency between the parameters of
the iteration and the shape of the resulting set. For low values of parameters, the sets
are small and get bigger with the increase of the parameters. We can notice that the
shape change is not uniform in the three arms. For higher values of the parameters,
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Fig. 5 Julia set for n = 5 generated via the viscosity approximation type iteration with α = 0.6 and varying
λ

one of the arms starts dominating the shape. Moreover, we can observe that the sets
do not have any symmetry.

In the last graphical example, we show some various viscosity Mandelbrot sets
generated by the proposed method. The images obtained are presented in Fig. 11. The
values of the parameters used to generate them were the following:

(a) n = 2, m = 0.8 + 0.09i , A = [−3, 0.4] × [−1.7, 1.7], α = 0.09, λ = 0.2,
a = 0.38, b = 0.9 + 0.09i ,

(b) n = 2, m = 0, A = [−2.3, 0.7] × [−1.5, 1.5], α = 0.2, λ = 0.01, a = 0.05,
b = 0.005,

(c) n = 4, m = 1.01 + 0.004i , A = [−3.2, 2.8] × [−3, 3], α = 0.05, λ = 0.91,
a = 0.05, b = 0.001 + 0.05i ,

(d) n = 5, m = 4.69 + 0.003i , A = [−1.6, 1.6]2, α = 0.4, λ = 0.6, a = 0.05,
b = 0.005,

(e) n = 5, m = 0.3, A = [−1.1, 1.1]2, α = 0.004, λ = 0.005, a = 0.008, b =
0.9 + 0.1i ,

(f) n = 10, m = 4.79 + 0.003i , A = [−1.5, 1.5]2, α = 0.63, λ = 0.53, a = 0.05,
b = 0.005.
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Fig. 6 Examples of various viscosity Julia sets

5 Dependency between the iteration parameters and new numerical
measures

The graphical examples presented in Figs. 2–5 and 7–10 showed that the shape of the
viscosity Mandelbrot and Julia sets is highly dependent on the parameters used in the
considered iteration method. Therefore, we may ask whether this dependency is linear
or non-linear? In the literature regarding the use of various iteration processes in the
generation of Mandelbrot and Julia sets (see, for example, [3, 6, 26–29, 45, 46, 48,
55]), there are no methods that allow to study this dependency. The authors of those
papers showed only some images of the sets obtained with the derived escape criterion
and did not study – in any way – this dependency. In this section, we will propose
two numerical measures that will allow studying – to some extent – the impact of the
iteration used in the generation algorithm on the obtained Mandelbrot and Julia sets.
The proposed measures can be used to study any of the iteration methods introduced
in the literature.

Assume that we generate an image of viscosity Mandelbrot or viscosity Julia set
in the area A ⊂ C using the maximal number of iterations equal to K . The first
introduced measure will refer to the escaping points. We call it the average escape
time (AET) Eave, and define it as follows. Let

E = {z ∈ A : I (z) < K }, (17)
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Fig. 7 Mandelbrot set for n = 2 generated via the viscosity approximation type iteration with λ = 0.45
and varying α

where I (z) is the number of performed iterations with the starting point z. Thus, E is
the set of escaping points in A. Now, if E 
= ∅, then

Eave = 1

|E |
∑
z∈E

I (z), (18)

else Eave is undefined. The second measure refers to the non-escaping points, i.e.,
points z for which I (z) = K . We define it as

P = |A \ E |
|A| , (19)

and call it the non-escaping area index (NAI). From the definitions, we see that Eave ∈
[0, K ) and P ∈ [0, 1]. The average escape time, as the name suggests, tells us how
fast, in the considered area, the escaping points escape to infinity on average. The
non-escaping area index tells us about the percentage of the considered area covered
by the non-escaping points, giving us information about a relative set size in A.

Using the average escape time and non-escaping area index, we can study the
dependency of these measures on the iteration parameters. We do so by generating
Mandelbrot or Julia set images in the same area using various values of the parameters,
calculating the measures, and then plotting the data. Let us see how such plots look
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Fig. 8 Mandelbrot set for n = 2 generated via the viscosity approximation type iteration with α = 0.2 and
varying λ

for the viscosity approximation iteration that is considered in the paper. Except for the
plots of AET and NAI, we will also present plots showing the generation times.

For all the presented plots, we will use K = 50, the area A will be divided into grid
of 800 × 800 points, and for the iteration parameters (α, λ) we will use 99 values in
(0, 1), giving the value step equal to 0.01 and 992 = 9801 generated images for a single
plot. The numerical experiments were performed on a computer with the following
specifications: Intel i5-9600K (@3.70 GHz), 32 GB DDR4 RAM, and Windows 10
(64 bit). The algorithms for generating the sets (Algorithms 1 and 2)were implemented
in Mathematica 12 using the parallelization option of the Compile command.

5.1 Viscosity Julia sets

In thefirst example,wewill present plots ofAETandNAI for a quadratic viscosity Julia
set generated with n = 2,m = 1.92+2.09i , r = 0.6−1.02i , A = [−10, 5]×[−9, 6],
and two contractive mappings:

– g1(z) = 0.03z + 0.07 + 0.13i ,
– g2(z) = (0.3 + 0.6i)z + 0.07 + 0.5i .

We saw examples of viscosity Julia sets obtained with g2 in Figs. 2 and 3. In
Figs. 12 and 13, we present the plots of AET, NAI and generation times for g1 and g2,
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Fig. 9 Mandelbrot set for n = 4 generated via the viscosity approximation type iteration with λ = 0.85
and varying α

respectively. The white areas in the AET plots indicate areas in which wewere not able
to calculate the measure, i.e., all points in the considered area are non-escaping ones.
Whenwe look at the AET plots, we see that the overall shape is very similar. They only
differ in some details, and the white area in case of g2 is smaller. The values of this
measure vary greatly from 0.409 (attained at α = 0.01, λ = 0.01) to 46.961 (attained
at α = 0.05, λ = 0.99) for g1, and from 0.409 (attained at α = 0.01, λ = 0.01) to
45.727 (attained at α = 0.08, λ = 0.99) for g2. However, the number of points with a
high value of AET is small compared to the number of points with low values. Now,
by looking at the NAI plots, we see that the dependency is non-linear, and the overall
shape is correlated with the shape of the AET plot. Moreover, from the plots, we can
observe that the filled viscosity Julia sets in the considered area grow with the increase
of both the parameters. For high values of α and λ the filled viscosity Julia set occupies
the whole area, for example, for α = 0.06, λ = 0.99 for g1, and α = 0.09, λ = 0.99
for g2 the NAI measure equals to 1.0. From the time plots in Figs. 12(c) and 13(c),
we see that the times are highly correlated with the NAI measure. The only difference
between these two plots is that the time plots look noisy. This is due to the fact that the
operating system services and processes are working in the background and can take
away some CPU time, depending on the needs of the operating system. The minimal
times in both considered cases are obtained for low values of the parameters: 0.397 s
for α = 0.02, λ = 0.18 in the case of Fig. 12(c), and 0.404 s for α = 0.02, λ = 0.08
in the case of Fig. 13(c). On the other hand, the longest times were obtained for high
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Fig. 10 Mandelbrot set for n = 4 generated via the viscosity approximation type iteration with α = 0.6
and varying λ

values of the parameters: 3.376 s for α = 0.8, λ = 0.58 in Fig. 12(c), and 3.149 s for
α = 0.65, λ = 0.93 in Fig. 13(c).

In the next example, we will present similar plots, but this time for viscosity Julia
sets with the following parameters n = 5, m = 3.91 + i , r = 0.002 + 0.008i ,
A = [−2, 2]2, and two contractive mappings:

– g3(z) = 0.35z + 0.001,
– g4(z) = (0.7 + 0.35i)z + 0.3 + 0.3i .

Examples of viscosity Julia sets generated with the g3 mapping are presented in Figs. 4
and 5. The plots with the numeric measures for the two contraction mappings are
presented in Figs. 14 and 15. From the AET plots, we see that the average speed of
escaping is fast, and only a small number of points – in the parameter space – obtain
higher values of AET. Moreover, we can observe that the dependency is non-linear,
and it can be different for various contraction mappings used in the iteration process,
i.e., in Fig. 14(a) the dependency can be seen as regular, whereas in Fig. 15(a) we see
irregular areas. The minimal values of AET in both plots were attained at α = 0.01,
λ = 0.01, and they were equal to 0.525. The maximal values of the measure are
different for both plots. In plot from Fig. 14(a) the maximal value was equal 25.67 and
it was attained at α = 0.15, λ = 0.96, whereas for plot from Fig. 15(a) the maximal
value 34.77 was attained at α = 0.21, λ = 0.99. Now, by looking at the NAI plots in
Figs. 14(b) and 15(b), we see that in the lower-left corner, there is a large uniform area
in which NAI equals to 0.0, so for the parameters’ values in this area there were no
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Fig. 11 Examples of various viscosity Mandelbrot sets

non-escaping points. In the opposite corner (upper-right), we see points in which NAI
equals to 1.0, thus the whole considered area is covered by the non-escaping points
meaning that the filled viscosity Julia set occupies this area. In the rest of the parameters
space, we see that we obtain various values of NAI. Additionally, they change in a
non-linear way, and the change is dependent on the contraction mapping used. Like
in the case of the quadratic viscosity Julia sets, the time plots in Figs. 14(c) and 15(c)
are correlated with the plots of the NAI numerical measure and the plots are noisy

Fig. 12 AET, NAI, and time (in seconds) plots for viscosity Julia set for n = 2 and g1(z) = 0.03z+(0.07+
0.13i)

123



Numerical Algorithms (2024) 96:211–236 229

Fig. 13 AET, NAI, and time (in seconds) plots for viscosity Julia set for n = 2 and g2(z) = (0.3+0.6i)z+
(0.07 + 0.5i)

due to the processes and services that are running in the background. From the plots,
we see that the shortest times are obtained for low values of the parameters, whereas
the longest times for high values of the parameters. More precisely, the minimal times
0.399 s (Fig. 14(c)) and 0.401 s (Fig. 15(c)) were attained at α = 0.01, λ = 0.19 and
α = 0.01, λ = 0.22, respectively. The maximal times 3.161 s (Fig. 14(c)) and 2.935 s
(Fig. 15(c)) were attained at α = 0.78, λ = 0.99 and α = 0.9, λ = 0.96, respectively.

5.2 Viscosity Mandelbrot sets

In the first examplewith the viscosityMandelbrot set, wewill present plots of AET and
NAI for a quadratic viscosityMandelbrot set generated with the following parameters:
n = 2, m = 4.29 + 0.009i , A = [−10, 1.5] × [−5.75, 5.75], and two contractive
mappings:

– g5(z) = 0.25z + 0.09,
– g6(z) = (0.5 − 0.3i)z + 0.2 + 0.7i .

Fig. 14 AET, NAI, and time (in seconds) plots for viscosity Julia set for n = 5 and g3(z) = 0.35z + 0.001
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Fig. 15 AET, NAI, and time (in seconds) plots for viscosity Julia set for n = 5 and g4(z) = (0.7+0.35i)z+
(0.3 + 0.3i)

The obtained plots are presented in Figs. 16 and 17. For the AET plots, we see very
similar behaviour. The lowest values of this measure are attained for low values of both
parameters—attaining the minimal value of 0.691 at α = λ = 0.01, in both cases.
Moreover, we see that the areas with high AET values depend on the contraction
mapping. For g5 the area is very narrow, with the maximal value equal to 48.667
attained at α = 0.42, λ = 0.91, whereas for g6 the area is wider and the variation of
the values is bigger, attaining the maximum (49.0) at α = 0.2, λ = 0.98. When we
look at the NAI plots, we can observe that for g5, there is a large area in which NAI
is equal to 1.0. For g5 in a similar area, we see a much smaller area with NAI equal
to 1.0, but in the remaining area, the values are high, i.e., about 0.8 and higher. This
means that the size change of the viscosity Mandelbrot set for g6 was more diverse
than for the g5 mapping. In both cases, we clearly see that the size of the viscosity
Mandelbrot set is a non-linear function of the two parameters (α, λ). When we look at
the time plots, we can observe a similar situation as in the case of the viscosity Julia
sets. Namely, the time plots are correlated with the NAI plots, and they are noisy for
the same reasons. The shortest times for both the contraction mappings are attained at

Fig. 16 AET, NAI, and time (in seconds) plots for viscosity Mandelbrot set for n = 2 and g5(z) =
0.25z + 0.09i
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Fig. 17 AET, NAI, and time (in seconds) plots for viscosity Mandelbrot set for n = 2 and g6(z) =
(0.5 − 0.3i)z + (0.2 + 0.7i)

low values of the parameters: 0.397 s at α = 0.01, λ = 0.1 and 0.421 s at α = 0.08,
λ = 0.15 for g5 and g6, respectively. The longest times, on the other hand, are attained
for high values of the parameters: 3.216 s at α = 0.62, λ = 0.69 and 3.344 s at
α = 0.88, λ = 0.57 for g5 and g6, respectively.

In the last example,we present plots for the quartic viscosityMandelbrot setwith the
following parameters: n = 4, m = 4.9+ 0.9i , A = [−3.5, 3.5]2, and two contractive
mappings:

– g7(z) = 0.25z + 0.001,
– g8(z) = (0.7 + 0.35i)z + 0.3 + 0.3i .

The obtained AET, NAI and time plots are presented in Figs. 18 and 19. For the quartic
viscosity Mandelbrot set, the overall behaviour is very similar to the quadratic case.
When looking at the AET plots, we see that for low values of the parameters (α, λ),
the escaping speed is fast, attaining the minimal value of 0.244 at α = λ = 0.01 in
both cases. The speed changes in a non-linear way depending on the parameters. The
slowest escape speed for g7 is visible at the boundary, where the maximum value of
6.5 is attained at α = 0.51, λ = 0.99. In the case of the g8 mapping, we see that the

Fig. 18 AET, NAI, and time (in seconds) plots for viscosity Mandelbrot set for n = 4 and g7(z) =
0.25z + 0.001
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Fig. 19 AET, NAI, and time (in seconds) plots for viscosity Mandelbrot set for n = 4 and g8(z) =
(0.7 + 0.35i)z + (0.3 + 0.3i)

high values of AET are obtained at the boundary, but also, there is some strip with high
values inside the parameters space. Themaximal value of 13.154 is attained in this strip
at α = 0.16, λ = 0.99. When looking at the NAI plots, there is a similar behaviour in
both cases, i.e., the change of viscosity Mandelbrot set size. In the lower-left corner of
the parameters space, there are no non-escaping points, so there is no visible viscosity
Mandelbrot set for these parameters. However, in the opposite corner (upper-right),
we see points in the parameter space for which the set occupies the considered area. In
the rest of the parameters space, we can observe a viscosity Mandelbrot set of varying
size. Therefore, from the NAI plots, we clearly see that the parameters of the viscosity
iteration change the size of the Mandelbrot set in a non-linear way. The generation
times for the considered quartic viscosity Mandelbrot set behave similarly to all the
other examples. Namely, they are highly correlated with the NAI numerical measure.
Therefore, the shortest times are obtained for low values of the parameters (0.408 s at
α = 0.08, λ = 0.27 in Fig. 18(c), and 0.391 s at α = 0.01, λ = 0.14 in Fig. 19(c)),
whereas the longest times for high values of α and λ (2.855 s at α = 0.95, λ = 0.95
in Fig. 18(c), and 5.065 s at α = 0.95, λ = 0.99 in Fig. 19(c)).

6 Conclusions

In this paper, we have analysed the viscosity approximation type method in the gen-
eration of Julia and Mandelbrot sets. For this, we have established some convergence
conditions to visualise Julia and Mandelbrot sets via viscosity approximation type
orbit using the adapted versions of the escape-time algorithms. Various artistic patterns
of fascinating viscosity Julia and Mandelbrot sets with different shapes and colours
have been generated using different complex polynomials, contraction mappings and
parameters α, λ. We have examined that a very small change in any input parameter
can change the image drastically. Moreover, we proposed two numerical measures
that allow the study of the dependence of the change in set shape on the values of the
iteration parameters. Using these two measures, we showed that the dependency for
the considered iteration method is highly non-linear.

123



Numerical Algorithms (2024) 96:211–236 233

As fractals have attracted people’s attention in the field of design, we believe that
the results of this research can be interesting for those whose works are related to the
automatic creation of nicely looking graphics and designing printing patterns. In our
future work, we will extend the result from the paper by using other viscosity approx-
imation type orbits. Moreover, we will study the set shape change for other iterations
introduced in the literature using the proposed numerical measures. Another interest-
ing direction for future work is the use of various iteration methods for Mandelbrot
and Julia sets generated using the trinition numbers introduced in [4].
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