
The constant solution method for solving large
scale differential Sylvester matrix equations with
time invariant coe�cients
Abderrahman Bouhamidi 

University of the Littoral Opal Coast
Lakhdar Elbouyahyaoui 

Mohamed I University
Mohammed Heyouni  (  mohammed.heyouni@univ-littoral.fr )

University of the Littoral Opal Coast

Research Article

Keywords: Krylov subspace methods, block Arnoldi, matrix differential Sylvester equation, dynamical
systems, control, Ordinary differential equations

Posted Date: September 16th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2054244/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-2054244/v1
mailto:mohammed.heyouni@univ-littoral.fr
https://doi.org/10.21203/rs.3.rs-2054244/v1
https://creativecommons.org/licenses/by/4.0/


The constant solution method for solving large scale differential Sylvester

matrix equations with time invariant coefficients

Abderrahman Bouhamidi · Lakhdar Elbouyahyaoui ·
Mohammed Heyouni

Received: date / Accepted: date

Abstract This paper is mainly focused on the solution of Sylvester matrix differential equations with time in-

dependent coefficients. We propose a new approach based on the construction of a particular constant solution

which allows to construct an approximate solution of the differential equation from that of the corresponding

algebraic equation. Moreover, when the matrix coefficients of the differential equation are large, we combine

the constant solution approach with Krylov subspace methods for obtaining an approximate solution of the

Sylvester algebraic equation, and thus form an approximate solution of the large-scale Sylvester matrix dif-

ferential equation. We establish some theoretical results including error estimates and convergence as well as

relations between the residuals of the differential and its corresponding algebraic Sylvester matrix equation. We

also give explicit benchmark formulas for the solution of the differential equation.To illustrate the efficiency

of the proposed approach, we perform numerous numerical tests and make various comparisons with other

methods for solving Sylvester matrix differential equations.

Keywords Krylov subspace methods, block Arnoldi, matrix differential Sylvester equation, dynamical

systems, control, Ordinary differential equations.

Mathematics Subject Classification (2010) MSC 65F

1 Introduction

Differential Lyapunov and Sylvester equations are involved in many areas of applied mathematics and arise in

numerous scientific applications. For instance, they play a crucial role in control theory, model order reduction,

image processing and the list is not exhaustive. In particular, the differential Lyapunov matrix equation is a

useful tool for stability analysis and control design for linear time-dependent systems [2,3]. In this paper, we

are concerned with numerically solving the differential Sylvester matrix equation of the form

{
Ẋ(t) = AX(t)+X(t)B−C, t ∈ [t0,T ]
X(t0) = X0,

(1)

where [t0,T ]⊂R is a closed and bounded time interval with t0, T are the initial and final times respectively. We

set ∆T = T − t0, the length of the interval [t0,T ]. The coefficient matrices A ∈ R
n×n, B ∈ R

s×s and C ∈ R
n×s

are constant real matrices. The differential Lyapunov matrix equation corresponds to the symmetric case where

B = AT . Before describing the new proposed method, we refer to the algebraic equation canonically associated

to (1)

AX +X B =C, (2)
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as the corresponding (or associated) algebraic Sylvester equation. To the best of our knowledge, despite the

importance of differential matrix equations, few works have been devoted to their numerical resolution when

the matrix coefficients are large. Adaptation of BDF and/or Rosenbrock methods has been described in [7,8] (see

also the references in [5]). However these adaptations usually suffer from a problem of numerical data storage.

To remedy this problem, combining Krylov subspaces techniques with BDF methods or with Taylor series

expansions have recently been proposed [5,19]. Other existing methods described in the recent literature for

solving large-scale differential Sylvester matrix equation rely on using the integral formula or some numerical

ODE solver [20,37]. The strategy we pursue in this manuscript is different in the sense that our approach for

solving differential Sylvester (or Lyapunov) matrix equations is based on the use of the constant solution to the

differential equation. The first result we use indicates that the solution of the differential equation is written in

terms of the solution of the corresponding algebraic equation. Additionally, in the case where the coefficient

matrices A and/or B are large, we combine the new expression of the solution with some projection techniques

on Krylov subspace, such as the block Arnoldi algorithm for solving the corresponding algebraic equations or

for approximating the exponential of a matrix.

we momentarily assume that the matrix C in (1), represents a continuous matrix function C(t) defined on

[t0,T ] and let us consider next, the following classical differential linear system
{

ẋ(t) = Ax(t)− c(t),
x(t0) = x0,

(3)

where A ∈R
p×p is time independent and x(t),c(t) ∈R

p for all time t ∈ [t0,T ]. We assume that c is a continuous

function on the interval [t0,T ]. In this case, the system (3) has a unique solution x(t) which is differentiable with

a continuous derivative on [t0,T ]. It is well known that the unique solution of (3) may be written under the form

x(t) = e(t−t0)A x0 −
∫ t

t0

e(t−u)A c(u)du. (4)

In many practical situations, the matrix A may be very large. In this case, exploiting expression (4) for computing

the solution x(t) is very expensive. However, when the matrix A is large and sparse with a specific structure,

some numerical techniques may be done to approximate the matrix exponential time a vector [24,32,35]. As, our

interest is to obtain a good approximate solution to the differential Sylvester equation (1), we need to consider

the matrix A in system (3) of size p = ns structured as following:

A= Is ⊗A+BT ⊗ In,

where the matrices A, B are those given in (1). The identity matrices In, Is are of size n and s, respectively. The

notations BT and ⊗ stand for the transpose of B and the Kronecker product of two matrices, respectively. We

recall that the Kronecker product of two matrices J and K of size n j ×m j and nk ×mk, respectively, is the matrix

J⊗K = [Ji, j K] of size n j nk ×m j mk. The following well known properties will be used throughout this paper:

1. (A⊗B)(C⊗D) = (AC)⊗ (BD),
2. (A⊗B)T = (AT ⊗BT ),
3. vec(ABC) = (CT ⊗A)vec(B).

The vec operator consists in transforming a matrix into a vector by stacking its columns one by one to form a

single column vector.

Let x0, x, c be the vectors such that x0 = vec(X0), x = vec(X), c= vec(C) where X0, X(t) and C are appearing

in (1). In [1], it was written, without any specific details of its proof, that the solution of the differential Sylvester

matrix equation (1) is given by the following integral formula

X(t) = e(t−t0)A X0 e(t−t0)B −
∫ t

t0

e(t−u)A C(u)e(t−u)B du. (5)

Although the proof of this result does not present any major difficulty, it seemed interesting to us to give the

details of such a proof. Indeed, using the additive commutativity of the matrix exponential which states

eA eB = eA+B ⇐⇒ AB = BA,

and since, the matrices Is ⊗ A and BT ⊗ In commute, then using the properties of the Kronecker product, it

follows that

e(t−t0)A = e(t−t0)(Is⊗A+BT⊗In)

= e(t−t0)(Is⊗A) e(t−t0)(B
T⊗In)

= (Is ⊗ e(t−t0)A)(e(t−t0)BT

⊗ In)

= e(t−t0)BT

⊗ e(t−t0)A.
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Thus,

e(t−t0)A x0 =
[
e(t−t0)BT

⊗ e(t−t0)A
]

vec(X0) = vec(e(t−t0)A X0 e(t−t0)B),

Finally, this implies that the formula (4) giving the solution to the system (3) leads to the formula (5) giving the

solution to the differential Sylvester equation (1).

From now on, return back to the case where the vector coefficient c in (3) and also the matrix coefficient C

in (1) are assumed to be constant functions on the interval [t0,T ]. Thus, as the systems (1) and (3) are mathe-

matically equivalent, then for moderate size problems, it is possible to apply directly a numerical integration to

the system (3) or to use (4) or the above integral formula (5). But, for a large system, we will see that it is more

interesting to solve the system in the matrix form (1).

Note that it is not restrictive to choose X0 = 0 in the initial condition X(t0) = X0 of (1). Indeed, let X(t)
denote the exact solution of the system (1), then the matrix function given by Y (t) = X(t)−X0 is the unique

solution of the following system
{

Ẏ (t) = AY (t)+Y (t)B−C0, t ∈ [t0,T ]
Y (t0) = 0,

where

C0 =C− (AX0 +X0 B).

We may first solve the previous differential equation to get Y (t) and then deduce the solution X(t) = Y (t)+X0

of the differential equation (1).

To end this section, we give some useful notations. The Frobenius inner product is defined by

⟨Y,Z⟩= tr(Y T Z), Y, Z ∈ R
l×q,

where tr(M) denotes the trace of a matrix M. The associated Frobenius norm is denoted by ∥Y∥=
√
⟨Y,Y ⟩. For a

bounded matrix valued function G defined on the interval [t0,T ], we consider the following uniform convergence

norm

∥G∥∞ = sup
t∈[t0, T ]

∥G(t)∥.

The outline of this paper is as follows: In Section 2, we introduce our proposed method which will be called the

Constant Solution Method (CSM in short), describe some of it’s properties and give some theoretical results. A

summarized and brief description of the corresponding algorithm, will also be given. In Section 3, we combine

CSM with the block Arnoldi algorithm for solving algebraic Sylvester matrix equations in order to tackle large-

scale differential Sylvester equations. The two cases: full and low-rank are discussed. Moreover, we establish

theoretical results expressing the residual of the differential equation in terms of that of the algebraic equation.

We also establish some theoretical results on the convergence and on the error estimates provided by the constant

solution method. In section 4 which is devoted to numerical experiments, we first show how to generate a

benchmark differential Sylvester matrix equation with a known exact solution. To the best of our knowledge,

this construction is new and has never been proposed before. The numerical results section continues with

several set of experiments whose results indicate that CSM is an efficient and robust method. As usual, the last

section is devoted to a brief conclusion.

2 The constant solution method for the differential Sylvester matrix equation

In the integral Formula (5), quadrature methods are needed to compute numerically the approximate solution.

Thus, when one (or both) of the matrix coefficients A or B is (or are) large and has (or have) no particular

exploitable structure, the computation of the integral may be expensive or even unfeasible. In this section,

we use another expression for the solution of the system (1) which is given in terms of the solution of the

corresponding algebraic Sylvester matrix equation (2). This expression avoids the use of quadrature methods

since it does not contain an integral. To the best of our knowledge, the approach we describe in this section has

never been exploited in the context of solving large scale differential Sylvester matrix equations. However, it is

based on the classical and simple technique of adding a particular constant solution to the general solution of

the homogeneous differential equation to form the general solution of a linear differential equation of order one

with constant coefficients. Next, we give the following theorem, which gives a useful and interesting expression

of the unique solution of the system (1). The result of this theorem is known in the literature [6,15], but, in

practice, it has not been exploited numerically to give approximate solutions. This theorem is not difficult to

establish. However, in order to facilitate the reading of the present work, it seems interesting to us to give the

proof of this theorem.
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Theorem 1 Suppose that the matrices A and B in the system (1) are such that σ(A)∩σ(−B) = /0, where σ(M)
denotes the spectrum of the matrix M, then the unique and exact solution X∗(t) of the system (1) is given by

X∗(t) = e(t−t0)A
(

X0 − X̃∗
)

e(t−t0)B + X̃∗, (6)

where X̃∗ is the unique and exact solution of the algebraic Sylvester equation (2).

Proof The general solution of the homogeneous differential equation associated to (1) is given by

Z(t) = et A Y et B,

where Y ∈ R
n×s is some constant matrix. Since σ(A)∩σ(−B) = /0, the algebraic Sylvester equation (2) has a

unique solution X̃∗ (see, e.g [25, Thm. 2.4.4.1]). Now, as X̃∗ is a constant matrix function (i.e., X̃∗(t) = X̃∗),

then it can be seen as a particular solution of the differential equation

Ẋ(t) = AX(t)+X(t)B−C.

It follows that the general solution of the previous differential equation is given by

X(t) = et A Y et B + X̃∗.

Finally, since the unique solution of the differential equation (1) must satisfy the initial condition X∗(t0) = X0, it

follows that X∗(t0) = et0 A Y et0 B+ X̃∗ = X0. The last equality implies Y = e−t0 A
(

X0 − X̃∗
)

e−t0 B and expression

(6) follows immediately.

In the remainder of this paper, we assume that the matrices A and B in (1) satisfy the condition

σ(A)∩σ(−B) = /0.

The following property shows the behavior of the matrix solution X∗(t) as the interval [t0, T ] becomes very

more and more large, namely, as the final time T goes to +∞.

Proposition 1 [29, Chapter 8] Suppose that the coefficients A and B in the system (1) are stable matrices, then

the unique solution X∗(t) of the differential system (1) satisfies

lim
T→+∞

∥X∗(T )− X̃∗∥= 0,

where X̃∗ is the unique solution of the corresponding algebraic Sylvester equation (2).

In the remainder of this section, we suppose that the matrix coefficients A and B are of moderate size. In

this case, an approximate solution to the algebraic Sylvester equation (2) may be obtained by a direct solver

such as the Bartels-Stewart algorithm, the Schur decomposition, or the Hammarling method [4,18,21,30,40].

A common point to all these methods is first the computation of the real Schur forms of the coefficient matrices

using the QR algorithm. Then, the original equation is transformed into an equivalent form that is easier to

solve by a forward substitution. Now, suppose that X̃a is an approximate solution to X̃∗ the exact solution of the

Sylvester algebraic equation (2), it follows that an approximate solution Xa(t) to X∗(t) the exact solution of the

Sylvester differential equation (1) can be expressed in the following form.

Xa(t) = e(t−t0)A
(

X0 − X̃a

)
e(t−t0)B + X̃a. (7)

Here, as A and B are assumed to be of moderate size, we also assume that both exponential e(t−t0)A and e(t−t0)B

are computed exactly. To establish an upper bound for the error norm, let us introduce the algebraic error Ẽ and

the differential error E(t) given by

Ẽ = X̃∗− X̃a, and E(t) = X∗(t)−Xa(t), ∀t ∈ [t0, T ],

respectively. Finally, recalling that ∆T = T − t0 and ∥E∥∞ = sup
t∈[t0, T ]

||E(t)||, we have the following result

Proposition 2 In the case where the matrix exponential is computed exactly, we have

∥E∥∞ ≤
(

1+ e∆T (∥A∥+∥B∥)
)
∥Ẽ∥,

where E and Ẽ are the errors associated to the approximate solutions Xa(t) and X̃a respectively.
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Proof Subtracting (7) from (6), we get

E(t) = X∗(t)−Xa(t) = e(t−t0)A Ẽ e(t−t0)B + Ẽ, ∀t ∈ [t0, T ],

and from the triangular inequality, we obtain

||E(t)|| ≤ ||e(t−t0)AẼ e(t−t0)B||+ ||Ẽ||, ∀t ∈ [t0, T ].

The Frobenius norm being multiplicative (that is ∥AB∥ ≤ ∥A∥∥B∥), this implies that ∥esM∥ ≤ es∥M∥ for all s ≥ 0

and for any square matrix M. Thus,

||E(t)|| ≤
(

1+ e(t−t0)(∥A∥+∥B∥)
)
∥Ẽ∥, ∀t ∈ [t0, T ].

As E is a continuous matrix function on the interval [t0, T ], (t − t0)≤ ∆T and ∥E∥∞ = sup
t∈[t0, T ]

||E(t)||, then the

desired result follows obviously.

Le us now introduce R(t) and R̃ the residuals associated to the differential and algebraic Sylvester matrix

equations, respectively. These residuals are defined by

{
R(t) = Ẋa(t)− (AXa(t)+Xa(t)B−C) , t ∈ [t0, T ],

R̃ = C−
(

AX̃a + X̃a B
)
,

(8)

and satisfy the following proposition.

Proposition 3 In the case where the matrix exponential is computed exactly, the residual for the differential

equation, is time independent and we have

R(t) = R̃, ∀t ∈ [t0, T ].

Proof From (7), we have

Ẋa(t) = e(t−t0)A
(

A(X0 − X̃a)+(X0 − X̃a)B
)

e(t−t0)B.

On the other hand, we have

AXa(t)+Xa(t)B = e(t−t0)A
(

A(X0 − X̃a)+(X0 − X̃a)B
)

e(t−t0)B +AX̃a + X̃a B.

Then subtracting one of the two previous relations from the other, we get

R(t) = Ẋa(t)− (AXa(t)+Xa(t)B−C) =C−
(

AX̃a + X̃a B
)
= R̃.

Before ending this section, we sketch in Algorithm 1 below the main steps that must be followed to obtain

approximations Xk = Xa(tk) to the solution of the differential Sylvester equation (1) at different nodes tk, (k =
1, . . . ,N) of a suitable discretization of the time interval [t0, T ].

Algorithm 1 Constant Solution Method in the case of moderate size (CSM)

1: Input: The matrices A, B, C, the initial and final times t0, T , the number N of nodes and the step time δT .

2: Output: X1, . . . ,XN , (where Xk = Xa(tk)), (1 ≤ k ≤ N)

3: Solve the algebraic Sylvester equation: AX +X B =C, to get an approximate solution X̃a to the exact solution X̃∗.

4: for k = 1, . . . ,N do

5: Compute: tk = tk−1 +δT ;

6: Compute: Xk = e(tk−t0)A
(

X0 − X̃a

)
e(tk−t0)B + X̃a;

7: end for
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3 Block Arnoldi for solving large-scale differential Sylvester matrix equations

It is well known that computing the matrix exponential may be expensive when the matrix is very large. Thus,

expression (6) may not be directly exploitable in the case of large scale matrix coefficients. In the following,

we will see how to circumvent this difficulty using projection methods onto some Krylov subspace. Indeed, in

addition to allowing us to obtain a good approximation of the exact solution of the algebraic Sylvester equation

(2), Krylov subspace methods are also a useful tool to compute the action of matrix exponential on a block

vector with a satisfactory accuracy. During the last three decades, various projection methods on block, global or

extended Krylov subspaces have been proposed to solve Sylvester matrix equations (or other similar equations)

whose coefficients are large and sparse matrices [9,10,11,16,22,23,26,27,28]. The common idea behind these

methods is to first reduce the size of the original equation by constructing a suitable Krylov basis, then solve the

obtained low dimensional equation by means of a direct method such as the Hessenberg-Schur method or the

Bartels-Stewart algorithm [4,18], and finally recover the solution of the original large equation from the smaller

one. For a complete overview of the main methods for solving algebraic Sylvester or Lyapunov equations, we

refer to [3,13,39] and the references therein. In order to be as general as possible and not to impose restrictive

assumptions, we opt for a resolution of the Sylvester (or Lyapunov) equation using the block Arnoldi process

rather than the extended block Arnoldi process since the latter requires that the coefficient matrices A and B are

non singular. This last condition may not be fulfilled in many practical cases.

We recall that projection techniques on block Krylov subspaces for solving matrix differential equations

were first proposed in [19,20] by exploiting the integral formula (5) and approximating the exponential of a

matrix times a block of vectors or by solving a projected low-dimensional differential Sylvester matrix equation

by means of numerical integration methods such as the backward differentiation formula (BDF) [12].

As said before, the approach we follow in this work is different from the one proposed in [19,20]. It consists

of exploiting formula (6), instead of the integral formula (5), which is less expensive. To have at hand an

adequate basis of the considered Krylov subspace, we will use the block Arnoldi process described in the next

subsection.

3.1 The block Arnoldi process

Let M be an l × l matrix and V an l × s block vector. We consider the classical block Krylov subspace

Km(M,V ) = Range([V,MV, . . . ,Mm−1 V ])

=

{
m−1

∑
k=0

Mk V Ωk, Ωk ∈ R
s×s, 0 ≤ k ≤ m−1

}
.

The block Arnoldi process, described in Algorithm 2, generates an orthonormal basis VM
m of the block Krylov

subspace Km(M,V ).

Algorithm 2 The block Arnoldi process (BA)

1: Input: M a matrix of size l × l, V a matrix of size l × s and m an integer.

2: Output: VM
m+1 and H

M

m satisfying (9)–(11).

3: Get V1 by computing the QR decomposition of V , i.e., V =V1 Λ1;

4: for j = 1, . . . ,m do

5: Compute U = MV j;

6: for i = 1,2, . . . , j do

7: Hi, j =V T
i U ;

8: U =U −Vi Hi, j;

9: end for

10: Get Vj+1 and H j+1, j by computing the QR decomposition of U ,

11: i.e., U =Vj+1 H j+1, j .

12: Set Hi, j = 0 for i > j+1

13: Define V
M
j+1 = [V1, . . . ,Vj,V j+1] and H

M

j = (Hk,ℓ)1≤k≤ j+1,1≤ℓ≤ j

14: end for

Suppose that the upper triangular matrices H j+1, j are full rank then, since the above algorithm involves a

Gram-Schmidt procedure, the obtained block vectors V1,V2, . . . ,Vm (Vi ∈ R
l×s) have their columns mutually

orthogonal. Hence, after m steps, Algorithm 2 generates an orthonormal basis V
M
m = [V1,V2, . . . ,Vm] of the
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block Krylov subspace Km(M,V ) and a block upper Hessenberg matrix H
M
m whose non zeros blocks are the

Hi, j ∈ R
s×s. We have the following and useful algebraic relations [17,36].

MV
M
m = V

M
m+1H

M

m = V
M
m H

M
m +V M

m+1 HM
m+1,m (E

(s)
m )T , (9)

(
V

M
m

)T
MV

M
m = H

M
m , (10)

(
V

M
m

)T
V

M
m = Ims, (11)

where H
M

m = (VM
m+1)

T MV
M
m ∈ R

(m+1)s×ms, Hi, j ∈ R
s×s is the (i, j) block of HM

m and E
(s)
m is the matrix of the

last s columns of the ms×ms identity matrix Ims, i.e. E
(s)
m = [0s×(m−1)s, Is]

T . In the following, we will use the

notation

V M
m,s =V M

m+1 HM
m+1,m (E

(s)
m )T . (12)

3.2 Full rank case

Here, we suppose that A is a large matrix while B is relatively smaller, i.e., s ≪ n. We also assume that the right-

hand side C is full rank, i.e. rank(C) = s. Also, for simplicity reasons, we took X0 = 0 in the initial condition,

since, as mentioned in the introduction, it is not restrictive.

To obtain approximate solutions to the algebraic Sylvester equation (2), one can use the block Arnoldi

method in which we consider approximate solutions that have the following form

X̃m = V
A
m Ỹm, (13)

where V
A
m is the orthonormal Krylov basis generated by applying m iterations of Algorithm 2 to the pair (A,C).

Let R̃m be the algebraic residual given by

R̃m =C−
(

AX̃m + X̃m B
)
. (14)

The correction Ỹm, is obtained by imposing the Petrov-Galerkin condition

(VA
m)

T R̃m = 0ms×s.

Thus, taking into account the relations (9)–(11) and (13), it follows that Ỹm is the solution of the reduced

Sylvester equation

H
A
m Y +Y B =Cm,

where H
A
m = (VA

m)
T AV

A
m and Cm = (VA

m)
T C. Note that from Algorithm 2, we also get that C = V

A
m Cm. Now, if

σ(HA
m)∩σ(−B) = /0, then the previous Sylvester equation admits a unique solution which can be obtained by a

direct method [4,18]. In addition, from the relations (9)-(11), the residual R̃m satisfies the following relation

R̃m =−V A
m,s Ỹm. (15)

According to [32,34], the following approximation to e(t−t0)A X̃∗ holds

e(t−t0)A X̃∗ ≃ V
A
m e(t−t0)H

A
m (VA

m)
T X̃m.

It follows, that an approximate solution Xm(t), for t ∈ [t0, T ], to the exact solution X∗(t) of the differential

Sylvester matrix equation (1) may be obtained by

Xm(t) =−V
A
m e(t−t0)H

A
m (VA

m)
T X̃m e(t−t0)B + X̃m.

Taking into account (13), it follows that

Xm(t) = V
A
m Ym(t), t ∈ [t0, T ], (16)

where

Ym(t) =−e(t−t0)H
A
m Ỹm e(t−t0)B + Ỹm, t ∈ [t0, T ]. (17)

This matrix function satisfies the following result.
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Proposition 4 The matrix function Ym(t) given by (17) is the unique solution of the reduced differential Sylvester

matrix equation {
Ẏ (t) = H

A
m Y (t)+Y (t)B−Cm, t ∈ [t0, T ]

Y (t0) = 0.
(18)

Proof The derivative of the matrix function Ym(t) as given by (17) is

Ẏm(t) =−e(t−t0)H
A
m

(
H

A
m Ỹm + Ỹm B

)
e(t−t0)B, t ∈ [t0, T ].

On the other hand, we have

H
A
m Ym(t)+Ym(t)B−Cm =−e(t−t0)H

A
m

(
H

A
m Ỹm + Ỹm B

)
e(t−t0)B +H

A
m Ỹm + Ỹm B−Cm, t ∈ [t0, T ].

Thus, it follows that

Ẏm(t)−
(
H

A
m Ym(t)+Ym(t)B−Cm

)
= 0,

and additionally, Ym(t) satisfies the initial condition Ym(t0) = 0.

Remark 1 Proposition 4 shows that another way to obtain an approximation of Ym(t) can be the resolution of

the projected and reduced differential equation (17) by using an adequate numerical ODE solver such as Runge-

Kutta or BDF solvers. We recall that such technique was used in [19,20]. In our proposed method, we don’t use

such approach, but instead, we solve the reduced algebraic equation and take into account approximations (16)

and (18) to get an approximate solution to the low dimensional differential matrix equation (17).

Now, let Rm(t) be the residual associated to the approximate solution Xm(t), i.e.,

Rm(t) = Ẋm(t)− (AXm(t)+Xm(t)B−C), t ∈ [t0, T ]. (19)

The following proposition gives an expression for this residual.

Proposition 5 The residual for the differential equation is given by

Rm(t) = −V A
m,s Ym(t) (20)

= V A
m,s e(t−t0)H

A
m Ỹm e(t−t0)B + R̃m, (21)

where R̃m is the algebraic residual given in (14). Moreover

(VA
m)

T Rm(t) = 0ms×s, ∀t ∈ [t0, T ]. (22)

Proof Replacing, in (19), Xm(t) by its expression given by (16), we get

Rm(t) = V
A
m Ẏm(t)−AV

A
m Ym(t)−V

A
m Ym(t)B+C.

Then, using (9), we obtain

Rm(t) = V
A
m Ẏm(t)−

(
V

A
mH

A
m +V A

m,s

)
Ym(t)−V

A
m Ym(t)B+V

A
m Cm.

= V
A
m

(
Ẏm(t)−

[
H

A
m Ym(t)+Ym(t)B−Cm

])
−V A

m,s Ym(t).

As Ym(t) is the solution of (18), we then get (20). Now, according to (17), we obtain

Rm(t) =V A
m,s e(t−t0)H

A
m Ỹm e(t−t0)B −V A

m,s Ỹm.

Finally, from (15), we get (21) and the relation (22) follows immediately.

Note that if HA
m and B are stable, i.e, all the eigenvalues of HA

m and B belong to the half part of C whose real

part is negative. It follows that,

lim
T→+∞

e(T−t0)H
A
m = 0s×s and lim

T→+∞
e(T−t0)B = 0s×s.

Then, using (21), we get

lim
T→+∞

Rm(T ) = R̃m.

In addition and as done in the previous section, we consider the differential error Em given by

Em(t) = X∗(t)−Xm(t), ∀t ∈ [t0, T ].

We recall that Xm(t) and X∗(t) are the approximate and exact solutions to the differential equation, respectively.

The following result gives an error estimate for error norm Em.
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Theorem 2 At step m, the following error estimate holds

∥Em∥∞ ≤

(
e∆T (∥A∥+∥B∥)−1

∥A∥+∥B∥

)
(rA

m + zA
m),

where

rA
m = ∥R̃m∥= ∥HA

m+1,m Y m∥ and zA
m = ∥HA

m+1,m Zm∥,

with Y m, Zm are the matrices of size s× s formed by the s last rows of Ỹm and Zm := e∆T H
A
m Ỹme∆T B respectively.

Proof From (8) and the differential Sylvester matrix equation (1), we have

Ėm(t) = Ẋ∗(t)− Ẋm(t) = A (X∗(t)−Xm(t))+(X∗(t)−Xm(t)) B−Rm(t),

with Em(t0) = 0. Thus, the function Em(t) satisfies the following differential Sylvester matrix equation

{
Ėm(t) = AEm(t)+Em(t)B−Rm(t), t ∈ [t0,T ]
Em(t0) = 0.

So, Em(t) may be written by the following integral formula

Em(t) =−
∫ t

t0

e(t−s)A Rm(t)e(t−s)B ds.

Passing to the norm, for all t ∈ [t0, T ], we get

∥Em(t)∥ ≤
∫ t

t0

∥e(t−s)A Rm(t)e(t−s)B∥ds ≤ ∥Rm(t)∥
∫ t

t0

∥e(t−s)A∥∥e(t−s)B∥ds.

As, ∥eα M∥ ≤ eα∥M∥ for α ≥ 0 and M = A or M = B, we obtain that, for all t ∈ [t0, T ],

∥Em(t)∥ ≤ ∥Rm(t)∥
∫ t

t0

e(t−s)(∥A∥+∥B∥) ds.

This gives after integration that, for all t ∈ [t0,T ] we have

∥Em(t)∥ ≤

(
e(t−t0)(∥A∥+∥B∥)−1

∥A∥+∥B∥

)
∥Rm(t)∥.

Then using (21) and the triangular inequality, we get

∥Em(t)∥ ≤

(
e(t−t0)(∥A∥+∥B∥)−1

∥A∥+∥B∥

)
(rA

m + zA
m), for all t ∈ [t0, T ].

Finally, the desired result is obtained by passing to the uniform norm.

Now, we point out that (20) provides a cheap formula for computing at each node tk the norm rm,k := ∥Rm(tk)∥
of the residual associated to the approximate solution Xm,k := Xm(tk). This formula avoids computing matrix

vector products with the large coefficient matrix A since we have

rm,k := ∥Rm(tk)∥= ∥HA
m+1,m (E

(s)
m )T Ym,k∥= ∥HA

m+1,m Y m,k∥, (23)

where Y m,k = (E
(s)
m )T Ym,k is the matrix of size s× s formed by the last s rows of the matrix Ym,k := Ym(tk).

Finally, we end this section by summarizing in Algorithm 3 our proposed method that is the block Arnoldi

combined with the constant solution method (BA-CSM) applied for full-rank differential Sylvester equations
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Algorithm 3 Block Arnoldi Constant Solution Method (BA-CSM) (Full-rank case)

1: Input: The matrices A, B, C, the initial and final times t0,T , a tolerance tol > 0, a maximum number of iterations Mmax, a step-size

parameter p and N the number of nodes in the time discretization.

2: Output Xm,1, . . . ,Xm,N , where Xm,k = Xm(tk), (1 ≤ k ≤ N)
3: Compute δT = (T − t0)/N.

4: for m = 1, . . . ,Mmax do

5: Compute V A
m to update the orthonormal basis VA

m =
[
V A

1 , . . . ,V A
m

]
and get the m-th block of HA

m by applying Algorithm 2 to (A,C);
6: if m is a multiple of p then

7: Compute: Cm = (VA
m)

T C.

8: Solve the reduced Sylvester equation: HA
m Ỹm + Ỹm B =Cm.

9: for k = 1, . . . ,N do

10: Compute tk = tk−1 +δT .

11: Compute Ym,k := Ym(tk) =−e(tk−t0)H
A
m Ỹm e(tk−t0)B + Ỹm.

12: Compute rm,k = ∥HA
m+1,m Y m,k∥.

13: end for

14: Compute rmax = max{rm,1, . . . ,rm,N}
15: if rmax < tol then

16: go to line 20;

17: end if

18: end if

19: end for

20: for k = 1, . . . ,N do

21: The approximate solution Xm,k at time tk is Xm,k = V
A
m Ym,k .

22: end for

3.3 Low-rank case

Now, we consider the case where both A and B are large matrices. In addition, the coefficient C appearing in

the right-hand side is assumed to be low rank and is given under the factored form C = E FT where E ∈ R
n×r

and F ∈ R
s×r. We also, assume for simplicity reasons that the initial condition is such that X0 = 0. To obtain

approximate solutions to the low-rank algebraic Sylvester equation (2), we can use the block Arnoldi method in

which we consider approximate solutions that have the form

X̃m = V
A
m Ỹm (VB

m)
T , (24)

where VA
m, VB

m are the orthonormal matrices obtained by running m iterations of Algorithm 2 applied to the pairs

(A,E) and (BT ,F) respectively. Enforcing the following Petrov-Galerkin condition

(VA
m)

T R̃mV
B
m = 0mr×mr,

to the algebraic residual R̃m given by

R̃m = E FT − (AX̃m + X̃m B). (25)

Multiplying (25) on the left by (VA
m)

T and on the right by V
B
m and taking into account relations (9)–(11) and

(24), it follows immediately, that Ỹm is the solution of the reduced projected Sylvester equation

H
A
m Y +Y (HB

m)
T = Em FT

m , (26)

where H
A
m = (VA

m)
T AV

A
m, HB

m = (VB
m)

T BT
V

B
m are the mr×mr upper block Hessenberg matrices generated by

the block Arnoldi process and Em = (VA
m)

T E, Fm = (VB
m)

T F . Note that from Algorithm 2, we also get that

E = V
A
m Em and F = V

B
m Fm. Here also, if σ(HA

m)∩σ(−H
B
m) = /0, then equation (26) admits a unique solution

which can be computed using a standard direct method such as those described in [4,18]. Using the relation

(9)–(10) and from the relations (24)–(26), we get

R̃m =−V A
m,r Ỹm (VB

m)
T −V

A
m Ỹm (V B

m,r)
T , (27)

where V A
m,r = V A

m+1 HA
m+1,m (E

(r)
m )T and V B

m,r = V B
m+1 HB

m+1,m (E
(r)
m )T . We also notice that, according to [32,34],

an approximation to e(t−t0)A X̃∗e(t−t0)B may be obtained as

e(t−t0)A X̃∗ e(t−t0)B ≃ V
A
m e(t−t0)H

A
m (VA

m)
T X̃mV

B
m e(t−t0)(H

B
m)

T

(VB
m)

T .

Then, it follows, that an approximate solution Xm(t) to the exact solution X∗(t) of the differential Sylvester

matrix equation (1) may be given by

Xm(t) =−V
A
m e(t−t0)H

A
m (VA

m)
T X̃mV

B
m e(t−t0)(H

B
m)

T

(VB
m)

T + X̃m.
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Taking into account (24) gives that

Xm(t) = V
A
m Ym(t)(V

B
m)

T , t ∈ [t0, T ], (28)

where

Ym(t) =−e(t−t0)H
A
m Ỹme(t−t0)(H

B
m)

T

+ Ỹm, t ∈ [t0, T ]. (29)

As in the full-rank case, we have the following proposition.

Proposition 6 The matrix function Ym(t) given by (29) is the unique solution of the reduced differential Sylvester

matrix equation {
Ẏ (t) =H

A
m Y (t)+Y (t)(HB

m)
T −Em FT

m , t ∈ [t0, T ]
Y (t0) = 0.

(30)

Proof The derivative of the matrix function Ym(t) as given by (29) is

Ẏm(t) =−e(t−t0)H
A
m

(
H

A
mỸm + Ỹm(H

B
m)

T
)

e(t−t0)(H
B
m)

T

, t ∈ [t0, T ].

On the other hand, we have

H
A
m Ym(t)+Ym(t)(H

B
m)

T −Em FT
m =

− e(t−t0)H
A
m

(
H

A
m Ỹm + Ỹm (HB

m)
T
)

e(t−t0)(H
B
m)

T

+H
A
m Ỹm + Ỹm (HB

m)
T −Em FT

m .

Thus, it follows that

Ẏm(t)−H
A
m Ym(t)−Ym(t)(H

B
m)

T +Em FT
m = 0.

Moreover, Ym(t) satisfies the initial condition Ym(t0) = 0.

Next, the following proposition gives a useful expression of the residual which is defined, in the low-rank case,

by

Rm(t) = Ẋm(t)− (AXm(t)+Xm(t)B−E FT ), t ∈ [t0, T ]. (31)

Proposition 7 The residual for the differential equation is given by

Rm(t) = −V A
m,r Ym(t)(V

B
m)

T −V
A
m Ym(t)(V

B
m,r)

T , (32)

= V A
m,r F̃m(t)(V

B
m)

T +V
A
m F̃m(t)(V

B
m,r)

T + R̃m, (33)

where F̃m(t) = e(t−t0)H
A
m Ỹm e(t−t0)(H

B
m)

T
and R̃m is the algebraic residual given by (25). In addition,

(
V

A
m

)T
Rm(t)V

B
m = 0mr×mr, ∀t ∈ [t0, T ]. (34)

Proof Using the definition (31) of the residual Rm(t) and replacing Xm(t) by its expression given in (28), we get

Rm(t) = V
A
m Ẏm(t)(V

B
m)

T −AV
A
m Ym(t)(V

B
m)

T −V
A
m Ym(t)(V

B
m)

T B+E FT .

Now, using the algebraic relation (9) in which M is replaced either by A or by B, we obtain

Rm(t) = V
A
m Ẏm(t)(V

B
m)

T −
(
V

A
mH

A
m +V A

m,r

)
Ym(t)(V

B
m)

T

−V
A
m Ym(t)

(
(HB

m)
T (VB

m)
T + (V B

m,r)
T
)
+V

A
m Em FT

m (VB
m)

T .

This may be arranged as following

Rm(t) = V
A
m

(
Ẏm(t)− H

A
m Ym(t)−Ym(t)(H

B
m)

T +Em FT
m

)
(VB

m)
T

−V A
m,r Ym(t)(V

B
m)

T −V
A
mYm(t)(V

B
m,r)

T .

Taking into account (30), we get (32). The relation (33) follows by replacing Ym(t) by its expression (29)

and taking into account (27). Finally, (34) is straightforward since V
A
m and V

B
m are orthogonal matrices.
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Similarly to the full rank case, let us remark that if HA
m and H

B
m are stable, then

lim
T→+∞

Rm(T ) = R̃m.

As in the previous subsection, we have the following error estimates.

Theorem 3 Let Xm(t), for t ∈ [t0, T ], be the approximate solution at a step m given by (28) and (29) and let

Em(t) = X∗(t)−Xm(t) be the error. Then, we have the following error estimate:

||Em||∞ ≤

(
e∆T (∥A∥+∥B∥)−1

∥A∥+∥B∥

)√
(rA

m + zA
m)

2
+(rB

m + zB
m)

2,

where rA
m = ∥HA

m+1,m Y m∥, rB
m = ∥HB

m+1,m Y m∥, zA
m = ∥HA

m+1,m Zm∥ and zB
m = ∥HB

m+1,m Zm∥. The matrices Y m and

Zm are of size r× r and formed by the r last rows of Ỹm and Zm := e∆T H
A
m Ỹme∆T H

B
m respectively.

Proof As previously done in the proof of Theorem 2, we obtain by similar arguments that, for all t ∈ [t0, T ] we

have

∥Em(t)∥ ≤

(
e(t−t0)(∥A∥+∥B∥)−1

∥A∥+∥B∥

)
∥Rm(t)∥.

From (33) and (27), we get

Rm(t) =V A
m,r

(
F̃m(t)− Ỹm

)
(VB

m)
T +V

A
m

(
F̃m(t)− Ỹm

)
(V B

m,r)
T .

As the n×n matrices V A
m,r

(
F̃m(t)− Ỹm

)
(VB

m)
T and V

A
m

(
F̃m(t)− Ỹm

)
(V B

m,r)
T are F-orthogonal, then

⟨V A
m,r

(
F̃m(t)− Ỹm

)
(VB

m)
T |VA

m

(
F̃m(t)− Ỹm

)
(V B

m,r)
T ⟩= 0.

Therefore

∥Rm(t)∥
2 =

∥∥∥V A
m,r

(
F̃m(t)− Ỹm

)
(VB

m)
T
∥∥∥

2

+
∥∥∥VA

m

(
F̃m(t)− Ỹm

)
(V B

m,r)
T
∥∥∥

2

.

Now, using the triangular inequality, we get that for all t ∈ [t0, T ], we have

∥∥∥V A
m,r

(
F̃m(t)− Ỹm

)
(VB

m)
T
∥∥∥≤ rA

m + zA
m.

and similarly, we also have

∥∥∥VA
m

(
F̃m(t)− Ỹm

)
(V B

m,r)
T
∥∥∥≤ rB

m + zB
m.

which completes the proof.

To continue the description of the present method, we notice that (32) enables us to check if ∥Rm(t)∥ < tol

-where tol is some fixed tolerance-, without having to compute extra products involving the large matrices A

and B. More precisely, we have

∥Rm(t)∥=

√
∥HA

m+1,m (E
(r)
m )T Ym(t)∥2 +∥Ym(t)E

(r)
m (HB

m+1,m)
T∥2. (35)

We end this subsection by recalling that in the case of large scale problems, and as suggested in [23,38], it is

important to get the approximate solution Xk := Xm(tk) at each time tk as a product of two low rank matrices. If

Yk = V Σ W T is the singular value decomposition of Yk, where Σ = diag[σ1,σ2, . . . ,σmr] is the diagonal matrix

of the singular values of Yk sorted in decreasing order, then by considering Vl and Wl the mr× l matrices of the

first l columns of V and W corresponding respectively to the l singular values of magnitude greater than some

tolerance τ , we get for each k = 1, . . . ,N
Xk ≈ ZA

k (Z
B
k )

T ,

where ZA
k = V

A
m Vl Σ

1/2

l and ZB
k = V

B
m Wl Σl

1/2.

The block Arnoldi combined with the Constant Solution Method (BA-CSM) for solving the differential

Sylvester matrix equation, in the case where C is low rank, i.e., C = EFT , is summarized in Algorithm 4.
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Algorithm 4 Block Arnoldi Constant Solution Method (BA-CSM) (Low-rank case)

1: Input: The matrices A, B, E, F , the initial and the final times t0,T , a tolerance tol > 0, a maximum number of iterations Mmax, a

step-size parameter p, the number N of nodes in the time discretization and the tolerance τ for the truncated SVD.

2: Output Xm,1, . . . ,Xm,N , where Xm,k := Xm(tk), (1 ≤ k ≤ N)
3: Compute δT = (T − t0)/N.

4: for m = 1, . . . ,Mmax do

5: Compute V A
m and V B

m to update the orthonormal bases VA
m =

[
V A

1 , . . . ,V A
m

]
, VB

m =
[
V B

1 , . . . ,V B
m

]
and get the m-th blocks of HA

m and H
B
m

by applying Algorithm 2 to (A,E) and (BT ,F) respectively;

6: if m is a multiple of p then

7: Compute: Em = (VA
m)

T E and Fm = (VB
m)

T F .

8: Solve the reduced Sylvester equation: HA
m Ỹm + Ỹm (HB

m)
T = Em FT

m .

9: for k = 1, . . . ,N do

10: Compute tk = tk−1 +δT .

11: Compute Ym,k := Ym(tk) =−e(tk−t0)H
A
m Ỹm e(tk−t0)(H

B
m)T

+ Ỹm.

12: Compute rm,k =
√
∥HA

m+1,m (E
(r)
m )T Yk∥2 +∥Yk E

(r)
m (HB

m+1,m)
T ∥2.

13: end for

14: Compute rmax = max{rm,1, . . . ,rm,N}
15: if rmax < tol then

16: go to line 20;

17: end if

18: end if

19: end for

20: for k = 1, . . . ,N do

21: Compute the SVD of Yk , i.e., Yk =U Σ W T where Σ = diag[σ1, . . . ,σmr] and σ1 ≥ . . .≥ σmr;

22: Find l such that σl+1 ≤ τ < σl and let Σl = diag[σ1, . . . ,σl];

23: Form ZA
k = V

A
m Ul Σ

1/2

l and ZB
k = V

B
m Wl Σ

1/2

l ;

24: The approximate solution Xm,k at time tk is Xm,k ≈ ZA
k (ZB

k )
T .

25: end for

4 Numerical experiments

In this section, a series of numerical tests will be presented to examine the performance and potential of Algo-

rithms 1, 3 and 4. We have compared our proposed method which is based on relation (6) with the one described

in [20] and which is based on the integral formula (5). We recall that the algorithms described in [20] only

provide an approximate solution at the final time T and moreover they only deal with the case of low-rank dif-

ferential equations. Thus, we modified Algorithm 1 proposed in [20] so that it provides an approximate solution

Xm,k = Xm(tk) at each node tk of the discretization of the time interval [0, T ] as it is the case in Algorithm 4.

Moreover, we have drafted two other codes based on the integral formula (5) and equivalent to Algorithm 1 and

Algorithm 3

It should be noted that in all the examples given here, we suppose that X0 the matrix appearing in the initial

condition of (1) is equal to zero, i.e., X0 = 0n×s. Furthermore, we consider different time intervals [t0,T ] where

t0 = 0 is fixed once and for all, while T is indicated in each example. The time interval [0,T ] is divided into

sub-intervals of constant length δT = T
N

where N is the number of nodes. All the numerical experiments were

performed using MATLAB and have been carried out on an Intel(R) Core(TM) i7 with 2.60 GHz processing

speed and 16 GB memory. In order to implement the different algorithms described in this work, we used the

following MATLAB functions:

- expm: it allows to calculate the exponential of a square matrix. This function is based on a scaling and

squaring algorithm with a Padé approximation [24].

- lyap: it allows to solve Sylvester or Lyapunov matrix equations. For our purposes, the instruction lyap(A,B,-

C) delivers the matrix X solution of the algebraic Sylvester equation AX +X B =C.

- integral: it allows to calculate numerically an integral, using the arguments ”ArrayValued” and ”true”.

Furthermore, we precise that when the constant solution or integral formula methods are combined with the

block Arnoldi process to obtain an approximate solution to the differential equation, the iterations are stopped

as soon as the dimension of the Krylov subspace generated by the block Arnoldi process reaches a maximum

value m = Mmax = 110 or as soon as the maximal norm rmax computed by the algorithm is lower than 10−10 µ
where µ = ∥A∥+∥B∥+∥C∥ in the full rank case and µ = ∥A∥+∥B∥+∥E∥∥F∥ in the low rank case. We also

mention that in the numerical examples, the right-hand side C or its factors E and F were generated randomly.

To compare the performances of the Constant Solution method (in short CS or CS-BA when combined with

the block Arnoldi process) with those of the Integral Formula method (in short IF or IF-BA when combined

with the block Arnoldi process), we used the following comparison criteria:
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- TR: the time ratio between the CPU-time of CS and IF methods or between CS-BA and IF-BA methods

which are defined by

TR=
cpu-time(CS)

cpu-time(IF)
or TR=

cpu-time(CS-BA)

cpu-time(IF-BA)
.

- RDN: the relative difference norm between XCS-BA and X IF-BA which are the approximate solutions delivered

by the constant solution and the integral formula methods respectively when they are combined the block

Arnoldi process.

RDN= max
k=0,1,...,N

∥XCS-BA
k −X IF-BA

k ∥

∥X IF-BA
k ∥

.

We point out that this criteria is used when the exact solution of the differential Sylvester equation is not

available.

- REN: the relative error norm between the exact solution and an approximate solution obtained either by a

constant solution based algorithm or by an integral formula based algorithm. More precisely, letting XExact

be the exact solution computed by (37), we define the following quantities :

REN
CS-BA = max

k=0,1,...,N

∥XCS-BA
k −XExact

k ∥

∥XExact
k ∥

and

REN
IF-BA = max

k=0,1,...,N

∥X IF-BA
k −XExact

k ∥

∥XExact
k ∥

.

Before to start the numerical experiments and tests, we will show in the next subsection, how to construct a

differential Sylvester equation which have a known exact benchmark solution.

4.1 A benchmark example

To the best of our knowledge, there is no Known benchmark explicit solution for large-scale differential and

Sylvester matrix equations. Here, we show how to construct a benchmark differential Sylvester equation whose

exact solution is known and with which we can confront the approximate solutions provided by the different

compared methods.

Let K,R ∈ R
p0×p0 be two nilpotent matrices, of index p0 ≥ 3 i.e., K p0 = Rp0 = 0p0

and let A0 ∈ R
n0,×n0 ,

B0 ∈R
s0,×s0 , X0, C ∈R

n×s where n = p0 n0 and s = p0 s0. The integer p0 is a small integer. We also choose two

real numbers α , β and we consider the matrices

A = αIn +A0 ⊗K, B = β Is +B0 ⊗R, (36)

We easily have, for any real t and for any matrix X of size n× s:

et AXet B =
(p0−1

∑
i=0

p0−1

∑
j=0

t i+ j Li, j(X)
)

e(α+β ) t ,

where Li, j(X) is defined by Li, j(X) =
1

i! j!
(Ai

0 ⊗Ki)X(B j
0 ⊗R j). Assuming that α + β < 0, then the unique

solution X̃∗ of the algebraic matrix Sylvester equation AX +XB =C is given by the formula (see [31]),

X̃∗ =−
∫ +∞

0
et A C et B dt.

A straightforward calculations give

X̃∗ =
p0−1

∑
i=0

p0−1

∑
j=0

(−1)i+ j

(α +β )i+ j+1
Ci, j,

where Ci, j =
1

i! j!
(Ai

0 ⊗ Ki)C(B j
0 ⊗ R j). Then, using the formula (6), the unique solution of the differential

Sylvester matrix equation

X ′(t) = AX(t)+X(t)B−C,
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satisfying the initial condition X(t0) = X0, is the matrix function X∗(t) given by

X∗(t) = e(t−t0)A (X0 − X̃∗)e(t−t0)B + X̃∗.

It follows that

X∗(t) =
p0−1

∑
i=0

p0−1

∑
j=0

[
(t − t0)

i+ je(α+β )(t−t0) Li, j(X0 − X̃∗)+
(−1)i+ j

(α +β )i+ j+1
Li, j(C)

]
. (37)

We may also obtain the solution X∗(t) of the differential Sylvester matrix equation by using the integral formula

(5), since we have

X∗(t) = e(t−t0)A X0 e(t−t0)B −
∫ t

t0

e(t−u)A C e(t−u)B du.

It follows that,

X∗(t) =
p0−1

∑
i=0

p0−1

∑
j=0

[
(t − t0)

i+ je(α+β )(t−t0) Li, j(X0)− Ii+ j(t)Li, j(C)
]
,

where the scalar functions Ik(t) are given by Ik(t) =
∫ t

t0

(t − u)ke(α+β )(t−u)du. The expression of the functions

Ik(t) are obtained by recursion. Indeed, we have

I0(t) =
1

α +β

(
e(α+β )(t−t0)−1

)
,

and for k ≥ 1 by parts integration, we have

Ik(t) =
1

α +β

(
(t − t0)

ke(α+β )(t−t0)− kIk−1(t)
)
.

Then, we may show by induction that, for all k ≥ 0, we have

Ik(t) =
k!

(α +β )k+1

( k

∑
ℓ=0

(−1)ℓ
(α +β )ℓ (t − t0)

ℓ

ℓ!
e(α+β )ℓ (t−t0)− (−1)k

)
.

Before ending this subsection, let us remark that in this benchmark example, the matrix C is arbitrary and

then can also be taken in the low-rank form C = E FT , where E ∈ R
n×r and F ∈ R

s×r.

In addition, to show the strengths and limitations of compared methods in various experimental settings

when using this benchmark example, we choose p0 = 3 and we considered different values for the parameters

α and β as well as different matrices A0 and B0. The matrices K and R are fixed once and for all, as follows

K =




3 8 −19

−1 −5 11

0 −1 2


 , R =




1 1 1

0 0 0

−1 0 −1


 .

4.2 Experiment 1

In this first example, the numerical tests are done with moderate size matrices A and B. We compare the solution

provided by our proposed constant solution method implemented via Algorithm 1 with the one obtained using

the integral formula (5) as well as with the solutions given by some classical ODE’s solvers from Matlab.

The solvers ode15s, ode23s, ode23t and ode23tb are usually used for stiff ODE’s, while the other

solvers ode45, ode23 and ode113 are used for non stiff ODE’s. Note that since some ODE solvers behave

similarly and in order not to overload the plots, we only give the results obtained with the four methods ode15s,

ode23s, ode23tb and ode45. In the following two experiments, we consider the time intervals [0,T ] with T

is either T = 1 with the number of nodes is N = 10 or T = 10 with the number of nodes is N = 50 which means

that the step time is δT = 0.1 when T = 1 while δT = 0.2 when T = 10. Here, we consider the matrices A0

=gallery(’leslie’,n0), B0 = gallery(’minij’,s0) with n0 = 50 and s0 = 10 and the coefficient

matrices A, B of the differential Sylvester equations are generated by (36), as explained in the benchmark

example. The parameters α , β are equal to −2 and −1 respectively. As the matrices K, R are those given at the

beginning of section 4, the size of the matrices A, B are now n = 150 and s = 30 respectively. Here, we point

out that the solution computed by Algorithm 1 and those computed by the Algorithm based on integral formula
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or issued by the Matlab ODE solvers are compared to the exact one given in (37) which is considered as the

reference solution X ref. Thus, in the plots, we represent the behaviour of the norm of the relative error

tk →
∥Xk −X ref

k ∥

∥X ref
k ∥

as a function of tk where tk = k δT . The obtained plots and results are reported below in Figure 1 and Table 1

respectively.

Table 1 The obtained CPU times (in seconds) in Experiment 1.2.

(T , N) Method CSM IFM ode15s ode23s ode23tb ode45

(1, 10) 0.203 12.578 43.546 750.756 108.484 0.343

(10, 50) 0.718 75.703 78.984 1574.980 226.016 0.390

The analysis of results obtained in Experiments 1 shows on the one hand that the CS and IF methods return

the best results in terms of the error norm. The ode45 solver is the best among the other Matlab solvers, but

its performance does not match that of the CS and IF methods. On the other hand, by comparing the time ratios

between CS and IF which are TR=
12.578

0.203
≃ 61 for T = 1 and N = 10 and TR=

75.703

0.718
≃ 105 for T = 10 and

N = 50. We clearly see that CS is faster than IF because the former avoids using a quadrature formula as it is

the case for the later.

Fig. 1 Experiment 1: comparison of the relative error norm. The reference solution is given by (37).

4.3 Experiment 2

In this set of numerical tests, the experiments are done with a relatively large matrix A and a moderate size ma-

trix B. We compare the performances of Algorithm 3 -which implements the CS-BA method- and the equivalent

algorithm based on the integral formula combined with the block Arnoldi (IF-BA).

Experiment 2.1. The matrices A and B are obtained from the centered finite difference discretization of the

operators 



LA(u) = ∆u− fA

∂u

∂x
−gA

∂u

∂y
−ha u

LB(u) = ∆u− fB

∂u

∂x
−gB

∂u

∂y
−hB u,
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on the unit square [0,1]× [0,1] with homogeneous Dirichlet boundary conditions where

fA(x,y) = (x+10y2), gA(x,y) =
√

2x2 + y2, hA(x,y) = x2 − y2,

and

fB(x,y) = 10xy+1, gB(x,y) = e−x2−y2

, hA(x,y) =
1

1+ x2 + y2
.

To generate the coefficient matrices A and B, we used the fdm 2d matrix function from the LYAPACK tool-

box [33] as following A=fdm 2d matrix(n0, fA,gA,hA) and B=fdm 2d matrix(s0, fB,gB,hB) where n0 and

s0 are the number of inner grid points in each direction when discretizing the operators LA and LB respectively.

This gives A ∈ R
n×n, B ∈ R

s×s with n = n2
0 and s = s2

0.

We examine the performances of CS-BA and IF-BA for four choices of n0 and s0 which are (n0,s0)= (30,3),
(n0,s0) = (50,3), (n0,s0) = (30,5) and (n0,s0) = (50,5). The considered time intervals are [0,T ] where T = 1

and N = 10 or T = 2 and N = 20. This means that the step time is always δT = 0.1. In Table 2, we reported the

time ratio (TR) and the relative difference norm (RDN) between the CPU-time of CS-BA and IF-BA.

Table 2 The obtained times ratio TR and relative difference norms RDN in Experiment 2.1.

Test Problem T = 1, N = 10 T = 2, N = 20

n s TR RDN TR RDN

900 9 141 8.111e-15 186 1.887e-14

2500 9 163 1.868e-14 276 3.682e-14

900 25 164 6.329e-15 187 1.248e-14

2500 25 177 1.723e-14 186 2.499e-14

Experiment 2.2. In this test, we took A0 =gallery(’hanowa’,1500,-5) and B0 = gallery(’leslie’,6)

from the Matlab gallery and transform them into A et B of sizes n = 4500 and s = 18 respectively by using (36)

in which we took α =−7 and β =−5. The obtained results for different time intervals which are summarized

in Table 3 include the time ratio TR and the relative error norms RENCS-BA, RENIF-BA between the approximate

solutions XCS-BA, X IF-BA given by CS-BA and IF-BA respectively and the XExact the exact solution computed by

(37).

Table 3 The obtained times ratio TR and relative error norms RENCS-BA, RENIF-BA in Experiment 2.2. with N = 10.

T TR REN
CS-BA

REN
IF-BA

1 11 4.825e-11 4.143e-12

5 20 1.849e-11 9.097e-12

10 30 1.244e-11 3.387e-12

50 1329 7.852e-13 1.621e-11

100 1230 7.802e-13 1.432e-11

4.4 Experiment 3

We describe and report here the results of numerical experiments carried out when solving large scale low-rank

differential Sylvester or Lyapunov equations. The performance of CS-BA is compared with that of IF-BA. The

test matrices come either from the centred finite difference discretization of the operators LA and LB defined in

the previous experiment, or from the Florida suite sparse matrix collection [14]. The invoked matrices for our

tests from this collection are: pde900, pde2961, cdde1, Chem97ZtZ, thermal, rdb5000, sstmodel, add32 and

rw5151.

Experiment 3.1 (a). In this example, the numerical results are those obtained from solving differential

Sylvester equations. The time interval is fixed to [0,1], (T = 1). The number of nodes is N = 10 which gives a

step time δT = 0.1. The matrices A ∈ R
n×n and B ∈ R

s×s come from the discretization of the operators LA and

LB. As indicated previously, the coefficients of the right-hand side E,F ∈ R
n×r are randomly generated. The

obtained results for different sizes n, s and ranks r are summarized in Table 4.
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Table 4 The obtained times ratio TR and relative difference norms RDN in Experiment 3.1 (a).

Test Problems

n0 = 40, s0 = 20 n0 = 30, s0 = 30 n0 = 50, s0 = 50

n = 1600, s = 400 n = 900, s = 900 n = 2500, s = 2500

r TR RDN TR RDN TR RDN

2 82 2.528e-14 78 5.819e-14 78 1.354e-13

5 145 1.906e-14 136 1.201e-13 159 1.931e-13

10 170 7.256e-14 219 2.067e-14 156 1.383e-13

20 193 2.647e-14 138 6.153e-14 252 2.205e-13

Experiment 3.1 (b). Here, we consider two different time intervals [0,T ] for T = 1 and T = 10 in which

the number of sub-intervals is always N = 10. The matrix A is from the Florida sparse matrix collection. We

consider the particular case B=AT and F =E and report the results obtained when solving low-rank differential

Lyapunov equations. The obtained results for r = 2, r = 5 or r = 10 are displayed in Table 5.

Table 5 The obtained times ratio TR and relative difference norms RDN in Experiment 3.1 (b).

Test Problems

A = -cdde1 A = -Chem97ZtZ A = -pde2961 A = thermal A = rdb5000

n = 961 n = 2541 n = 2961 n = 3456 n = 5000

T r TR RDN TR RDN TR RDN TR RDN TR RDN

1

2 6.8 3.988e-15 12 5.465e-15 1.6 2.784e-15 1.4 4.295e-15 14 7.863e-13

5 17 1.032e-14 18 8.376e-15 6.5 8.639e-15 2.3 7.386e-15 42 2.892e-13

10 44 1.430e-14 50 1.268e-14 13 1.386e-14 6.1 9.442e-15 83 4.434e-13

10

2 47 2.815e-14 15 8.190e-15 12 1.002e-14 2.5 3.592e-15 57 3.482e-13

5 68 1.483e-14 30 1.002e-14 38 2.911e-14 10 4.631e-15 135 1.374e-12

10 73 2.910e-14 110 1.253e-14 57 2.713e-14 25 7.497e-15 255 1.617e-12

Experiment 3.2 (a). Here, we consider A0=pde2961 and B0=pde900 and transform them into A et B of sizes

n = 8883 and s = 2700 respectively by using (36). In order to confirm the influence of the rank r and/or length

T of the time interval, on the performances of the CS and IF methods, we report in Table 6 the results obtained

for two cases : case 1: (α,β ) = (−3,−1) and case 2: (α,β ) = (−0.7,−0.4). For each case, we choose T from

the set {2,5,10} and took N = 10 for T = 2, N = 20 for T = 5 and N = 40 for T = 10. The rank r of the factors

E and F is equal to r = 5, r = 10 or r = 20.

Table 6 The obtained times ratio TR and relative error norms norms RENCS-BA and REN
IF-BA in Experiment 3.2 (b).

α =−3, β =−1 α =−0.7, β =−0.4

T r TR REN
CS-BA

REN
IF-BA

TR REN
CS-BA

REN
IF-BA

2

5 1.277 4.777e-14 4.720e-14 1.234 2.641e-11 2.641e-11

10 1.118 5.147e-14 5.049e-14 1.139 3.022e-11 3.022e-11

20 3.858 5.473e-14 5.311e-14 2.331 3.401e-11 3.400e-11

5

5 1.292 4.358e-14 4.251e-14 1.160 2.343e-11 2.343e-11

10 1.371 4.639e-14 4.507e-14 1.124 2.728e-11 2.728e-11

20 4.230 4.984e-14 4.855e-14 −−− 3.148e-11 −−−

10

5 1.237 4.358e-14 4.251e-14 1.093 2.343e-11 2.343e-11

10 1.399 4.639e-14 4.507e-14 83.424 2.728e-11 2.728e-11

20 3.974 4.984e-14 4.855e-14 −−− 3.148e-11 −−−

We notice that in most of tests, both methods manage to provide a good approximate solution and that the

CPU time is in favor of the BA-CS method. However, we observed that for small values of α and β and when the

values of r and T are large, the BA-IF method failed to converge within a reasonable time. The non-convergence

is indicated by ”−−−”.
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Experiment 3.2 (b). In this last set of experiments, we compare the performances of the CS and IF methods

when they are applied to the solution of low-rank differential Lyapunov equations. Unlike the previous series of

tests, we did not generate a discretization for the interval [0,T ] and only calculated the approximation X(T ) at

the final time, where T = 10. Similarly, the rank of C = E ET does not vary and is r = 20. For each experiment

with a matrix A0 -which is taken from the Florida sparse matrix collection [14]-, we considered four values for

the scalar α that was used in the generation of the benchmark example. The size n0 of each matrix A0, the size

n of the benchmark matrix A as well as the obtained results are reported in Table 7.

Table 7 Numerical results for Experiment 3.2 (b) with T = 10, N = 1 and r = 20.

Test Problems

A0 = cdde1 A0 = pde2961 A0 = sstmodel

n0 = 961, n = 2883 n0 = 2961, n = 8883 n0 = 3345, n = 10035

α TR REN
CS-BA

REN
IF-BA

TR REN
CS-BA

REN
IF-BA

TR REN
CS-BA

REN
IF-BA

-5 5.12 4.33e-14 3.76e-14 2.27 2.14e-14 1.18e-14 1.82 3.43e-12 9.82e-13

-1 −−− 5.81e-12 −−− 1087.5 5.37e-12 1.26e-12 200.43 6.45e-14 6.23e-14

-0.5 −−− 4.58e-10 −−− 544.31 4.60e-10 1.01e-11 637.17 5.23e-12 2.69e-13

-0.1 −−− 8.23e-07 −−− −−− 1.19e-07 −−− −−− 3.38e-08 −−−

Test Problems

A0 = thermal A0 = add32 A0 = rw5151

n0 = 3456, n = 10368 n0 = 4960, n = 14880 n0 = 5151, n = 15453

α TR REN
CS-BA

REN
IF-BA

TR REN
CS-BA

REN
IF-BA

TR REN
CS-BA

REN
IF-BA

-5 1.53 2.03e-12 1.03e-12 1.48 5.17e-15 3.90e-15 1.37 5.44e-15 4.85e-15

-1 1.69 2.78e-14 2.56e-14 1.45 8.00e-15 1.29e-15 1.22 2.91e-14 2.50e-14

-0.5 1.58 1.20e-13 1.05e-13 1.55 5.77e-15 1.74e-15 391.43 1.44e-13 1.29e-13

-0.1 277.88 1.12e-10 6.94e-11 1.71 1.26e-14 2.46e-15 −−− 7.47e-11 −−−

5 Conclusion

In this work, we have proposed new techniques for solving Sylvester and Lyapunov matrix differential equation.

Unlike the recent method proposed in [20], our method avoid the integral formula which is very benefit and

reduced the computational cost. The proposed method is very efficient for large scale problem by exploiting a

projection on Krylov subspaces. Numerous numerical tests are used to show the effectiveness of such proposed

method, we have reported some of them in a specific section. The convergence of such method is proved and a

constructive benchmark example is given.
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