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Abstract

We give a simple direct proof of the Jamio lkowski criterion to check whether a linear map between

matrix algebras is completely positive or not. This proof is more accesible for physicists than others

found in the literature and provides a systematic method to give any set of Kraus matrices of its

Kraus decomposition.
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I. INTRODUCTION

Complete positivity for linear maps defined upon operator algebras is a mathematical

property which arises as a natural generalization of positivity of linear functionals on vector

spaces [1, 2, 3, 4]. In Quantum Physics, it has been playing a remarkable role in several

disciplines, especially in the analysis of entanglement and separability of composite systems

(cf. [5, 6, 7, 8] and references therein), in the dynamics of open systems [9, 10, 11, 12, 13, 14]

and in the Foundations of Quantum Mechanics [15, 16]. This property is used in different

ways in these contexts, but in any case it is vital to have criteria to check whether a given

linear map between operator algebras is completely positive (CP hereafter) or not.

Here we focus on a concrete one based on the Jamio lkowski isomorphism [17, 18] and in

particular we give a very accesible proof of this criterion for matrix algebras (i.e. for finite

quantum systems) which, in the positive case, allows us to find any set of Kraus operators of

its Kraus decomposition [15, 19]. A barely accesible for physicists and more involved proof

of this criterion can be found in [20].

The paper is divided as follows. In section II we give a brief reminder of complete positivity

(definition and main properties); in section III we provide the above mentioned proof of the

Jamio lkowski criterion, which is illustrated with useful and well-known examples in section

IV. We end the paper in section V with a few conclusions.

II. COMPLETE POSITIVITY: A BRIEF REMINDER

The rigorous and abstract definition of complete positivity is the following.

Definition II.1. Let A be a C∗ algebra and α : A → A an endomorphism. α is CP if the

endomorphism αN ≡ α⊗ IN on A⊗MN (C) is positive for all N ≥ 1, where IN denotes the

identity map on the algebra MN(C) of complex matrices of dimension N .

Though a direct application of this definition is always possible to check whether a given

map is CP or not, the main tool in this sense is the famous Stinespring’s theorem [1]

Theorem II.1 (Stinespring’s Theorem). For a map α : A → B(H) from a C∗ algebra

to the space of bounded linear operators on the Hilbert space H, a sufficient and necessary

condition for α to be CP is that there exists a representation π : A → K, K a Hilbert space,
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such that

α(X) = V π(X)V ∗ ∀X ∈ A and V ∈ B(K) (II.1)

This theorem is the base of the Kraus decomposition of a CP map [15, 19], which is

mostly used by physicists, and which we divide for future purposes into the cases of finite

complex-matrices algebras and algebras of bounded linear operators on a Hilbert space.

Theorem II.2 (Kraus decomposition). For finite algebras: Let α : MN(C) → MN(C)

be a linear map. Then α is CP if and only if there exist M1, . . . ,MK elements in MN(C)

such that

α(X) =
K
∑

p=1

MpXM †
p ∀X ∈ MN(C) (II.2)

For infinite algebras: Let α : B(H) → B(H) be a linear map. Then α is CP if and only if

there exists a sequence of operators M1,M2, . . . ,, each one in B(H) such that

α(X) =
∞
∑

p=1

MpXM †
p ∀X ∈ B(H) (II.3)

The sum converges in the strong topology of B(H).

Note that the Kraus decomposition assures that a dynamical map is CP, but the problem

then turns into finding the Kraus decomposition of an arbitrary linear map α. This means

that if one is not able to find one, we cannot conclude whether α is CP or not. Some results

can be found in the literature [21] which reduces the complete positivity of a given map α

to the positivity of the tensor map α ⊗ α, which turns out to be also a complex question

in practice. In the following sections, after providing a simplified proof of the Jamio lkowski

criterion for matrix algebras, once proven a map is CP, we give a procedure to build as many

Kraus representations as desired.

III. CP LINEAR MAPS ON MN (C)

We will focus on CP linear maps on complex matrices algebras, representing finite quan-

tum systems. We make use of the following common notation. {Eij}i,j=1,··· ,N denotes the

Weyl basis of MN(C), i.e. those matrices with components [Eij]mn = δimδjn or in physical

notation Eij ≡ |i〉〈j|. {en}n=1,··· ,N will denote the basis on the complex vector space CN and

(·, ·)K the standard complex scalar product which endows CK with the well-known inner
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product space structure such that under these conventions we have (em, Eijen)N = δmiδjn

for all i, j,m, n = 1, · · · , N .

Generically we will denote by Λ : MN(C) → MN(C) a linear map from the algebra of com-

plex matrices to itself. The set of such linear maps will be denoted as usual by L(MN(C)).

Definition III.1. The map Je : L(M(CN)) → MN(C) ⊗MN(C) is defined by

Je : L(MN(C)) → MN(C) ⊗MN(C)

Λ → Je[Λ] =
N
∑

i,j=1

Λ[Eij ] ⊗Eij (III.4)

This map is known as Jamio lkowski isomorphism.

The subscript e refers to the orthonormal basis in which the Weyl basis {Eij} is con-

structed. The main result is the proof of the criterion based upon this isomorphism, i.e.

upon the so-called Jamio lkowski criterion:

Theorem III.1 (Jamio lkowski criterion). Let Λ : MN(C) → MN(C) be a linear map.

Then Λ is CP if, and only if, Je[Λ] ≥ 0.

The proof we provide here rests upon the Kraus decomposition of a linear map.

Proof. Firstly we will prove that if Λ is CP, then Je[Λ] ≥ 0. If Λ is CP, then [19] there

exists K elements Mk ∈ MN(C) such that

Λ[A] =
K
∑

p=1

MpAM
†
p ∀A ∈ MN(C) (III.5)

In particular, applying this Kraus decomposition to the Weyl matrices, one obtains

K
∑

p=1

MpEijM
†
p =

N
∑

m,n=1

ΛijmnEmn (III.6)

where Λijmn are the components of Λ[Eij ] in the Weyl basis. Taking scalar products in

(III.6) one finds

Λijnm =

K
∑

p=1

(en,Mpei)N(ej ,M
†
pem)N
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=

K
∑

p=1

(en,Mpei)N(em,Mpej)
∗
N (III.7a)

where the Parseval relation has been used. Next, define N2 K-dimensional complex vectors

by

fij ≡
(

(ei,M1ej)N , · · · , (ei,MKej)N

)

∈ C
K

Relation (III.7a) can then be rewritten as

Λijnm = (fmj , fni)K (III.7b)

Since (·, ·)K is the standard inner product in C
K , from equation (III.7b) both Hermiticity

and positive semidefiniteness of the matrix
∑N

ij=1
Λ[Eij ] ⊗ Eij ∈ M(CN2

) follows from the

Hermiticity and positive definiteness of the standard scalar product (·, ·)K. In other words,

it follows from the positive semidefinite character of a matrix with structure
(

S SC†

CS CSC†

)

,

where S is a positive definite N1-dimensional square matrix and C is a N1 × (N2 − N1)

rectangular matrix, with N1 ≡ rg {fij}, i, j = 1, . . . , N . Hence (see appendix A) Je[Λ] ≥ 0.

Conversely, if the linear map Λ satisfies Je[Λ] ≥ 0, i.e. the matrix
∑N

ij=1
Λ[Eij] ⊗ Eij is

Hermitian and positive semidefiniteness, it adopts (see appendix A) the structure
(

S SC†

CS CSC†

)

and then one can straightforwardly construct N2 vectors fij ∈ CK , i, j = 1, · · · , N such that

relation (III.7b) holds for all i, j,m, n ∈ {1, · · · , N}.

Fix K = N2. Locate those m,n = 1, · · · , N such that Λnnmm = 0, say M < K of them

(indices set J , for brevity). Then for these indices define [23] [fnm] = C[fij] i, j = 1, . . . , N1.

The problem is then reduced to find K1 ≡ N2 − M vectors {fk}k=1,··· ,N2−M such that the

matrix of their scalar products is a given positive definite and Hermitian matrix. This can

be accomplished using a similar method to the Gram-Schmidt orthonormalization process.

An elementary proof is included in the form of a lemma in the appendix B and thus is always

possible. The reader should notice that since there exists an infinity of initial orthonormal

bases (cf. appendix), one can also find an infinity of vectors satisfying the required conditions.

This implies that the Kraus decomposition is not unique, as it is well-known.

In this case of finite algebras, the use of matrices makes the application of the preceding

theorem an extremely simple exercise. This is the content of the following theorem, which
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is but a reformulation of theorem III.1:

Theorem III.2. Let Λ : MN(C) → MN(C) be a linear map. Then Λ is CP if, and only

if, the matrix ΛW defined below satisfies the following two properties:

i. ΛW = Λ†
W .

ii. ΛW is positive semidefinite.

In particular, if there is a zero element in the diagonal, then their corresponding row and

column must be also zero. The matrix ΛW is defined by:

ΛW =

































Λ1111 . . . Λ111N . . . . . . ΛN111 . . . Λ1N1N

...
. . .

...
...

...
. . .

...

Λ11N1 . . . Λ11NN . . . . . . Λ1NN1 . . . Λ1NNN

...
...

...

ΛN111 . . . ΛN11N . . . . . . ΛNN11 . . . ΛNN1N

...
. . .

...
...

...
. . .

...

ΛN1N1 . . . ΛN1NN . . . . . . ΛNNN1 . . . ΛNNNN

































Proof. It is the explicit expression of
∑N

ij=1
Λ[Eij] ⊗Eij in the tensor product basis.

However for completeness’ sake we include the implication stated in theorem III.2. If a

matrix is Hermitian and positive semidefinite, then there exists a diagonal matrix D and a

unitary matrix P such that M = P †DP . The elements of D are the eigenvalues of M and

the columns of P the corresponding eigenvectors. Let J denote the subset of indexes such

that dkk = 0, k ∈ J . Let us also denote J̄ = I − J , where I = {1, . . . , N}, N = dimM .

Then suppose Mjj = 0, which implies

Mjj =
∑

m∈I

|pmj |
2djj = 0 ⇒ pmj = 0 ∀j ∈ J̄ (III.8)

We immediately conclude

Mjk =
∑

m∈J

p∗mjpmkdmm +
∑

m∈J̄

p∗mjpmkdmm = 0 ∀k ∈ I (III.9a)

Mkj =
∑

m∈J

p∗mkpmjdmm +
∑

m∈J̄

p∗mkpmjdmm = 0 ∀k ∈ I (III.9b)

Note that the converse is not always true.
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This proof, in conjuction with lemma B, allows to extract the following corollaries:

Corollary III.1. Let Λ be a CP map. Then Je[Λ] = QQ† and the entries of the kth column

of Q∗ are the components of the Kraus matrix Mk in the Weyl basis Eij.

Corollary III.2. Let Q be as in corollary III.1. Then the entries of the kth column of

Q̃∗ ≡ Q∗U , where U is a unitary N2-dimensional matrix are the components of the Kraus

matrix M̃k in the Weyl basis Eij.

These two corollaries can be summarized in words in a very simple way: any set of Kraus

matrices of a CP map is given by the columns of a square root of Je[Λ]. Since there are

infinite square roots, there will be infinite sets of Kraus representations, as already known.

Finally, the number of Kraus matrices in such representations can also be readily obtained.

Corollary III.3. The number of matrices in a minimal Kraus representation of a CP linear

map equals the number of positive eigenvalues of Je[Λ].

Proof. The number of matrices in a minimal Kraus representation equals the range of the set

of Kraus matrices in any representation [14]. Since Kraus matrices are given by the columns

of Q∗ and since eigenvectors are linearly independent, the number of non-null Kraus matrices

will coincide with the number of eigenvector whose eigenvalue is non-null.

These tools will be illustrated with common well-known examples.

IV. EXAMPLES

A very illustrative example of the immediate application of these results can be included

by considering the transposition map Λ[X ] = XT . It is well-known that this is a non CP

map, and to prove it one had traditionally to resort to consider maps Λ⊗IM over the tensor

product algebra MN(C)⊗MM(C) and study its positivity (cf. e.g. [3]). With the preceding

results, the task of deciding whether this is a CP map or not is elementary. Consider

M2(C) (nothing but computational complexity is gained in considering algebras of higher

dimension). The matrix ΛW is easily obtained:
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ΛW =















1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1















It is clear that ΛW fails to satisfy the second condition in theorem III.2, thus the trans-

position is not a CP map.

Observe that once a linear map is proven to be CP, then we can also easily find one of its

Kraus representations (indeed, we can find as many as we want). As an example of this

technique, let us study in M2(C) the linear map Λ[X ] = λ
2
trXI2 + µX with, in principle,

λ, µ ∈ C. This map is especially relevant in quantum information theory [22] and is known,

under certain restrictions[24], as the depolarizing channel of one qubit. The matrix ΛW is

ΛW =















λ
2

+ µ 0 0 µ

0 λ
2

0 0

0 0 λ
2

0

µ 0 0 λ
2

+ µ















If ΛW is to be Hermitian, then both λ and µ must be real numbers. If moreover it must

also be positive semidefinite, then [25] λ ≥ 0 and λ
2

+ 2µ ≥ 0. The cases in which one of

them is zero are trivial, so we shall focus on λ, µ 6= 0. Since none of the eigenvalues is zero,

we will need 4 Kraus matrices. Following the preceding proof and the appendix, we can

decompose ΛW = QQ† = PDP †, with P unitary and D ≥ 0 diagonal, so that the columns

of the matrix Q∗ ≡ P ∗D1/2 contain the elements of each Kraus matrix:

M1 =

√

λ + 4µ

2
I2 (IV.10)

M2 =

√

λ

4
E12 (IV.11)

M3 =

√

λ

4
E21 (IV.12)

M4 =

√

λ

4
σz (IV.13)

where σz is the Z Pauli matrix. Notice that this is not the only set of Kraus matrices. We
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can make use of corollary III.2 to find another set. In particular, choosing

U =















1 0 0 0

0 1√
2
− i√

2
0

0 1√
2

i√
2

0

0 0 0 1















(IV.14)

we obtain another matrix Q̃, which produces the widely used set

M̃1 =

√

λ + 4µ

2
I2 (IV.15)

M̃2 =

√

λ

4
σx (IV.16)

M̃3 =

√

λ

4
σy (IV.17)

M̃4 =

√

λ

4
σz (IV.18)

This technique shows the advantage of being possible to be systematically applied to

any linear map in any dimension. Everything is reduced to a matter of computation.

V. CONCLUSIONS

The main conclusion to be drawn is that to check the CP character of a linear map of

matrix algebras, one only needs to check the Hermicitity and positive semidefiniteness of a

properly constructed matrix. Besides, once complete positivity is assured, we also have a

systematic method to find any set of Kraus matrices of its Kraus representation.

The generalization to infinite algebras is currently under study. In this case, though the

criterion is still valid, we must investigate the tractability of the method in these infinite

cases.
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APPENDIX A

We will prove the following

Lemma A.1. A Hermitian N2-dimensional matrix M is positive semidefinite if, and only

if, M has the structure
(

S SC†

CS CSC†

)

, where S is a Hermitian positive definite N1-dimensional

square matrix (1 ≤ N1 ≤ N2) and C is a N1 × (N2 −N1) rectangular matrix.

Proof. (⇒). Any Hermitian N2-dimensional positive semidefinite matrix can be written as

M = ( X Y
Z T ) ( D 0

0 0
) ( X Y

Z T )
†

(A.1)

where D is a positive definite N1-dimensional matrix, X and T are unitary matrices, with

dimensions N1 and N2 − N1, respectively, and Y and Z are null matrices. Then M adopts

the preceding structure after recognizing S = XDX† and C = ZX†(= 0).

(⇐). Let us suppose that M shows the preceding structure. We will prove that then it

can be written as M = Q†Q, thus it is positive semidefinite. Since S is positive definite, one

can find an N1-dimensional matrix ξ such that S = ξ†ξ. A valid Q can then be 1√
2

(

ξ ξC†

V ξ V ξC†

)

,

where V is an arbitrary [(N2 − N1) × N1]-dimensional matrix such that V †V = IN1
. Note

that this matrix, in the given conditions, always exists, since N2−N1 ≥ N1 and then one can

always find a matrix V =
(√

1−λIN1

b

)

such that b†b = λIN1
, where b is an (N2 − 2N1) ×N1-

dimensional matrix and λ ∈ (0, 1). The Hermiticity is evident.

APPENDIX B

The problem is, given a positive definite Hermitian matrix S ∈ MN(C), to find N vectors

{fj}j=1,··· ,N in CN such that (fi, fj)N = Sij . This is always possible.

Lemma B.1. Given a positive definite Hermitian matrix [Sij ], i, j = 1, · · · , N , there exists

a set of vectors {fk}k=1,··· ,N such that (fi, fj)N = Sij.

Proof. Consider an arbitrary orthonormal basis {bk}k=1,··· ,N (which can always be found

with the orthonormalization Gram-Schmidt method). Since the matrix S is positive definite
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and Hermitian, one can always find a unitary matrix P and a diagonal positive matrix D

such S = PDP †. Define the matrix Q ≡ PD1/2. Then one can elementary check that the

set of vectors

fi =
N
∑

j=1

Q∗
ijbj i = 1, · · · , N (B.1)

satisfies the desired properties.
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