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Abstract. Entanglement represents a pure quantum effect involving two or more particles.
Spin systems are good candidates for studying this effect and its relation with other collective
phenomena ruled by quantum mechanics. While the presence of entangled states can be easily
verified, the quantitative estimate of this property is still under investigation. One of the most
useful tool in this framework is the concurrence whose definition, albeit limited to S = 1/2
systems, can be related to the correlators. We consider quantum spin systems defined along
chains and square lattices, and described by Heisenberg-like Hamiltonians: our goal is to clarify
the relation between entanglement and quantum phase transitions, as well as that between the
concurrence the and the specific quantum state of the system.

1. Introduction

The occurrence of collective behavior in many-body quantum systems is asso-
ciated with classical and quantum correlations. The latter, whose name is entan-
glement, cannot be accounted for in terms of classical physics and represents the
impossibility of giving a local description of a many-body quantum state. Entan-
glement is expected to play an essential role at quantum phase transitions (QPT),
where quantum effects manifest themselves at all length scales, and the problem
has recently attracted an increasing interest [1, 2, 3, 4, 5, 6].
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Moreover, entanglement comes into play in quantum computation and commu-
nication theory, being the main physical resource needed for their specific tasks [7].
In this respect, the perspective of manipulating entanglement by tunable quantum
many-body effects appears intriguing.

In this paper, entanglement estimators are found to give important insight in
the physics of S = 1/2 spin systems, for which the concurrence give quantitative
definition of bipartite entanglement. Quantum spin chains and two dimensional
lattices in external fields are studied. Two striking features are found: the occur-
rence of a factorized ground state at a field hf and that of a QPT at hc > hf ,
where multipartite entanglement plays an essential role.

The entanglement estimators have been calculated by numerical simulations,
carried out in models with linear dimension L , via Stochastic Series Expansion
(SSE) Quantum Monte Carlo based on a modified directed-loop algorithm [8]. We
have verified that the inverse temperature β = 2L is suitable to test the T = 0
behaviour.

2. The model

We consider the antiferromagnetic S = 1/2 XYZ model in a uniform magnetic
field:

Ĥ/J =
∑

〈ij〉

[

Ŝx
i Ŝ

x
j +∆yŜ

y
i Ŝ

y
j +∆zŜ

z
i Ŝ

z
j

]

−
∑

i

h · Ŝi , (1)

where J>0 is the exchange coupling, 〈ij〉 runs over the pairs of nearest neigh-
bors, and h≡gµBH/J is the reduced magnetic field. The canonical transformation
Ŝx,y
i →(−1)I Ŝx,y

i with I = 1(2) for i belonging to sublattice 1(2), transforms the
coupling in the xy plane from antiferromagnetic to ferromagnetic. The Hamilto-
nian (1) is the most general one for an anisotropic S = 1/2 system with exchange
spin-spin interactions. However, as real compounds usually display axial symme-
try, we will henceforth consider either ∆y=1 or ∆z=1. Moreover, we will apply
the field along the z-axis, i.e. h=(0, 0, h).

This paper focuses on the less investigated case ∆z=1, defining the XYX model
in a field. Due to the non-commutativity of the Zeeman and the exchange term, for
∆y 6=1 this model is expected to show a field-induced QPT on any D-dimensional
bipartite lattice, with the universality class of the D-dimensional Ising model in
a transverse field [9]. The two cases ∆y<1 and ∆y>1 correspond to an easy-
plane (EP) and easy-axis (EA) behavior, respectively. The ordered phase in the
EP(EA) case arises by spontaneous symmetry breaking along the x(y) direction,
which corresponds to a finite value of the order parameter Mx(My) below the
critical field hc. At the transition, long-range correlations are destroyed, and
the system is left in a partially polarized state with field-induced magnetization
reaching saturation only as h→∞. This picture has been verified so far in D=1
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only, both analytically [10]and numerically [2, 11].
Besides its quantum critical behavior, a striking feature of the model Eq. (1) is

the occurrence of an exactly factorized ground state for a field hf(∆y) lower than
the critical field hc. This feature was previously predicted in Ref. [12] for magnetic
chains, and its entanglement behaviour has been studied in Ref. [2]. Our QMC
simulations have given evidence [3] for a factorized ground state to occur also in
D=2. We have then rigorously generalized the proof of factorization to the most
general Hamiltonian Eq. (1) on any 2D bipartite lattice. The proof will be soon
reported elsewhere, but we here outline the essential findings in the following. The
occurrence of a factorized ground state is particularly surprising if one considers
that we are dealing with the S = 1/2 case, characterized by the most pronounced
effects of quantum fluctuations. However, in the class of models here considered,
they are fully uncorrelated[12] at h = hf , thus leading to a classical-like ground
state.

3. Entanglement estimators

In order to calculate the entanglement of formation [13] in the quantum spin
system described by Eq. (1) we make use of the one-tangle and of the concurrence.
The one-tangle [14, 15] quantifies the T = 0 entanglement of a single spin with the
rest of the system. It is defined as:

τ1 = 4det ρ(1) , ρ(1) = (I +
∑

α

Mασα)/2 ; (2)

ρ(1) is the one-site reduced density matrix, Mα = 〈Ŝα〉, σα are the Pauli matrices,
and α = x, y, z. In terms of the spin expectation values Mα, one has:

τ1 = 1− 4
∑

α

(Mα)2. (3)

The concurrence [16] quantifies instead the pairwise entanglement between two
spins at sites i and j, both at zero and finite temperature. For the model of
interest, in absence of spontaneous symmetry breaking (Mx = 0) the concurrence
reads [15]

Cij = 2 max{0, C ′

ij , C
′′

ij} , (4)

where

C
′

ij = gzzij − 1

4
+ |gxxij − gyyij | , (5)

C
′′

ij = |gxxij + gyyij | −
√

(

1

4
+ gzzij

)2

− (Mz)2 , (6)

and gααij = 〈Ŝα
i Ŝ

α
j 〉 are the static correlators.
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One-tangle and concurrence are related by the Coffman-Kundu-Wootters (CKW)
conjecture [14], recently proved by Osborne and Verstraete [17], stating that

τ1≥τ2≡
∑

j 6=i

C2
ij , (7)

which expresses the crucial fact that pairwise entanglement does not exhaust the
global entanglement of the system, as entanglement can also be stored in 3-spin
correlations, 4-spin correlations, and so on. Therefore n-spin entanglement and
m-spin entanglement with m 6=n are mutually exclusive and this is really a unique
feature of entanglement as a form of correlation. The difference with classical
correlations is evident.

Due to the CKW conjecture, the entanglement ratio [2] R≡τ2/τ1<1 quantifies
the relative weight of pairwise entanglement, and its deviation from unity shows the
relevance of n-spin entanglement with n>2. Although indirect, the entanglement
ratio is a powerful tool to estimate multi-spin entanglement.

4. The factorized state

In the one dimensional system described by Eq. (1) the occurence of an exactly
factorized ground state for a field hf(∆y) lower than the critical field hc, was
predicted in Ref. [12]. In the case of the XYX model, this factorizing field is

hf =
√

2(1 +∆y) . (8)

At h = hf the ground state of the model takes a product form |Ψ〉 = ⊗N
i=1 |ψi〉,

where the single-spin states |ψi〉 are eigenstates of (n1(2) · Ŝ), where n1(2) being the
local spin orientation on sublattice 1 (2). Taking n = (cosφ sin θ, sinφ sin θ, cos θ),
one obtains [12]

φ1 = 0 , φ2 = π , θ1 = θ2 = cos−1
√

(1 + ∆y)/2 . (9)

In particular, for h = hf the spin orientation in the quantum state is exactly
the same as in the classical limit of the model made of continuous spins with
effective spin length Seff = 1/2; this means that quantum fluctuations only set the
length of the effective classical spin. The factorized state of the anisotropic model
continuously connects with the fully polarized state of the isotropic model in a
field for ∆y = 1 and h = 2.

In the two-dimensional case, we have found that for any value of the anisotropies
∆y and ∆z, there exists an ellypsoid in field space

h2x
(1+∆y)(1+∆z)

+
h2y

(1+∆y)(∆y+∆z)
+

h2z
(1+∆z)(∆y+∆z)

= 4 (10)
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such that, when h lies on its surface, the ground state of the corresponding model
is factorized, |Ψ〉=⊗N

i=1 |ψi〉. The single-spin states |ψi〉 are eigenstates of (nI · Ŝ),
nI being the local spin orientation on sublattice I. We will hereafter indicate with
hf (factorizing field) the field satisfying Eq. (10); at h=hf , the reduced energy
per site is found to be ǫ=−(1+∆y+∆z)/2. In the particular case of ∆z=1 and

h=(0, 0, h), the factorizing field takes the simple expression hf=2
√

2(1+∆y). As

for the structure of the ground state, taking nI=(cos φI sin θI , sinφI sin θI , cos θI),
the analytical expressions for φI and θI are available via the solution of a system
of linear equations.

The local spin orientation turns out to be different in the EP and EA cases,
being

φ1=0 , φ2=π , θ1=θ2=cos−1
√

(1+∆y)/2 , (11)

for ∆y<1, and

φ1=π/2 , φ2=−π/2 , θ1=θ2=cos−1
√

2/(1+∆y) , (12)

for ∆y>1.
Despite its exceptional character, the occurrence of a factorized state is not

marked by any particular anomaly in the experimentally measurable thermody-
namic quantities. On the other hand, entanglement estimators are able to pin
down the occurrence of such factorized states with high accuracy, as shown in the
following section.

5. Entanglement and quantum phase transitions

The entanglement estimators display a marked anomaly at the factorizing field,
where they clearly vanish, as expected. When the field is increased above hf , the
ground-state entanglement has a very steep recovery, accompanied by the QPT at
hc > hf . The system realizes therefore an interesting entanglement effect controlled
by the magnetic field. This feature is associated with the many-body behavior of
the system and it is shown in Fig.1 and Fig.2 for one and two-dimensional systems,
respectively.

The concurrence terms, are generally short-ranged, and usually do not extend
farther than the third neighbor. The longest range of Cij is indeed observed around
the factorizing field hf [18, 19].

The sum of squared concurrences τ2 is seen to be always smaller than or equal to
the one-tangle τ1, both for one- and two-dimensional systems. This is in agreement
with the CKW conjecture [14]. The total entanglement is only partially stored in
two-spin correlations, and it appears also at the level of three-spin entanglement,
four-spin entanglement, etc. In particular, we interpret the entanglement ratio

R = τ2/τ1 , (13)
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Fig. 1: One dimensional XYX model with ∆y = 0.25 : τ1 and τ2 versus h. Insets:
entanglement ratio τ2/τ1 close to the QPT. .

as a measure of the fraction of the total entanglement stored in pairwise cor-
relations. This ratio is plotted as a function of the field in the insets of both
figures. A striking anomaly occurs at the quantum critical field hc, where R dis-
plays a very narrow dip. According to our interpretation, this result shows that
the weight of pairwise entanglement decreases dramatically at the quantum critical
point in favour of multi-spin entanglement. In fact, due to the CKW conjecture,
and unlike classical-like correlations, entanglement shows the special property of
monogamy, namely full entanglement between two partners implies the absence
of entanglement with the rest of the system. Therefore multi-spin entanglement
appears as the only possible quantum counterpart to long-range spin-spin corre-
lations occurring at a QPT. This also explains the somewhat puzzling result that
the concurrence remains short-ranged at a QPT while the spin-spin correlators
become long-ranged [1], and it evidences the serious limitations of concurrence as
an estimate of entanglement at a quantum critical point. In turn, we propose the
minimum of the entanglement ratio R as a novel estimator of QPT, fully based on
entanglement quantifiers.
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Fig. 2: Two dimensional XYX model: τ1 and τ2 versus h. Left panel: easy-plane
case (∆y = 0.25); Right panel: easy-axis case (∆y = 4). Insets: entanglement
ratio τ2/τ1 close to the QPT..

6. From spin configurations to entanglement properties

We here analyze the entanglement of formation between two spins, as quantified
by the concurrence C, in terms of spin configurations. In the simplest case of two
isolated spins in the pure state |φ〉 the concurrence may be written as C = |∑i α

2
i |,

where αi are the coefficients entering the decomposition of |φ〉 upon the magic
basis. In this case, it can be easily shown [18] that C extracts the information
about the entanglement between two selected spins by combining probabilities
and phases relative to some specific two-spin states.

In general, one should notice that a finite probability for two spins to be in
a maximally entangled (Bell) state does not guarantee per se the existence of
entanglement between them, since this probability may be finite even if the two
spins are in a separable state. In a system with decaying correlations, at infinite
separation all probabilities associated to Bell states attain the value of 1/4 , but
this of course tells nothing about the entanglement between them, which is clearly
vanishing. It is therefore expected that differences between such probabilities,
rather than the probabilities themselves give insight in the presence or absence of
entanglement.

When the many-body case is tackled, the mixed-state concurrence of the se-
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lected spin pair has an involved definition in terms of the reduced two-spin density
matrix [16]. We here assume that H is real, has parity symmetry (meaning that
either H leaves the z component of the total magnetic moment unchanged, or
changes it in steps of 2), and is further characterized by translational and site-
inversion invariance.

Let us select two specific spins in the system. We indicate by pβ, with β =
1, 2, 3, 4, the probabilities for the two spins to be in one of the Bell states (maxi-
mally entangled), where β = 1, 2 (3,4) refers to the parallel (antiparallel) ones. We
do also introduce p

I
, p

II
, p

III
, p

IV
, which represent the probabilities for the two spins

to be in the (factorized) states of the standard base, where indexes I,II (III,IV )
refers to the parallel (antiparallel) ones.

It can be shown [18] that C ′ and C ′′ (as defined in Eqs. (5) and (6) with
indexes dropped for simplicity) can be written in terms of the above probabilities:

2C ′ = |p3 − p4| − 2
√
p
I
p
II
, (14)

2C ′′ = |p1 − p2| − (1− p1 − p2) =

= |p1 − p2| − 2
√
p
III
p
IV
, (15)

where we have used p
III
=p

IV
and hence p3 + p4 = 2p

III
= 2

√
p
III
p
IV
. The expression

for C ′′ may be written in the particularly simple form

2C ′′ = 2max{p1, p2} − 1 , (16)

telling us that, in order for C ′′ to be positive, it must be either p1 > 1/2 or
p2 > 1/2. This means that one of the two parallel Bell states needs to saturate
at least half of the probability, which implies that it is by far the state where the
spin pair is most likely to be found.

Despite the apparently similar structure of Eqs. (14) and (15), understanding
C ′ is more involved, due to the fact that

√
p
I
p
II
cannot be further simplified unless

p
I
= p

II
. The marked difference between C ′ and C ′′ reflects the different mecha-

nism through which parallel and antiparallel entanglement is generated when time
reversal symmetry is broken; (p

I
6= p

II
and hence Mz 6= 0). In fact, in the zero

magnetization case, it is p
II
= p

I
= (p1 + p2)/2 and hence

2C ′ = 2max{p3, p4} − 1 , (17)

which is fully analogous to Eq. (16), so that the above analysis can be repeated
by simply replacing p1 and p2 with p3 and p4.

For Mz 6= 0, the structure of Eq. (17) is somehow kept by introducing the
quantity

∆2 ≡ (
√
p
I
−√

p
II
)2 , (18)

so that
2C ′ = 2max{p3, p4} − (1−∆2) , (19)
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meaning that the presence of a magnetic field favors bipartite entanglement associ-
ated to antiparallel Bell states, |e3〉 and |e4〉. In fact, when time reversal symmetry
is broken the concurrence can be finite even if p3, p4 < 1/2.

¿From Eqs. (16) and (19) one can conclude that, depending on C being finite
due to C ′ or C ′′, the entanglement of formation originates from finite probabilities
for the two selected spins to be parallel or antiparallel, respectively. In this sense
we speak about parallel and antiparallel entanglement.

Moreover, from Eqs. (14) and (15) we notice that, in order for parallel (an-
tiparallel) entanglement to be present in the system, the probabilities for the two
parallel (antiparallel) Bell states must be not only finite but also different from
each other. Thus, the maximally entangled states result mutually exclusive in the
formation of entanglement between two spins in the system, which is in fact present
only if one of them is more probable than the others. The case p1 = p2 = 1/2
(p3 = p4 = 1/2) corresponds in turn to an incoherent mixture of the two parallel
(antiparallel) Bell states.

The above analysis suggests the first term in C ′′ (C ′) to distill, out of all possible
parallel (antiparallel) spin configurations, those which are specifically related with
entangled parallel (antiparallel) states. These characteristics reinforce the meaning
of parallel and antiparallel entanglement.

7. Conclusions

We have analyzed the behaviour of one- and two-dimensional S = 1/2 antifer-
romagnets displaying a field-driven quantum phase transition. We have shown that
while bipartite entanglement does not show any peculiar feature at the transition,
the entanglement ratio R [2], which measure the relevance of bipartite entangle-
ment with respect to the total entanglement content of the system, has a marked
dip at criticality: this indicates that multipartite entanglement rules the QPT, R
being a powerful tool to detect it.

On the other hand, bipartite entanglement is found to efficiently detect classical-
like ground states, even the highly non-trivial ones which are invisible under an
analysis based upon standard magnetic observables.

Finally, an interpretation of the analytical expression of the concurrence is
given in terms of spin configurations, leading to a deeper insight into the relation
between entanglement properties and state configurations in many-body systems.
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