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Abstract

We construct a class of multipartite states possessing rotational SO(3) symmetry – these are
states of K spin-jA particles and K spin-jB particles. The construction of symmetric states follows
our two recent papers devoted to unitary and orthogonal multipartite symmetry. We study basic
properties of multipartite SO(3) symmetric states: separability criteria and multi-PPT conditions.

1 Introduction

Symmetry plays a prominent role in modern physics. In many cases it enables one to simplify the
analysis of the corresponding problems and very often it leads to much deeper understanding and the
most elegant mathematical formulation of the corresponding physical theory. In Quantum Information
Theory [1] the very idea of symmetry was first applied by Werner [2] to construct a highly symmetric
family of bipartite d⊗ d states which are invariant under the following local unitary operations

ρ −→ U ⊗U ρ (U ⊗U)† , (1.1)

where U are unitary operators from U(d) — the group of unitary d × d matrices. Another family of
symmetric states (so called isotropic states [3]) is governed by the following invariance rule

ρ −→ U ⊗U ρ (U ⊗U)† , (1.2)

where U is the complex conjugate of U in some basis. Other symmetry groups (subgroups of U(d))
were first considered in [4].

Let us observe that the problem of symmetric bipartite states may be formulated in more general
setting. Consider the composite system living in Htotal = HA⊗HB and let G be a symmetry group
in question. Let D

(A) and D
(B) denote irreducible unitary representations of G in HA and HB,

respectively. Now, a state ρ of the composite is Werner-like D
(A)⊗D

(B)–invariant iff

[D(A)(g)⊗D
(B)(g) , ρ ] = 0 , (1.3)

for all elements g ∈ G. Similarly, ρ is isotropic-like D
(A)⊗D(B)–invariant iff

[D(A)(g)⊗D(B)(g) , ρ ] = 0 . (1.4)

It is clear that taking HA = HB = C
d and D

(A) = D
(B) ≡ D the defining representation of G = U(d)

one obtains the standard Werner state [2]. Taking as G a rotational group SO(3) one constructs a
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family of rotationally invariant states considered recently in [4] and in more details in [5, 6, 7, 8]
(see also [9]). Rotationally invariant bipartite states arise from thermal equilibrium states of low-
dimensional spin systems with a rotationally invariant Hamiltonian by tracing out all degrees of
freedom but those two spins. Entanglement in generic spin models has recently been studied in
[10, 11, 12, 13]. Rotationally invariant states were recently applied in quantum optics to describe
multiphoton entangled states produced by parametric down-conversion [14] (see also [15]).

In a present paper we consider a multipartite generalization of SO(3)-invariant states. Symmetric
multipartite states were first considered in [16] (see also [17]) for G = U(d) and G = O(d). An
N -partite generalization of Werner state in Htotal = (Cd)⊗N is defined by the following requirement
[16]:

[U ⊗N , ρ ] = 0 (1.5)

for all U ∈ U(d). This definition may be slightly generalized as follows: an N -partite state ρ living
in Htotal = H1⊗ . . . ⊗HN is invariant under D

(1)⊗ . . . ⊗D
(N), where D

(k) denotes an irreducible
representation of the symmetry group G in Hk, iff

[D(1)(g)⊗ . . . ⊗D
(N)(g) , ρ ] = 0 (1.6)

for all g ∈ G.
Recently [18, 19] we proposed another family of multipartite symmetric states. Our construction

works for even number of parties. Consider K copies of HA and K copies of HB . Let D
(A) and D

(B)

denote irreducible unitary representations of G in HA and HB, respectively. Now, a 2K-partite state
ρ is (D(A)⊗ . . . ⊗D(A))⊗ (D(B)⊗ . . . ⊗D(B))–invariant iff

[
D

(A)(g1)⊗ . . . ⊗D
(A)(gK)⊗D

(B)(g1)⊗ . . . ⊗D
(B)(gK) , ρ

]
= 0 , (1.7)

for all (g1, . . . , gK) ∈ G× . . .×G. Note the crucial difference between these two definitions (1.5) and
(1.7): the first one uses only one element g from G whereas the second one uses K different elements
g1, . . . , gK , and hence it is much more restrictive. In [18] we considered unitary symmetry, i.e. G =
U(d) and HA = HB = C

d, whereas in [19] we analyzed orthogonal symmetry with G = O(d) ⊂ U(d).
It turns out that contrary to the symmetric states considered in [16, 17] the states constructed in
[18, 19] give rise to simple separability criteria. In the present paper we construct multipartite states
with rotational SO(3) symmetry.

The paper is organized as follows: in Section 2 we recall basic properties of rotationally invariant
bipartite states. This section summarizes the main results obtained in [5, 6, 7, 8]. In section 3 we
construct multipartite SO(3)-invariant states and study its basic properties: separability and multi-
PPT conditions. More technical analysis is moved to appendixes. Final conclusions are collected in
the last section.

2 Rotationally invariant bipartite states

2.1 Werner-like states

Let us consider two particles with spins jA and jB ≥ jA. The composed bipartite system lives in
HAB = HA⊗HB , with HA = C

dA and HB = C
dB , where dA = 2jA + 1 and dB = 2jB + 1. Recall that

the Hilbert space corresponding to spin-j particle is spanned by d = 2j + 1 eigenstates |j,m〉, where
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m = −j,−j+ 1, . . . , j. A bipartite operator ρ is said to be Werner-like rotationally or SO(3)-invariant
iff for any R ∈ SO(3)

[D(jA)(R)⊗D
(jB)(R) , ρ] = 0 , (2.1)

where D
(j)(R) denotes irreducible unitary representation of R in C

2j+1. As is well known the tensor
product of two irreducible representations D

(jA)(R)⊗D
(jB)(R) is no longer irreducible in C

dA ⊗C
dB .

It decomposes into a direct sum of irreducible representations

D
(jA)(R)⊗D

(jB)(R) =

jB+jA⊕

J=jB−jA

D
(J)(R) , (2.2)

each appearing with multiplicity 1. The composite space HAB is spanned by dA · dB vectors |JM〉
with J = jB − jA, . . . , jB + jA and M = −J, . . . , J , that is

|JM〉 =
∑

mA,mB

〈jA,mA; jB ,mB |JM〉 |mA;mB〉 (2.3)

where 〈jA,mA; jB ,mB |JM〉 denote Clebsh-Gordan coefficients [20, 21, 22], and

|mA;mB〉 = |jA,mA〉⊗ |jB ,mB〉 . (2.4)

Now, the space of Werner-like SO(3)-invariant operator is spanned by 2jA + 1 projectors:

QJ =
J∑

M=−J

|JM〉〈JM | , (2.5)

that is, any SO(3)-invariant operator may be written as follows

ρ =
∑

J

qJ Q̃
J , (2.6)

where qJ ≥ 0 with
∑

J qJ = 1, and we use the following notation Ã = A/TrA. Note that TrQJ =
2J + 1.

It is evident that an arbitrary bipartite state ρ may be projected onto the SO(3)-invariant subspace
by the following twirl operation:

T(ρ) =

∫
D

(jA ⊗ jB)(R) ρ [D(jA ⊗ jB)(R)]† dR , (2.7)

where dR is an invariant normalized Haar measure on SO(3), and we introduce the following slightly
more compact notation:

D
(jA ⊗ jB)(R) = D

(jA)(R)⊗D
(jB)(R) . (2.8)

Clearly, T(ρ) is of the form (2.6) with fidelities qJ = Tr(ρQJ ).
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2.2 Isotropic-like states

Now, a bipartite state ρ is isotropic-like SO(3)-invariant iff

[D(jA)(R)⊗D(jB)(R) , ρ] = 0 , (2.9)

where D(j)(R) denotes conjugate representation. Representations D
(j) and D(j) are equivalent and

hence there exists an intertwining unitary operator V such that VD
(j) = D(j)V . It turns out that

V |j,m〉 = (−1)j−m|j,−m〉 . (2.10)

Let us define a family of projectors

P J = (1l⊗V )QJ(1l⊗V †) . (2.11)

Note, that P J are D
(jA ⊗ jB)–invariant, where in analogy to (2.8), we introduced

D
(jA ⊗ jB)(R) = D

(jA)(R)⊗D(jB)(R) . (2.12)

Indeed, one has

D
(jA ⊗ jB)(R)P J = D

(jA ⊗ jB)(R)(1l⊗V )QJ(1l⊗V †) = (1l⊗V )D(jA ⊗ jB)(R)QJ(1l⊗V †)

= (1l⊗V )QJ
D

(jA ⊗ jB)(R)(1l⊗V †) = (1l⊗V )QJ (1l⊗V †)D(jA ⊗ jB)(R)

= P J
D

(jA ⊗ jB)(R) .

Therefore, any D
(jA ⊗ jB)–invariant state has the following form

ρ =
∑

J

pJ P̃
J , (2.13)

where pJ ≥ 0 with
∑

J pJ = 1. Again, an arbitrary bipartite state ρ may be projected onto the

D
(jA ⊗ jB)–invariant subspace by the following twirl operation:

T
′(ρ) =

∫
D

(jA ⊗ jB)(R) ρ [D(jA ⊗ jB)(R)]† dR , (2.14)

where dR is an invariant normalized Haar measure on SO(3). Clearly, T′(ρ) is of the form (2.13) with
fidelities pJ = Tr(ρPJ ).

2.3 PPT states

Note, that both families of SO(3)-invariant states, i.e. Werner-like states (2.6) and isotropic-like
states (2.13) are not independent. They are related by a partial transposition 1l⊗ τ , i.e. ρ is DjA ⊗ jB–

invariant (it belongs to the class (2.6)) iff (1l⊗ τ)ρ is DjA ⊗ jB–invariant. Equivalently, using twirl
operations T and T

′ one has
T
′ = (1l⊗ τ) ◦ T ◦ (1l⊗ τ) . (2.15)
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for an arbitrary state ρ. Now, for any D
jA ⊗ jB–invariant projector QJ one has

(1l⊗ τ)Q̃J =
∑

J ′

XJJ ′ P̃J ′ , (2.16)

where the dA × dA matrix X = [XJJ ′ ] reads as follows

XJJ ′ = Tr[(1l⊗ τ)Q̃JP J ′

] . (2.17)

Note that due to
∑

J P
J = IdA ⊗ IdB one finds

∑

J ′

XJJ ′ = 1 . (2.18)

However the matrix elements XJJ ′ are not necessarily positive which prevents X to be a stochastic
matrix. Interestingly, matrix X satisfies

X2 = I , (2.19)

where I stands for dA × dA identity matrix which implies X−1 = X (for proof see Appendix A).
It turns out that using several properties of Clebsch-Gordan coefficients matrix XJJ ′ may be

expressed in terms of so called 6-j Wigner symbol well known from the quantum theory of angular
momentum [20]. Following [7] we show in the Appendix B that XJJ ′ may be expressed as follows:

XJJ ′ = (−1)2jB (2J ′ + 1)

{
jA jB J
jA jB J ′

}
, (2.20)

where the curly brackets denote a 6-j Wigner symbol [20]. Equivalently, using the Racah W -coefficients

W (jA, jB , j
′
A, j

′
B ;JJ ′) = (−1)α

{
jA jB J
j′A j′B J ′

}
,

where α = jA + jB + j′A + j′B , one finds

XJJ ′ = (−1)2jA(2J ′ + 1)W (jA, jB , jA, jB ;JJ ′) . (2.21)

Therefore, if ρ is given by (2.6), then its partial transposition has the following form:

(1l⊗ τ)ρ =
∑

J

q′J P̃
J , (2.22)

where
q′J =

∑

J ′

qJ ′XJ ′J . (2.23)

An SO(3)–invariant state (2.6) is PPT iff q′J ≥ 0 for all J = jB − jA, . . . , jB + jA.
Conversely, if ρ is given by (2.13), then its partial transposition has the following form:

(1l⊗ τ)ρ =
∑

J

p ′
J Q̃

J , (2.24)
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with
p ′
J =

∑

J ′

pJ ′XJ ′J , (2.25)

where we used the fact that X−1 = X. An SO(3)–invariant state (2.13) is PPT iff p ′
J ≥ 0 for all

J = jB − jA, . . . , jB + jA.
In Appendix C we show that for jB ≥ jA = 1/2 the 2 × 2 matrix X reads as follows:

X =
1

2jB + 1

(
−1 2(jB + 1)
2jB 1

)
. (2.26)

For jB ≥ jA = 1 the corresponding 3 × 3 matrix X is given by (Appendix C):

X =
1

jB(jB + 1)(2jB + 1)




jB + 1 −(jB + 1)(2jB + 1) jB(jB + 1)(2jB + 3)

−(jB + 1)(2jB − 1) (j2B + jB − 1)(2jB + 1) jB(2jB + 3)

jB(jB + 1)(2jB − 1) jB(2jB + 1) jB




.

(2.27)

2.4 Separability

A Werner-like rotationally invariant state ρ is separable iff there exists a separable state σ in HAB

such that
ρ = T(σ) . (2.28)

Moreover, it is clear that pure separable states ϕ⊗ψ ∈ HAB are mapped via twirl into the extremal
separable symmetric states T(|ϕ⊗ψ〉〈ϕ⊗ψ|). Note that among invariant projectors QJ only one with
maximal J = jA + jB is separable since

Q̃jA+jB = T(|jA; jB〉〈jA; jB |) . (2.29)

If J 6= jA + jB the corresponding QJ is not PPT and hence it is not separable. It is well known
[5, 6, 7, 8] that for jA = 1/2 and arbitrary jB rotationally invariant state is separable iff it is PPT, i.e.

ρ = qjB−1/2Q̃
jB−1/2 + qjB+1/2Q̃

jB−1/2 , (2.30)

with qjB−1/2, qjB+1/2 ≥ 0 and qjB−1/2 + qjB+1/2 = 1, is separable iff

q′J =

jB+1/2∑

J ′=jB−1/2

qJ ′XJ ′J ≥ 0 , (2.31)

with X given in (2.26). It gives therefore the following necessary and sufficient condition for separa-
bility

qjB+1/2 ≥
1

dB
. (2.32)
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Note that PPT states define a convex set – an interval [q,q′], with q = (0, 1) and q′ = ((dB −
1)/dB , 1/dB), where q = (qjB−1/2, qjB+1/2). Clearly, a state corresponding to q is separable — it is

Q̃jB+1/2. To show that a state corresponding to q′ is also separable let us observe that

Tr
(
σQjB+1/2

)
=

1

dB
, Tr

(
σQjB−1/2

)
=
dB − 1

dB
,

where e.g. σ = | − 1/2; jB〉〈−1/2; jB |. The same result holds for σ = |1/2;−jB〉〈1/2;−jB |.
Similarly, an isotropic-like rotationally invariant state in C

2⊗C
dB is separable iff it is PPT, that

is
ρ = pjB−1/2P̃

jB−1/2 + pjB+1/2P̃
jB+1/2 , (2.33)

with pjB−1/2, pjB+1/2 ≥ 0 and pjB−1/2 + pjB+1/2 = 1, is separable iff

pjB+1/2 ≥ 1

dB
. (2.34)

Another interesting case is when jB ≥ jA = 1. It was shown [7, 8] that for integer jB , i.e. odd
dB = 2jB + 1, rotationally invariant state is separable iff it is PPT. However, for half-integer jB (even
dB) there exist bound entangled states, i.e. PPT but entangled. Now, using (2.27), for integer jB a
rotationally invariant state

ρ = qjB−1Q̃
jB−1 + qjBQ̃

jB + qjB+1Q̃
jB+1 , (2.35)

is separable iff

qjB−1dB − qjB(j2B − 1) ≤ 1 ,

qjB(2j2B + jB − 1) − qjB−1(1 − 2j2B + jB) ≤ jBdB .

The above conditions considerably simplify for jB = 1. One obtains

q0 ≤
1

3
, q1 ≤

1

2
, (2.36)

which reproduce separability conditions for O(3)⊗O(3)–invariant states (see formula (27) in [19]).
Similar results hold for isotropic-like rotationally invariant states with jB ≥ jA = 1. For jB ≥ jA > 1
the situation is much more complicated. For some partial results consult [5, 6, 7, 8].

2.5 Special case: jA = jB

Consider now the special case when both particles have the same spin jA = jB ≡ j. One has two
families of projectors:

Q0, Q1, . . . , Qd−1 ,

and
P 0 ≡ P+

d , P
1, . . . , P d−1 ,

where d = 2j + 1,

P+
d =

1

d

j∑

mA,mB=−j

|mA;mB〉〈mA;mB | ,

denotes a projector onto the maximally entangled state. Using definitions (2.5) and (2.11) and prop-
erties of the Clebsch-Gordan coefficients one proves the following
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Theorem 1 The Schmidt number [23] of QJ and P J is given by

SN(QJ) = SN(P J) = d− J , (2.37)

for J = 0, 1, . . . , d− 1.

Note, that in the case of the standard U ⊗U -invariant Werner state one has only two projectors: Qd−2

and Qd−1. Qd−2 has Schmidt number 2 and Qd−1 is separable. Therefore, contrary to the 1-parameter
family of Werner states the (d−1)-parameter family of Werner-like SO(3)-invariant states gives rise to
the full spectrum of entangled states: from separable one to states with the maximal Schmidt number
d. In the case of isotropic U ⊗U-invariant state one has maximally entangled (i.e. with Schmidt
number d) P 0 = P+

d and separable P d−1.
The matrix XJJ ′ given by (2.38) simplifies to

XJJ ′ = (−1)d−1(2J ′ + 1)

{
j j J
j j J ′

}
, (2.38)

In particular for j = 1/2 the formula (2.26) reconstructs X matrix for the Werner U ⊗U -invariant
states in C

2 ⊗C
2 (see formula (15) in [18]):

X =
1

2

(
−1 3

1 1

)
. (2.39)

For j = 1 the formula (2.27) reconstructs X matrix for the orthogonally O(3)⊗O(3)-invariant states
in C

3⊗C
3 (see formula (30) in [19]):

X =
1

6




2 −6 10
−2 3 5

2 3 1


 . (2.40)

3 Multipartite SO(3) symmetric states

3.1 Werner-like family

Consider now 2K–partite system living in HA⊗HB, where

HA = H1⊗ . . . ⊗HK , (3.1)

and
HB = HK+1⊗ . . . ⊗H2K , (3.2)

with H1 = . . . = HK = C
dA and HK+1 = . . . = H2K = C

dB . Let R = (R1, . . . , RK) with Ri ∈ SO(3)
and define

D
(jA)(R)⊗D

(jB)(R) =
K⊗

i=1

D
(jA ⊗ jB)(Ri) , (3.3)

where for each i = 1, . . . ,K a bipartite unitary operator D
(jA ⊗ jB)(Ri) acts on Hi⊗HK+i. Now, we

call a 2K-partite state a Werner-like SO(3)-invariant iff

[D(jA)(R)⊗D
(jB)(R) , ρ ] = 0 , (3.4)
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for any R ∈ SO(3) × . . . × SO(3). To parameterize the set of 2K-partite invariant states let us
introduce the following set of projectors:

QJ = QJ1
1|K+1⊗ . . . ⊗QJK

K|2K , (3.5)

where J = (J1, . . . , Jk) is a K-vector with Ji = jB − jA, . . . , jB + jA. It is clear that

1. QJ are SO(3)-invariant,

2. QJ ·QJ
′

= δJJ′ QJ,

3.
∑

J
QJ = (IdA ⊗ IdB )⊗K .

Therefore, an arbitrary 2K-partite SO(3)-invariant state has the following form

ρ =
∑

J

qJQ̃
J , (3.6)

with qJ ≥ 0 and
∑

J
qJ = 1. Hence, the set of rotationally invariant states defines (dKA −1)-dimensional

simplex.

3.2 Isotropic-like family

It is clear that we may use the same scheme to define 2k-partite isotropic-like states. For any R =
(R1, . . . , RK) with Ri ∈ SO(3) one defines

D
(jA)(R)⊗D(jB)(R) =

K⊗

i=1

D
(jA ⊗ jB)(Ri) , (3.7)

where for each i = 1, . . . ,K a bipartite unitary operator D
(jA ⊗ jB)(Ri) acts on Hi⊗HK+i. Now, we

call a 2K-partite state an isotropic-like SO(3)-invariant iff

[D(jA)(R)⊗D(jB)(R) , ρ ] = 0 , (3.8)

for any R ∈ SO(3) × . . . × SO(3). To parameterize the set of 2K-partite invariant states let us
introduce the following set of projectors:

PJ = P J1
1|K+1⊗ . . . ⊗P JK

K|2K , (3.9)

where J = (J1, . . . , Jk) is a K-vector with Ji = jB − jA, . . . , jB + jA. It is clear that

1. PJ are SO(3)-invariant,

2. PJ ·PJ
′

= δJJ′ PJ,

3.
∑

J
PJ = (IdA ⊗ IdB )⊗K .

Therefore, an arbitrary 2K-partite SO(3)-invariant state has the following form

ρ =
∑

J

pJ P̃
J , (3.10)

with pJ ≥ 0 and
∑

J
pJ = 1. The set of rotationally invariant states defines (dKA − 1)-dimensional

simplex.
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3.3 σ-PPT states

Now, following [18] let us introduce the family of partial transpositions parameterized by a binary
K-vector σ = (σ1, . . . , σK):

τσ = 1l⊗K ⊗ τσ1 ⊗ . . . ⊗ τσK , (3.11)

where τα = 1l for α = 0 and τα = τ for α = 1. A 2K-partite state ρ is σ-PPT iff τσρ ≥ 0. In terms
of coefficients qJ the property of σ-PPT leads to the following conditions

∑

J

qJX
σ

JJ′ ≥ 0 , (3.12)

for all J′. The dKA × dKA matrix Xσ

JJ′ is given by

Xσ

JJ′ = Tr
[
(τσQ̃

J) ·PJ′

]
. (3.13)

Let us observe that
Xσ = Xσ1 ⊗ . . . ⊗XσK , (3.14)

where X is defined by in (2.21). In component notation one finds

Xσ

JJ′ = Xσ1

J1J ′

1

. . . XσK

JKJ ′

K

, (3.15)

Again, in analogy to (2.18) and (2.19) one has
∑

J ′

Xσ

JJ′ = 1 , (3.16)

and Xσ ·Xσ = I ⊗K for any σ. Therefore

(Xσ)−1 = Xσ . (3.17)

In the same way one defines a σ-PPT subset of isotropic-like 2K-partite symmetric states. A
state ρ from the family (3.21) is σ-PPT iff τσρ ≥ 0, that is

∑

J

pJX
σ

JJ′ ≥ 0 , (3.18)

for all J′.

3.4 σ-invariance

Note, that each binary vector σ gives rise to the new 2K-partite family of symmetric states. We call
a state ρ σ-invariant iff τσρ is Werner-like invariant. To parameterize this family let us introduce the
following set of bipartite operators:

ΠJ
(σ) =

{
QJ , σ = 0
P J , σ = 1

. (3.19)

This operators may be used to construct a set of 2K-partite projectors

ΠJ

(σ) = ΠJ1
(σ1)1|K+1⊗ . . . ⊗ΠJK

(σK )K|2K , (3.20)

satisfying
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1. ΠJ

(σ) are σ-invariant,

2. ΠJ(σ) ·ΠJ′

(σ) = δJJ′ ΠJ

(σ),

3.
∑

J
ΠJ

(σ) = (IdA ⊗ IdB )⊗K .

Therefore, an arbitrary 2K-partite σ-invariant state has the following form

ρ =
∑

J

πJ Π̃
J

(σ) , (3.21)

with πJ ≥ 0 and
∑

J
πJ = 1. Clearly, the set of σ-invariant states defines (dKA − 1)-dimensional

simplex. Let us note that for any two binary vectors µ and ν if ρ is µ-invariant then τνρ is
( µ⊕ ν)-invariant, where µ⊕ ν denotes addition mod 2.

3.5 Separability

A 2K-partite Werner-like rotationally invariant state ρ is separable iff there exists a separable state σ
in Htotal such that

ρ = TK(σ) , (3.22)

where TK denotes 2K-partite twirl operation:

TK(ω) =

∫ [
D

(jA)(R)⊗D
(jB)(R)

]
ω
[
D

(jA)(R)⊗D
(jB)(R)

]†
dR1 . . . dRK .

Moreover, it is clear that pure separable states ϕ1 ⊗ . . . ⊗ϕK ⊗ψ1 . . . ⊗ψK ∈ Htotal are mapped
via twirl TK into the extremal separable symmetric states. Again only one invariant projector
QJ is separable — that corresponding to J = (jA + jB , . . . , jA + jB). It is given by the twirl of
|jA〉⊗ . . . ⊗ |jA〉⊗ |jB〉⊗ . . . ⊗|jB〉.

Using techniques applied in [18, 19] one easily shows the following

Theorem 2 If jB ≥ jA = 1/2 or jB ≥ jA = 1 with integer jB, then an arbitrary µ-invariant state
ρ is fully separable iff it is ν-PPT for all binary K-vectors ν. Moreover ρ is (1 . . . K|K + 1 . . . 2K)
biseparable iff it is (1. . . 1)-PPT.

In particular for jA = jB = 1/2 the above theorem reconstructs separability conditions for µ-
invariant states with unitary symmetry U(2), see [18], whereas for jA = jB = 1 one reconstructs
separability conditions for O(3)-invariant states, see [19].

3.6 Reductions

It is evident that reducing the 2K partite σ–invariant state with respect to Hi⊗Hi+K pair one
obtains 2(K − 1)–partite σ(i)–invariant state with

σ(i) = (σ1, . . . , σ̌i, . . . , σK) , (3.23)

where σ̌i denotes the omitting of σi. The reduced state lives in

H1⊗ . . . Ȟi⊗ . . . ⊗Ȟi+K ⊗ . . . ⊗H2K . (3.24)
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The corresponding fidelities of the reduced symmetric state are given by

π(J1...JK) =

jB+jA∑

j=jB−jA

π(J1...Ji−1jJi+1...JK) . (3.25)

Note, that reduction with respect to a ‘mixed’ pair, say Hi⊗Hj+K with j 6= i (i, j ≤ K), is equivalent
to two ‘natural’ reductions with respect to Hi⊗Hi+K and Hj ⊗Hj+K and hence it gives rise to 2(K−
2)–partite invariant state. This procedure establishes a natural hierarchy of multipartite invariant
states.

4 Conlusions

We have introduced a new family of multipartite rotationally symmetric states for 2K particles:
K spin-jA and K spin-jB particles (jB ≥ jA). Within this class we have formulated separability
conditions for jB ≥ jA = 1/2 and jB ≥ jA = 1 with integer jB . It turned out that full 2K-separability
is equivalent to multi σ-PPT conditions with σ being a binary K-vector.

Recently, a detailed analysis of multipartite symmetric states and their application in quantum
information theory was performed by Eggeling in his PhD thesis [17]. This construction may be applied
for SO(3) symmetry as follows. Consider N spin-j particles. An N -partite state ρ is rotationally
invariant iff

[D(j)(R)⊗ . . . ⊗D
(j)(R) , ρ ] = 0 (4.1)

for all R ∈ SO(3). It is clear that the detailed parametrization of this class is highly nontrivial: it
corresponds to addition of N angular momenta and, as is well known even the case N = 3 gives rise
to considerable complications (see e.g. [20, 21, 22]). If N = 2K our class defines only a commutative
subclass within Eggeling’s class.

Note, that our construction may be slightly generalized. Instead of K spin-jA and K spin-jB
particles we may consider 2K particles with arbitrary spins:

(jA1
, jB1

), (jA2
, jB2

), . . . , (jAK
, jBK

) .

Now, a 2K-partite state ρ is SO(3)-invariant iff

[
K⊗

i=1

D
(jAi

)(Ri)⊗
K⊗

i=1

D
(jBi

)(Ri) , ρ

]
= 0 , (4.2)

for all R1, . . . , RK ∈ SO(3). It is clear that such general situation does not apply for Eggeling’s
construction where all particles carry the same spins.

It is hoped that the multipartite state constructed in this paper may serve as a laboratory for testing
various concepts from quantum information theory and they may shed new light on the more general
investigation of multipartite entanglement. Note, that using duality between bipartite quantum states
and quantum channels [24] one may consider rotationally invariant quantum channels transforming
a state of spin-jB particle into a state of spin-jA one. Relaxing positivity condition upon ρ the
above duality gives rise to rotationally invariant positive maps which may be used to detect quantum
bipartite entanglement. In the multipartite case the situation is different. Now a crucial role is played
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by maps which are positive but only on separable states. Note that a tensor product of two positive
maps is no longer positive but clearly it is positive on separable states. Therefore, our construction
of multipartite symmetric states may be dually used to produce invariant classes of multi-linear maps
which may serve as a useful tool in detecting multi-partite entanglement.

Appendix A

Using properties of the operator V defined in (2.10) one shows that

Tr
[
(1l⊗ τ)QJP J ′

]
= Tr

[
(1l⊗ τ)QJ ′

P J
]
, (A.1)

that is,
(2J + 1)XJJ ′ = (2J ′ + 1)XJ ′J . (A.2)

Now, following (2.17) one has

X−1
JJ ′ = Tr

[
(1l⊗ τ)P̃ JQJ ′

]

=
1

2J + 1
Tr

[
(1l⊗ τ)P JQJ ′

]
, (A.3)

and using (A.1) one shows that X−1
JJ ′ = XJJ ′ , that is, X2 = I.

Appendix B

Using (2.5) and (2.11) one finds for the matrix X:

XJJ ′ =
1

2J + 1

∑

M,M ′

Tr
[
(1l⊗ τ)|JM〉〈JM |(1l ⊗V )|J ′M ′〉〈J ′M ′|(1l⊗V †)

]
. (B.1)

Therefore, taking into account (2.3) and the following relation between Clebsch-Gordan coefficients
and 3-j Wigner symbols:

〈j1, j2;m1,m2|JM〉 = (−1)j1−j2+M
√

2J + 1

(
j1 j2 J
m1 m2 −M

)
, (B.2)

one obtains

Tr
[
(1l⊗ τ)|JM〉〈JM |(1l ⊗V )|J ′M ′〉〈J ′M ′|(1l⊗V †)

]

= (2J + 1)(2J ′ + 1)
∑

mA,mB

∑

lA,lB

∑

m′

A
,m′

B

∑

l′
A
,l′
B

(−1)2(M+M ′) δmA,l′
A
δlA,m′

A
δmB ,−m′

B
δlB ,−l′

B

×
(

jA jB J
mA mB −M

)(
jA jB J
lA lB −M

)(
jA jB J ′

m′
A m′

B −M ′

)(
jA jB J ′

l′A l′B −M ′

)
.

Finally, using the symmetry of 3-j symbols
(

l1 l2 l3
m1 m2 m3

)
= (−1)l1+l2+l3

(
l1 l2 l3

−m1 −m2 −m3

)
, (B.3)
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and the following relation between 3-j and 6-j symbols

(−1)l
′

1
+l′

2
+l′

3

{
l1 l2 l3
l′1 l′2 l′3

}
=

∑

m1,m′

1

∑

m2,m′

2

∑

m3,m′

3

(−1)m
′

1
+m′

2
+m′

3

×
(

l1 l2 l3
m1 m2 m3

)(
l1 l′2 l′3

−m1 m′
2 −m′

3

)(
l′1 l2 l′3

−m′
1 −m2 m′

3

)(
l′1 l′2 l3
m′

1 −m′
2 −m3

)
,(B.4)

one proves (2.38).

Appendix C

The 6-j-symbols are invariant under permutation of their columns, e.g.

{
j1 j2 j3
J1 J2 J3

}
=

{
j2 j1 j3
J2 J1 J3

}
, (C.1)

and under exchange of two corresponding elements between rows, e.g.

{
j1 j2 j3
J1 J2 J3

}
=

{
J1 J2 j3
j1 j2 J3

}
. (C.2)

Now, to find the X matrix for jA = 1 we shall use the following formulae [20]:

{
j1 − 1

2
1
2 j1

j2 j j2 − 1
2

}
= (−1)J

[
(J + 1)(J − 2j)

2j1(2j1 + 1)2j2(2j2 + 1)

]1/2
, (C.3)

{
j1 − 1

2
1
2 j1

j2 − 1
2 j j2

}
= (−1)J−1/2

[
(J − 2j1 + 1

2)(J − 2j2 + 1
2)

2j1(2j1 + 1)2j2(2j2 + 1)

]1/2

, (C.4)

with J = j1 + j2 + j. Using these formulae together with symmetry relations (C.1)–(C.2) one obtains
(2.26).

Now, to find the X matrix for jA = 1 we shall use the following formulae [20]:

{
j1 − 1 1 j1
j2 j j2 − 1

}
= (−1)J

[
J(J + 1)(J − 2j − 1)(J − 2j)

(2j1 − 1)2j1(2j1 + 1)(2j2 − 1)2j2(2j2 + 1)

]1/2
, (C.5)

{
j1 − 1 1 j1
j2 − 1 j j2

}
= (−1)J−1

[
(J − 2j1)(J − 2j + 1)(J − 2j2)(J − 2j2 + 1)

(2j1 − 1)2j1(2j1 + 1)(2j2 − 1)2j2(2j2 + 1)

]1/2
, (C.6)

{
j1 1 j1

j2 − 1 j j2

}
= (−1)J

[
2(J + 1)(J − 2j)(J − 2j1)(J − 2j2 + 1)

2j1(2j1 + 1)(2j1 + 2)(2j2 − 1)2j2(2j2 + 1)

]1/2
, (C.7)

{
j1 1 j1
j2 j j2

}
= (−1)J

j(j + 1) − j1(j1 + 1) − j2(j2 + 1)

[j1(2j1 + 1)(2j1 + 2)j2(2j2 + 1)(2j2 + 2)]1/2
, (C.8)

together with symmetry relations (C.1)–(C.2). Simple calculations give (2.27).
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