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Abstract. We discuss the structure of decoherence-free subsystems for a bosonic channel affected
by collective depolarization. A single use of the channel is defined as a transmission of a pair of
bosonic modes. Collective depolarization consists in a random linear U(2) transformation of the
respective mode operators, which is assumed to be identical for N consecutive uses of the channel.
We derive a recursion formula that characterizes the dimensionality of available decoherence-free
subsystems in such a setting.

1. Introduction

Decoherence induced by uncontrolled interactions with the environment is a
major obstacle when implementing protocols for quantum information processing
in real physical systems. The effects of such interactions can however be reduced
by using particular quantum states that are robust against specific decoherence
mechanisms. An interesting and physically relevant scenario of decoherence is
when the physical system exhibits certain symmetries in interactions with the en-
vironment. Such symmetries imply the existence of whole subspaces that remain
completely unaffected by decoherence and can therefore be used for faultless quan-
tum information processing. This observation, which can be made for a number of
interaction schemes from various perspectives [1, 2, 3, 4, 5], has led to the develop-
ment of a general theory of decoherence-free subspaces and subsystems, reviewed
recently in [6].

The theory of decoherence-free subspaces and subsystems applies to a vari-
ety of physical systems. One such system is light travelling through an optical
fiber, which usually exhibits random birefringence caused by fluctuating environ-
mental conditions, such as temperature and mechanical strain. Mathematically,
this system can be modelled as a bosonic communication channel. A single use
of this channel is defined as a transmission of two bosonic modes corresponding
to orthogonal polarizations. Birefringence is described as a random U(2) trans-
formation between the operators of these two orthogonally polarized modes. In a
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realistic situation this transformation remains practically constant over many con-
secutive uses of the channel, for time intervals comparable at least with the round
trip time in a fiber [7]. The presence of such a symmetry leads to the existence of
non-trivial decoherence-free subsystems. Their structure has been discussed in our
recent paper [8]. In this contribution, we will concentrate on the mathematical de-
tails of the derivation briefly sketched in the previous paper, and will illustrate the
presentation with diagrams that provide additional insights into the calculations.

The decoherence-free subsystems for a collectively depolarizing bosonic channel
have recently attracted considerable attention in the context of quantum reference
frames and various scenarios of quantum and classical communication over depo-
larizing channels [9]. This has produced theoretical proposals for robust quantum
key distribution [10, 11, 12], alignment-free tests of Bell’s inequalities [13], and
entanglement-enhanced classical communication [14], with some of these ideas im-
plemented in proof-of-principle quantum optical experiments [15, 16, 17]. From
the mathematical point of view, an interesting aspect of the collectively depolar-
izing bosonic channel is that in contrast to particle-based scenarios in which every
elementary system (i.e. a particle) has a finite number of states, the elementary
system in our case (i.e. a pair of bosonic modes) is infinitely dimensional and
its transformation under the interaction with the environment is described by a
reducible representation of the group U(2).

This paper is organized as follows. We start with a discussion of the polar-
ization transformation for a single use of the bosonic channel in Sec. 2. We then
analyze in Sec. 3 the emergence of decoherence-free subsystems for multiple uses of
the channel. In Sec. 4 we derive a recursion formula for dimensions of decoherence-
free subsystems. Finally, Sec. 5 concludes the paper.

2. Polarization transformation

We assume that the quantum system transmitted in a single use of the channel
is composed of a pair of bosonic modes corresponding to orthogonal polarizations,
with the respective creation operators labelled by â†H and â†V . Random depolar-
ization consists in a linear unitary transformation of the modes given by:

(

â†H
â†V

)

7→ Ω

(

â†H
â†V

)

(1)

where the matrix

Ω =

(

ΩHH ΩHV

ΩV H ΩV V

)

(2)

is an arbitrary element of the group U(2). It will be convenient to decompose
Ω into a product of a phase factor e−iα ∈ U(1) and a special unitary matrix
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Ω′ ∈ SU(2):
Ω = e−iαΩ′. (3)

This decomposition is ambiguous, as both the factors can be multiplied by −1.
However, the final results obtained with this decomposition will be free from this
ambiguity, which makes the specific choice of the decomposition irrelevant. It is
also worthwhile to note that in contrast to unitary transformations on the Hilbert
space of quantum states, for which the overall phase factor is not physical, in the
present case the overall phase factor e−iα is physically meaningful, as it describes
the phase of the fields which can in principle be measured with an external phase
reference.

The two-mode Hilbert space H describing our system has a convenient or-
thonormal basis in the form of Fock states defined in general by

|mHnV 〉 =
(â†H)m(â†V )

n

√
m!n!

|vac〉, m, n = 0, 1, 2, . . . , (4)

where |vac〉 is the vacuum state of the system. The polarization transformation
defined in Eq. (1) does not change the total number of field excitations. It is
therefore convenient to decompose the Hilbert space H into a direct sum

H =
∞
⊕

l=0

H(l) (5)

of finite-dimensional subspaces H(l) that contain exactly l excitations in both the
modes. The subspace H(l) has dimension l+1 and it is spanned by Fock states of
the form:

H(l) = Span{|mH(l −m)V 〉 | m = 0, 1, . . . , l}. (6)

Under the polarization transformation given in Eq. (1), the state |mH(l−m)V 〉 is
transformed according to:

|mH(l −m)V 〉 =
(â†H)m(â†V )

l−m

√

m!(l −m)!
|vac〉

7→ (ΩHH â
†
H +ΩHV â

†
V )

m(ΩV H â
†
H +ΩV V â

†
V )

l−m

√

m!(l −m)!
|vac〉 (7)

If we now insert the decomposition of Ω given in Eq. (3), this will produce an
overall factor e−ilα times the same expression as in the second line of Eq. (7), but
with the elements of Ω replaced by those of Ω′. It is easy to recognize in this
expression the standard construction of irreducible representations of the group
SU(2) using monomials [18, 19]. This yields the formula:

|mH(l −m)V 〉 7→ e−ilα
l
∑

n=0

Dl/2
mn(Ω

′)|nH(l − n)V 〉 (8)
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where D
l/2
mn(Ω′) are the elements of (l+1)× (l+1) matrices D̂l/2(Ω′) which form

the irreducible (l + 1)-dimensional representation of the group SU(2). Thus the
unitary transformation Û(Ω) of an arbitrary quantum state in the Hilbert space
H induced by the map given in Eq. (1) has the form:

Û(Ω) =
∞
⊕

l=0

e−ilαD̂l/2(Ω′). (9)

Let us note that although the decomposition Ω = e−iαΩ′ is defined up to −1
multiplying both the factors, the product e−ilαD̂l/2(Ω′) does not depend on the
specific choice of the decomposition. This follows from the fact that the elements
of the matrix D̂l/2(Ω′) are given by monomials of degree l constructed from the
elements of Ω′. Therefore each one of the substitutions e−iα → −e−iα and Ω′ →
−Ω′ will produce a factor (−1)l, one multiplying e−ilα and another one multiplying
D̂l/2(Ω′), which will cancel each other. Consequently, the right hand side of Eq. (9)
is defined unambiguously as a function of Ω ∈ U(2).

3. Collective depolarization

We will now consider the scenario in which the polarization transformation Ω

is constant across N uses of the channel. The entire Hilbert space in this case
is given by an N -fold tensor product H⊗N of the two-mode space H analyzed in
the previous section. The action of the collectively depolarizing channel on an
arbitrary input quantum state |ψ〉 ∈ H⊗N is given by:

|ψ〉 7→ [Û(Ω)]⊗N |ψ〉. (10)

Given the decomposition of Û(Ω) derived in Eq. (9), we can rewrite the tensor
product [Û (Ω)]⊗N as:

[Û(Ω)]⊗N =
⊕

l1,...,lN≥0

e−i(l1+...+lN )αD̂l1/2(Ω′)⊗ . . .⊗ D̂lN/2(Ω′)

=

∞
⊕

L=0

e−iLα
⊕

l1,...,lN≥0
l1+...+lN=L

D̂l1/2(Ω′)⊗ . . .⊗ D̂lN/2(Ω′) (11)

We see that the overall phase factor of the transformation Ω enters the expression
only with the total number of excitations L = l1 + . . . + lN contained in all the
N uses of the channel. The N -fold tensor product of the SU(2) representations
D̂l1/2(Ω′)⊗ . . .⊗ D̂lN/2(Ω′) can in general be decomposed into direct sums by the
iterative application of the formula [20]:

D̂j1(Ω′)⊗ D̂j2(Ω′) = D̂|j1−j2|(Ω′)⊕ D̂|j1−j2|+1(Ω′)⊕ . . .⊕ D̂j1+j2(Ω′). (12)
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This formula allows one to convert all the tensor products into direct sums of
irreducible representations, with any of the representations allowed to appear a
number of times. Therefore we anticipate that the inner sum in Eq. (11) can be
represented in the form:

⊕

l1,...,lN≥0
l1+...+lN=L

D̂l1/2(Ω′)⊗ . . .⊗ D̂lN/2(Ω′) =
⊕

j

1̂

Kj
NL

⊗ D̂j(Ω′) (13)

where 1̂K is the identity operator in a K-dimensional space C
K and the integer

Kj
NL tells us how many times the representation j occurs in the decomposition

of the N -fold product [Û(Ω)]⊗N in the sector of the entire Hilbert space H⊗N

that contains exactly L excitations. The multipliticies Kj
NL will define the ca-

pability of the system to protect quantum coherence against depolarization. By
considering the parity of the indices l1, . . . lN when applying Eq. (12) to multiple
tensor products D̂l1/2(Ω′) ⊗ . . . ⊗ D̂lN/2(Ω′), it is easy to observe that the repre-
sentations which will appear in the decomposition in Eq. (13) will be indexed with
j = 0, 1, . . . , L/2 for even L and with j = 1/2, 3/2, . . . , L/2 for odd L. Assuming
for the time being that the multiplicities Kj

NL are known, we thus arrive at the
following decomposition of the polarization transformation in the entire Hilbert
space H⊗N :

[Û(Ω)]⊗N =
∞
⊕

L=0

e−iLα

L/2
⊕

j=L/2−⌊L/2⌋

1̂

Kj
NL

⊗ D̂j(Ω′). (14)

The above formula suggests the decomposition of the Hilbert space H⊗N into
sectors with a fixed number of excitations HNL:

H⊗N =

∞
⊕

L=0

HNL (15)

which in turn can be represented as isomorphic with the following structure:

HNL
∼=

L/2
⊕

j=L/2−⌊L/2⌋

C
Kj

NL ⊗ C
2j+1. (16)

The components of the state vector belonging to separate subspaces HNL are mul-
tiplied by different phase factors e−iLα. If the parameters of the transformation Ω

are unknown, this implies the loss of quantum coherence between different sectors
HNL. Within each sector, however, we have a number of subspaces for which the
action of the collective depolarization operator is given by the identity 1̂

Kj
NL

. This

means that a quantum state which is encoded into a subspace isomorphic to one of
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the subspaces CKj
NL in the structure defined in Eq. (16) remains intact even if the

transformation Ω is completely unknown. We note that the coherence between

the subspaces CKj
NL with different values of j is destroyed as they are coupled to

subsystems C
2j+1 on which collective depolarization takes different forms. Con-

sequently, the capacity of the system to protect quantum coherence is defined by
the multiplicities Kj

NL, or to be precise, by the highest value over the permitted
range of j.

4. Recursion formula

We will now demonstrate that the multiplicities Kj
NL are related via a simple

recursion formula. As we have seen in the preceding section, when the total number
L of excitations is fixed, the overall phase of the polarization transformation Ω is
irrelevant. It is therefore sufficient to restrict ourselves to Ω ∈ SU(2) and consider
the decomposition of [Û (Ω)]⊗N in the sector HNL in the form:

[Û(Ω)]⊗N
∣

∣

∣

HNL

=

L/2
⊕

j=L/2−⌊L/2⌋

1̂

Kj
NL

⊗ D̂j(Ω). (17)

The Hilbert space corresponding to N uses of the channel has an obvious decom-
position as H⊗N = H⊗(N−1)⊗H. If we now consider the sector of H⊗N containing
exactly L excitations, it can be constructed from the subspaces of H⊗(N−1) and H
according to:

HNL =

L
⊕

L′=0

HN−1,L′ ⊗H(L−L′) (18)

where H(L−L′) is a subspace of the two-mode Hilbert space introduced in Eq. (5)
that contains exactly L−L′ excitations of the field. This construction implies that

the operator [Û(Ω)]⊗N
∣

∣

∣

HNL

can be represented as:

[Û (Ω)]⊗N
∣

∣

∣

HNL

=
L
⊕

L′=0

[Û (Ω)]⊗(N−1)
∣

∣

∣

HN−1,L′

⊗ D̂(L−L′)/2(Ω) (19)

We can now insert the decomposition of [Û(Ω)]⊗(N−1)
∣

∣

∣

HN−1,L′

using an expansion

analogous to Eq. (17), assuming that the respective coefficients Kj′

N−1,L′ are known.
This yields:

[Û(Ω)]⊗N
∣

∣

∣

HNL

=
L
⊕

L′=0





L′/2
⊕

j′=L′/2−⌊L′/2⌋

1̂

Kj′

N−1,L′

⊗ D̂j′(Ω)



⊗ D̂(L−L′)/2(Ω) (20)
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The tensor product D̂j′(Ω)⊗ D̂(L−L′)/2(Ω) appearing in the above expression can
be decomposed using Eq. (12) into a direct sum according to:

D̂j′(Ω)⊗ D̂(L−L′)/2(Ω) =

j′+(L−L′)/2
⊕

j=|j′−(L−L′)/2|

D̂j(Ω) (21)

Inserting Eq. (21) into Eq. (20) gives:

[Û(Ω)]⊗N
∣

∣

∣

HNL

=

L
⊕

L′=0

L′/2
⊕

j′=L′/2−⌊L′/2⌋

j′+(L−L′)/2
⊕

j=|j′−(L−L′)/2|

1̂

Kj′

N−1,L′

⊗ D̂j(Ω) (22)

Comparing Eq. (17) with the above expression allows us to relate the multiplicities
Kj

NL, describing decoherence-free subsystems for N uses of the channel, to the

coefficients Kj′

N−1,L′ corresponding to the case when the number of channel uses is

reduced by one. In order to find the explicit relation between Kj
NL and Kj′

N−1,L′

we need to change the order of summations over L′, j′, and j in Eq. (22) such
that the summation over j is the outermost and its limits do not depend on other
summation variables. Then the inner summations over L′ and j′ should yield a
formula for Kj

NL.
The triple summation given in Eq. (22) can be visualized by plotting in a three-

dimensional space the set of points (L′, j′, j) that are defined by the summation
limits in Eq. (22). The resulting grid is depicted in Fig. 1. First, we note that
the conditions L′ = 0, 1, . . . , L and j′ = L′/2−⌊L′/2⌋, . . . , L′/2 define a triangular
grid for the pairs (L′, j′). This two-dimensional grid is shown with the help of dark
grey points in Fig. 1. For every pair (L′, j′) we have an allowed range of js defined
by the limits of the third sum in Eq. (22). The upper limit for j is always given
by the plane specified by the equation

j = j′ + (L− L′)/2. (23)

The lower limit for j is specified by one of the two conditions:

j = (L− L′)/2 − j′ (24)

or
j = j′ − (L− L′)/2 (25)

whichever gives a higher value of j. It is easy to verify that Eq. (24) is relevant when
j′ ≤ (L−L′)/2, whereas Eq. (25) gives the lower summation limit if j′ ≥ (L−L′)/2.
The three planes defined by Eqs. (23)–(25) together with the fourth vertical plane
specified by the condition j′ = L′/2 form a tetrahedron which encloses the entire
three-dimensional summation grid.
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Fig. 1: The three-dimensional grid for summation variables (L′, j′, j) defined by
the triple sum in Eq. (22). The allowed values of L′ and j′ form a triangular
grid shown with dark grey points in the (L′, j′) plane marked as a light gray
square. For every pair of L′ and j′ the permitted values of j are shown as black
points connected with a dotted line. The entire three-dimensional grid is contained
within a tetrahedron with vertices located at (L, 0, 0), (L/2, L/4, 0), (0, 0, L/2),
and (L,L/2, L/2). These points are obtained by calculating intersections of any
three out of four planes given by Eqs. (23)–(25) and j′ = L′/2.
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The structure depicted in Fig. 1 provides us with guidance on how to invert
the order of summations in Eq. (22), in order to make the summation limits of
j independent of other variables. Obviously, the summation over j will run from
L/2 − ⌊L/2⌋ to L/2 in integral steps. In order to find the limits for L′ and j′

for a fixed j, we need to consider an intersection of the tetrahedron depicted in
Fig. 1 with a horizontal plane corresponding to that value of j. This procedure is
illustrated in Fig. 2. The intersection of the plane of constant j with the planes
specified in Eqs. (23)–(25) gives three linear constraints on the values of L′ and
j′ shown in Fig. 2 with dashed lines. These constraints, together with j′ = L′/2,
define a rectangular region which, as it is easy to see, lies entirely within the trian-
gular grid of pairs (L′, j′). Because of the geometry of this region, it is convenient
to define two new variables:

µ = L′/2 + j′, (26)

ν = L′/2− j′. (27)

The limits for µ are given by Eqs. (24) and (25) and have the explicit form L/2−j ≤
µ ≤ L/2+ j, whereas the values of ν are bounded by j′ = L′/2 and Eq. (23) which
combined together give 0 ≤ ν ≤ L/2 − j. Both the variables µ and ν increase
in unit steps, which follows from the form of the grid for the (L′, j′) variables.
Consequently, the summation over L′ and j′ for a specified j can be given by a
double sum over µ = L/2 − j, L/2 − j + 1, . . . , L/2 + j and ν = 0, 1, . . . , L/2 − j
with the old variables expressed as L′ = µ+ ν and j′ = (µ− ν)/2.

Using the new summation variables µ and ν gives us the following decomposi-

tion for [Û (Ω)]⊗N
∣

∣

∣

HNL

with the inverted integration order:

[Û (Ω)]⊗N
∣

∣

∣

HNL

=

L/2
⊕

j=L/2−⌊L/2⌋

L/2+j
⊕

µ=L/2−j

L/2−j
⊕

ν=0

1̂

K
(µ−ν)/2
N−1,µ+ν

⊗ D̂j(Ω) (28)

The two inner sums yield of course the identity operator acting in a larger space,
defined by:

L/2+j
⊕

µ=L/2−j

L/2−j
⊕

ν=0

1̂

K
(µ−ν)/2
N−1,µ+ν

= 1̂

∑L/2+j
µ=L/2−j

∑L/2−j
ν=0 K

(µ−ν)/2
N−1,µ+ν

. (29)

Inserting this equation into Eq. (28) and comparing the resulting expression with
Eq. (17) gives a recursion formula for Kj

NL in the form:

Kj
NL =

L/2+j
∑

µ=L/2−j

L/2−j
∑

ν=0

K
(µ−ν)/2
N−1,µ+ν (30)
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Fig. 2: The points of the three-dimensional grid (L′, j′, j) that lie in the horizontal
plane for a specified j have the first two coordinates (L′, j′) specified by the set of
inequalities L′/2+j′ ≥ L/2−j, L′/2+j′ ≤ L/2+j, and L′/2−j′ ≤ L/2−j. These
three inequalities, together with the condition L′/2 − j′ ≥ 0, define a rectangular
region, which can be conveniently parameterized with the help of two new integer
variables µ and ν.

which is the central result of this paper. In order to complete the recipe for calcu-
lating the multiplicities Kj

NL, we need to specify their values for N = 1. This task
however is straightforward. Let us recall that for N = 1 we have HN=1,L = H(L)

where the right-hand side has been defined in Eq. (6), and that for a polarization

transformation Ω ∈ SU(2) Eq. (9) implies that Û(Ω)
∣

∣

∣

HN=1,L

= D̂L/2(Ω). This

means that for N = 1:
Kj

N=1,L = δL,2j (31)

which provides the initial condition to calculate Kj
NL for an arbitrary N .

The recursion formula derived in Eq. (30) can be illustrated with a diagram
shown in Fig. 3 which provides a mnemonic recipe for carrying out calculations.

In order to find Kj
NL we need to add Kj′

N−1,L′ for all pairs of (L′, j′) that lie within
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Fig. 3: Graphic representation of the recursion formula derived in Eq. (30). The

multiplicity Kj
NL is given by a sum of the multiplicities Kj′

N−1,L′ for all the pairs
of the parameters (L′, j′) lying inside a rectangle marked as a light grey region,
with vertices at (L, j), (L− 2j, 0), (L/2− j, L/4− j/2), and (L/2 + j, L/4 + j/2).

a rectangle which is rotated by 45◦ with respect to the axes of the coordinate
system, and has two vertices located at (L, j) and (L− 2j, 0), with the remaining
two located on the line j′ = L′/2. Fig. 3 shows how to obtain this rectangle by
starting from the point (L, j) and going in two orthogonal directions that form 45◦

with the axes, until reaching respectively the limits of j′ = L′/2 and j′ = 0.

5. Conclusions

We have derived a recursion formula for the dimensions Kj
NL of decoherence-

free subsystems in a bosonic channel experiencing collective depolarization de-
scribed by the U(2) group. This model is relevant in quantum communication
over single-mode optical fibers, for which collective depolarization is one of the
dominant decoherence mechanisms. Although we have not been able to solve the



[Author and title] 12

recursion formula and obtain a closed analytical formula for Kj
NL, it can be easily

implemented in numerical calculations.
The depolarization model considered here assumed that the phase relations

between the consecutive uses of the channel are fixed. This requirement cannot
be fulfilled if the communicating parties do not share a common phase reference
to prepare and detect states. Then the phase factor e−iα varies between the
uses of the channel, and only the SU(2) transformation Ω′ remains constant. In
order to implement decoherence-free encoding in such a scenario, the same fixed
number of l excitations must be transmitted in a sequence of channel uses. The
structure of decoherence-free subsystems for N uses of the channel is then given
by a direct-sum decomposition of [D̂l/2(Ω′)]⊗N , discussed in [21]. Alternatively,
it is possible to devise schemes in which phases are self-referenced by employing
multiport interferometers for state preparation and detection. Examples of such
schemes have been described in [10, 12]. Mathematically, this approach consists in
introducing phase dependencies between multiple uses of the channel, which then
give rise to non-trivial decoherence-free subsystems.
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