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Abstrat

We will investigate the relation of ountable losed linear orderings

with respet to ontinuous monotone embeddability and will show that

there are exatly ℵ1 many equivalene lasses with respet to this em-

beddability relation. This is an extension of Laver's result [Lav71℄, who

onsidered (plain) embeddability, whih yields oarser equivalene lasses.

Using this result we show that there are only ℵ0 many di�erent Gödel log-

is.

1 Introdution

The starting point of the present work was the question `How many Gödel

logis are there?' This question led us to the study of embeddability relations of

(ountable) linear orderings. The most important result in this �eld is Laver's

lassial result on the Fraïssé Conjeture [Lav71℄ whih ounts the number of

sattered linear orderings with respet to bi-embeddability.

We will generalize Laver's method to deal not only with monotone but with

ontinuous monotone embeddings, and ome bak to Gödel logis in Setion 3,

where we use this result to ompute the number of Gödel logis. Gödel logis

form a lass of many-valued logis, whih are one of the three fundamental

t-norm based logis.

Our main result is that the set of ountable losed linear orderings is better-

quasi-ordered by stritly monotone ontinuous embeddability, even when we

onsider labeled ountable losed linear orderings. As a orollary we derive that

there are only ountably many Gödel logis.

The main onepts in all these disussions are `well-quasi orderings' and

`better-quasi-ordering', whih have been introdued by Nash-Williams in a series

of �ve papers in the 1960s [NW63, NW64, NW65b, NW65a, NW68℄

While onsidering embeddability relation of orderings, examples of in�nite

desending sequenes, as well as in�nite antihains an be given [DM40, Sie50℄.

In [Fra48℄, Fraïssé made onjetures to the e�et that the embeddability relation

is more well behaved in the ase of ountable order types (later extended to
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sattered order types), stating that `every desending sequene of ountable

order types is �nite, and every antihain of ountable order types is �nite.' This

onjeture was �nally proved by Laver [Lav71℄.

1.1 Basi onepts

In our exposition we will mainly follow Rosenstein's textbook on linear orderings

[Ros82℄, espeially Chapter 10. To keep this artile self-ontained we will give

all the neessary de�nition and ite some results, but ask the reader to onsult

the mentioned book for motivation, bakground and history of these onepts

and results, as well as for the proofs.

De�nition 1. ([Ros82℄, 10.12-10.15) A quasi-ordering is a re�exive and transi-

tive binary relation ≤Q on a set Q. With <Q we denote the strit part of ≤Q,

i.e. p <Q q i� p ≤Q q and q �
Q
p. We will often drop the index Q if there is not

danger of onfusion.

We write p ≡Q q i� both p ≤Q q and q ≤Q p hold. This is an equivalene

relation; we write Q/≡ for the set of equivalene lasses.

An in�nite sequene ~p = 〈pn : n < ω〉 is alled good if there are indies n < k
with pn ≤ pk; ~p is alled bad if it is not good. ~p is alled an in�nite desending

hain if p0 >Q p1 >Q p2 >Q . . . . It is alled an anti-hain of Q if neither

pi ≤Q pj nor pj ≤Q pi for i 6= j.
A setQ is a well-quasi-ordering, denoted wqo, if any/all onditions in Lemma 2

hold.

Lemma 2. ([Ros82℄, 10.16�10.17) Let (Q,≤) be partial order. Then the follow-

ing are equivalent:

1. All sequenes ~q = 〈qi : i < ω〉 are good.

2. For all sequenes ~q = 〈qn : n < ω〉 there is an in�nite subsequene 〈qn :
n ∈ I〉 whih is either stritly inreasing (n < m implies qn < qm) or

onstant (n < m implies qn ≡ qm).

3. There are no in�nite antihains and no in�nite dereasing hains in Q.

De�nition 3. ([Ros82℄, 10.19) Given quasi-orderings Q1 and Q2, we de�ne the

quasi-ordering Q1 × Q2 by stipulating that 〈p1, p2〉 ≤ 〈q1, q2〉 if p1 ≤Q1
q1 and

p2 ≤Q2
q2.

Lemma 4. ([Ros82℄, 10.20) If Q1 and Q2 are wqo, then so is Q1 ×Q2.

De�nition 5. ([Ros82℄, 10.21, 10.24) Given a quasi-ordering Q, we de�ne the

quasi-orderingQ<ω
, whose domain is the set of all �nite sequenes of elements of

Q, by stipulating that 〈p0, p1, . . . , pn−1〉 ≤ 〈q0, q1, . . . , qm−1〉 if there is a stritly

inreasing h : n→ m suh that ai ≤Q bh(i) for all i < n.
We de�ne the quasi-ordering Qω

of ω-sequenes of elements of Q by saying

that 〈pn : n < ω〉 ≤ 〈qn : n < ω〉 if there is a stritly inreasing h : ω → ω suh

that an ≤Q bh(n) for all n < ω.

Theorem 6. ([Ros82℄, 10.23) If Q is a wqo, then so is Q<ω
.
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De�nition 7. ([Ros82℄, 10.31�10.33) If c is a �nite subset of N, d is any subset

of N, then we say that d extends c i�: c = {i ∈ d : i ≤ max c}, i.e., if c is an
initial segment (not neessarily proper) of d.

An in�nite set B of �nite subsets of N is a blok if every in�nite subset X of

⋃

B :=
⋃

{b : b ∈ B} has an initial segment in B; that is, X extends some ele-

ment in B. A blok B is alled a barrier if no two elements of B are omparable

w.r.t. inlusion.

A preedene relation ⊳ on a barrier B is de�ned as follows: if b1 and b2
are elements of B, then we say that b1 preedes b2, written b1 ⊳ b2, if there are
i1 < i2 < · · · < im suh that b1 = {i1, i2, . . . , ik} and b2 = {i2, . . . , im} for some

k, 1 ≤ k < m. (In partiular, {i} ⊳ {j} holds for all i 6= j.)
A funtion f : B → Q on a barrier B is bad if, whenever b1, b2 ∈ B and

b1 ⊳ b2, f(b1) �Q f(b2). Otherwise we say that f is good.

De�nition 8. ([Ros82℄, 10.30)We say that Q is a better-quasi-ordering, denoted

bqo, if every f : B → Q is good, for every barrier B of �nite subsets of N.

Remark. Every bqo is a wqo.

Proof. Use the barrier B = {{n} : n ∈ N}.

Theorem 9. ([Ros82℄, 10.38) If Q is a bqo, then Q<ω
and Qω

are bqo's.

Theorem 10. ([Ros82℄, 10.40) Let B be a barrier and suppose that B = B1∪B2

is a partition of B. Then there is a sub-barrier C ⊆ B suh that C ⊆ B1 or

C ⊆ B2.

This ends the de�nitions and results we will need from [Ros82℄.

De�nition 11. A ountable losed linear ordering, denoted lo, is a ountable

losed subset of R.
A stritly monotone ontinuous embedding h (denoted sm-embedding) from

a lo Q1 to a lo Q2 is an embedding h : Q1 → Q2 whih is ontinuous

on Q1, i.e. whenever (pn)n∈N is a sequene in Q1 onverging to an element p
in Q1, then (h(pn))n∈N is a sequene in Q2 onverging to an element h(p) in

Q2, and stritly monotone on Q1, i.e. whenever p, q ∈ Q1 with p <Q1
q then

h(p) <Q2
h(q). (Here, �onvergene� is always understood as onvergene in the

usual topology of R.)

De�nition 12 (labeled lo). In addition to lo, we will also have to onsider

the following notion: Fix a quasi-order Q (usually a bqo, often a �nite set or an

ordinal). A Q-lo is a funtion A whose domain domA is a lo and whose

range is ontained in Q.
We write A � B (A is Q-sm-embeddable into B, or shortly A is embeddable

into B) i� there is a sm-embedding h from domA to domB with the property

A(a) ≤Q B(h(a)) for all a ∈ domA.

If Q is a singleton, then A � B redues just to a sm-embedding from domA
to domB. If Q = {p, q} is an antihain, or satis�es p < q, and A(0) = A(1) =
q = B(0) = B(1), B(b) = p for all b 6= 0, 1, then A � B means that there is a

sm-embedding from domA to domB whih moreover preserves 0 and 1. Suh
embeddings will play an important r�le when we investigate Gödel sets and the

number of Gödel logis.
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2 Q-labeled ountable losed linear orderings

Let us �x some bqo (Q,≤) for de�ning Q-lo's.

Notation 13. We will use the following notation throughout the paper:

L0 + L1 + L2 . . .+ p+ . . .+ 2L+ 1L+ 0L

or

∑

Li + p+
∑∗

iL

When we write this term the following onditions are imposed:

� p is an element of Q.

� All the Li and iL are Q-lo's.

� Either all Li are empty, or none of them are empty. Similarly, either all

iL are empty, or none of them are. We do not allow all Li and all iL to

be empty.

� domLi < domLi+1 < dom i+1L < dom iL for all i, where we write A < B
for �A = ∅ ∨ B = ∅ ∨ supA < inf B�. In partiular, between the domains

of any two of them (in the non-empty ase) we an �nd an open interval.

� limn→∞ an = limn→∞ na, whenever an ∈ domLn and na ∈ dom nL.

The meaning of suh a term is the Q-lo L whose domain is the set

⋃

i Li ∪
{x}∪

⋃

i iL (where x = limn→∞ an and/or x = limn→∞ na for any/all sequenes
satisfying an ∈ domLn and na ∈ dom nL), and the funtion L extends all

funtions Li and iL, and L(x) = p.
A ��nite sum�

L = L1 + · · ·+ Ln

is de�ned naturally: we allow this expression only when all Li are nonempty and

satisfy maxdomLi < min domLi+1. In this ase we let dom(L) =
⋃

i dom(Li)
and L =

⋃

i Li.

We will onsider two slightly di�erent operations (S, S′
below) to build om-

pliated Q-lo's from simpler ones. These two operations naturally orrespond

to two notions rk, rk′ of rank; a third rank that we oasionally use is the

lassial Cantor-Bendixson rank rk
CB

of a lo.

De�nition 14. Let O be a lass of Q-lo's. We let S(O) (`sums from O') be

the set of all Q-lo's whih are �nite sums of Q-lo's from O, plus the set of

all Q-lo's of the form

L0 + L1 + L2 . . .+ p+ . . .+ 2L+ 1L+ 0L

where p ∈ Q and all Ln and all nL are in O.

We let S′(O) (`unbounded sums from O') be the set of all Q-lo's of the
form

L0 + L1 + L2 . . .+ p+ . . .+ 2L+ 1L+ 0L

where p ∈ Q and all Ln and all nL are in O, and

∀n ∃k > n Ln � Lk and ∀n ∃k > n nL � kL.
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As a onsequene of the above de�nition we obtain for unbounded sums,

that for all n there are in�nitely many k > n suh that Ln � Lk and nL � kL.

De�nition 15.

(a) Let C be the set of all Q-lo's.

(b) Let C0 = C ′
0 be the set of all Q-lo's with singleton or empty domain.

For any α ≤ ω1 let

Cα+1 = S(Cα) ∪ Cα C
′
α+1 = S′(C ′

α) ∪ C
′
α

and for limit ordinals δ > 0 let Cδ =
⋃

α<δ Cα, C ′
δ =

⋃

α<δ C ′
α.

() For any L ∈
⋃

α Cα we de�ne the rank of L (rk(L)) as the �rst ordinal α
at whih L ours in Cα+1. Similar, we de�ne rk′(L) for L ∈

⋃

α C ′
α as

the �rst ordinal α at whih L ours in C ′
α+1.

(d) The set of all Q-lo's whose domains are suborderings of domL is denoted

with C (L).

It is lear that C ′
ω1

⊆ Cω1
⊆ C . We will show that C = Cω1

, and that every

order in C an be written as a �nite sum of orders from C ′
ω1
.

Lemma 16. C = Cω1
. That is, for every Q-lo L there is a ountable ordinal

α suh that L ∈ Cα.

Proof. We use the Cantor-Bendixson deomposition, more preisely we use in-

dution on the Cantor-Bendixson rank of V = domL.
For every sattered losed set V there is an ordinal rk

CB

(V ) (the Cantor-

Bendixson rank of V ) and a deomposition

V =
⋃

α≤rk
CB

(V )

CBα(V ),

where CB0(V ) is the set of isolated points of V , and more generally eah set

CBα(V ) is the set of isolated points of V \
⋃

β<α CBβ(V ), and CBrk
CB

(V )(V ) is
�nite and nonempty.

Assume for the moment that CBrk
CB

(V )(V ) is a singleton {x∗}. If rk
CB

(V ) =
0, then L ∈ C0. If rkCB(V ) > 0, �x an inreasing sequene 〈xn〉 and a dereasing

sequene 〈nx〉, both with limit x∗, and xn, nx /∈ V . Now it is easy to see that

for all β < rk
CB

(V )

CBβ(V ∩ [xn, xn+1]) = CBβ(V ) ∩ [xn, xn+1],

so rk
CB

(V ∩ [xn, xn+1]) < rk
CB

(V ), similarly for V ∩ [nx, n+1x]. Now we an

use the indution hypothesis.

If CBrk
CB

(V )(V ) is not a singleton then we an write V = V1 + · · ·+ Vn for

some �nite n, with eah CBrk
CB

(V )(Vk) a singleton, then proeed as above.

De�nition 17. The set C ′ := C ′
ω1

is the smallest family of Q-lo's whih

ontains all the singletons and is losed under unbounded sums S′
.

Theorem 18. Let L be a Q-lo and assume that (C (L),�) is a wqo. (See

De�nition 15(d).) Then L is a �nite sum of elements in C ′
.
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Proof. Indution on rk(L): Assume that

L = L0 + L1 + L2 . . .+ p+ . . .+ 2L+ 1L+ 0L

where all the Li and iL are in C ′
. Suppose that, for all but a �nite number of

Li, eah Li is embeddable in in�nitely many Lj , and for all but a �nite number

of iL, eah iL is embeddable in in�nitely many jL. Then L an be written as

L0 + . . . Lk−1 + (Lk+0 + Lk+1 + · · ·+ p+ · · ·+ l+1L+ l+0L) + l−1L+ · · ·+ 0L

where eah summand is in C ′
.

Otherwise there are either in�nitely many Li or iL eah embeddable in only

�nitely many Lj or jL, resp. We then �nd a either a subsequene 〈Lh(n) : n < ω〉
or 〈h(n)L : n < ω〉 no entry of whih an be embedded in any subsequent

entry. This bad sequene of suborderings of L ontradits the hypothesis of the

theorem.

Theorem 19. If (C ′,�) is a bqo, then (C ,�) is a wqo.

Proof. We will show for all ountable L by indution on the rank rk(L) (that
is the rank w.r.t. the lasses in C as de�ned in De�nition 15 ()), that the

olletion C (L) of Q-lo's whose domains are suborderings of domL is a wqo

w.r.t sm-embeddability.

First we show that, if K is in C (L), then K an be written as K =
∑

Ji +
p+

∑∗
iJ , where all the Ji and iJ are in C ′

. To prove this, observe that L an

be written as

∑

Li+p+
∑∗

iL where the ranks of the Li and iL are stritly less

than the rank of L. Using the indution hypothesis, we see that (C (Li),�) and
(C (iL),�) are wqo. If domK is a sub ordering of domL, it an be written as

K =
∑

Ki+q+
∑∗

iK withKi ∈ C (Li) and iK ∈ C (iL). Thus, by Theorem 18,

eah Ki and iK an be written as �nite sum of elements Jj and jJ in C ′
, and

K as J0 + J1 + J2 . . .+ q + . . .+ 2J + 1J + 0J .
Now onsider a sequene 〈K l : l < ω〉, where eah K l

is a Q-lo and

subordering of L. We will repeatedly thin out this sequene, eventually arriving

at a sequene whih is good, whih will show that our original sequene was good.

After having thinned out the sequene 〈K l : l < ω〉 to a sequene 〈K li : i < ω〉,
we will (for notational simpliity) relabel our index set so that we will also all

the new sequene 〈K l : l < ω〉.
Eah K l

an be written as

K l = J l
0 + J l

1 + J l
2 . . .+ pl + . . .+ 2J

l + 1J
l + 0J

l

where eah of the summands is in C ′
. Using Lemma 2 we thin out our sequene

to a new sequene (again alled 〈K l : l < ω〉) suh that pj ≤Q pk for all j < k.
By Theorem 9 we know that C ′ω

is a bqo, in partiular a wqo. Consider the

ω-tuples Cl = 〈J l
0, J

l
1, . . .〉 ∈ C ′ω

. Using Lemma 2 we an thin out our sequene

to obtain a sequene satisfying Cj � Ck
for any j < k.

We now apply the fat that C
′ω
is wqo to the sequene

nC = 〈0J
n, 1J

n, . . .〉 ∈
C ′ω

to see that without loss of generality we may also assume

jC � kC for all

j < k.
Now pik any n < m, and onsider the sums

Kn = Jn
0 + Jn

1 + Jn
2 . . .+ pn + . . .+ 2J

n + 1J
n + 0J

n
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and

Km = Jm
0 + Jm

1 + Jm
2 . . .+ pm + . . .+ 2J

m + 1J
m + 0J

m.

Write xn and xm for the entral points of Kn
and Km

, respetively (i.e., xn =
supn

⋃

i domJn
i = infn

⋃

i dom iJ
n
, et.)

We know pn ≤Q pm, Cn � Cm
, nC � mC.

Thus, there are stritly inreasing funtions g and h from N to N, suh

that for all i, Jn
i � Jm

g(i) and iJ
n � h(i)J

m
. Let αi and iα be funtions that

witness this, i.e., let αi be a funtion mapping dom Jn
i to dom Jm

g(i) with J
n
i (x) ≤

Jm
g(i)(αi(x)) for all x ∈ domJn

i , and similarly iJ
n(x) ≤ g(i)J

m(iα(x)) for all

x ∈ dom iJ
n
,

Now de�ne α : domKn → domKm
naturally: α extends all funtions αi

and iα, and α(x
n) = xm. Clearly α witnesses Kn � Km

.

Finally, if {Ki : i < ω} is an arbitrary sequene, where eah Ki is in C , then

eah Ki ∈ C(K) where K = K0 + K1 + K2 . . . + p + . . . + 2K + 1K + 0K
for arbitrary p and empty iK. Aording to the above remarks, the sequene

{Ki : i < ω} must be good, so that C is a wqo.

Theorem 20. (C ′,�) is a bqo.

We prove the Theorem by a series of lemmas. The �rst lemma holds for

general quasi-orderings whih are equipped with a rank funtion, it forms the

main tehnial part of the proof of Theorem 20.

Let (Q,≤) be a quasi-ordering, and let ρ be a rank funtion from Q into the

ordinals (i.e., a funtion satisfying ρ(x) ≤ ρ(y) whenever x ≤ y). Let F denote

the set of all funtions g : B → Q where B is a barrier of �nite subsets of N.
(See De�nition 7.)

We say that C is an extended sub-barrier of B if

⋃

C ⊆
⋃

B and if every

element of C is an extension (not neessarily proper) of an element of B. C
is alled a proper extended sub-barrier of B if C is an extended sub-barrier of

B and at least one element of C properly extends some element of B. For two
funtions g : B → Q and h : C → Q in F we say that h is shorter than g if C
is a proper extended sub-barrier of B and if g and h oinide on B ∩C, and if,

whenever c ∈ C properly extends b ∈ B, h(c) ≤ g(b) and h(c) has lower rank
than g(b). The following Lemma an be extrated from the proof of Theorem

10.47 in Rosenstein [Ros82℄. Reall from De�nition 7 that a funtion f : B → Q
is alled bad if, whenever b1, b2 ∈ B and b1 ⊳ b2, f(b1) � f(b2).

Lemma 21. If F ontains some bad funtion, than it ontains some minimal

bad funtion, i.e. one whih is minimal w.r.t. `shorter'.

Proof. Assume for the sake of ontradition that F ontains some bad funtion,

but for any bad g ∈ F there is some bad h ∈ F whih is shorter than g.
Let g : B → Q be bad. With k(g) we denote the minimal k suh that there

is a shorter h : C → Q and a b ∈ B whih is properly extended by some element

in C with max b ≤ k. Fix some witnesses C, h and b for k(g). We de�ne D
as the set of all d ∈ B whih do not have extensions in C and whih ful�ll

d ⊂ [0, k(g)] ∪
⋃

C. Obviously C ∩D = ∅.
First observe that for d ∈ D we have d 6⊂

⋃

C: Assume for the sake of

ontradition that d ⊂
⋃

C. Let X be the in�nite set d ∪
(
⋃

C ∩ [max d,∞)
)

,

then X ⊆
⋃

C, hene there is some c ∈ C whih is extended by X . Sine X

7



is also an extension of d, c extends d or vie versa. As c extends some element

in B and d ∈ B, we have that c annot be properly extended by d beause

B is a barrier. But by de�nition of D we also have that c does not extend d.
Contradition.

Now, B∗ := C ∪D is a barrier and g∗ : B∗ → Q de�ned by g∗(c) = h(c) for
c ∈ C and g∗(d) = g(d) for d ∈ D is bad and shorter than g.

We verify these laims: First note that

⋃

B∗ ⊆
⋃

C ∪ [0, k(g)]. For B∗
to be

a blok let X ⊆
⋃

B∗
be in�nite. There is some d ∈ B whih is extended by X

(as B is a blok, and

⋃

B∗ ⊆
⋃

B). If d is not already in B∗
then, by de�nition

of D, d has some extension in C whih must be proper as d /∈ C. Thus d ⊂
⋃

C
and max d ≥ k(g), hene X ⊆

⋃

C as

⋃

B∗ ⊆
⋃

C ∪ [0, k(g)]. But then there is

some c ∈ C whih is extended by X . Altogether this shows that B∗
is a blok.

Assume that B∗
is not a barrier, then there must be c ∈ C and d ∈ D whih

are omparable. As c is the extension of some element in B and d ∈ B, we
have c * d beause B is a barrier. But d ∈ D implies d 6⊂

⋃

C, hene d * c.
Contradition. Hene B∗

must be a barrier.

Obviously, g∗ is shorter than g, as h already has been shorter than g. To

verify that g∗ is bad we assume for the sake of ontradition that c1 ⊳ c2 and

g∗(c1) ≤ g∗(c2). As h is bad, c1 and c2 annot be in C at the same time.

Similar with g, they annot be in D at the same time. If c1 ∈ C and c2 ∈ D,

then c2 6⊂
⋃

C whih together with c1 ⊳ c2, c1 ∈ C and the de�nition ofD shows

max c1 < k(g), hene c1 ∈ B. Hene g(c1) = h(c1) = g∗(c1) ≤ g∗(c2) = g(c2)
ontraditing that g is bad. Therefore, c1 ∈ D and c2 ∈ C. There is some

b2 ∈ B suh that b2 is extended by c2. If c1 ⋪ b2 then b2 ( c1 whih ontradits

that B is a barrier. Hene we have c1 ⊳ b2. But then g(c1) = g∗(c1) ≤ g∗(c2) =
h(c2) ≤ g(b2) ontradits that g is bad. Altogether this shows that g∗ is bad.

We now de�ne a sequene of bad elements fn ∈ F in the following way. Let

f0 : B0 → Q be some bad element in F , and de�ne reursively Bn+1 := B∗
n and

fn+1 := f∗
n. Let kn := k(fn). Then kn+1 ≥ kn beause `shorter' is transitive

and kn is hosen minimal. Furthermore, kn = km for only �nitely many m
sine {b ∈ Bn : max b = kn} is �nite. Hene 〈kn : n < ω〉 is a non-dereasing

unbounded sequene of natural numbers. Also observe that if b ∈ Bn and

max b < kn and n < m then b ∈ Bm, and if b ∈ Bm ∩Bn then fm(b) = fn(b).
Let B :=

⋃

{
⋂

{Bn : n ≥ m} : m < ω}. We show that B is a barrier. Let

M :=
⋂

{
⋃

Bn : n < ω}. M is in�nite beause kn ∈ M for all n. Let X ⊆ M
be in�nite. Then for all n < ω we have X ⊆

⋃

Bn, hene there is some bn ∈ Bn

whih is extended by X . If bn+1 is a proper extension of bn then the rank

of fn+1(bn+1) is stritly smaller than the rank of fn(bn), hene, for some m,

bn = bm for all n ≥ m, i.e. bm ∈
⋂

{Bn : n ≥ m} ⊆ B. In partiular, M ⊆
⋃

B
by taking X := M ∩ [m,∞) for m ∈ M . If k ∈

⋃

B, then there is some b ∈ B
with k ∈ b. b ∈ B implies that there is some m with b ∈

⋂

n≥mBn. Thus

k ∈
⋃

Bn for all n ≥ m. Also k ∈
⋃

Bm ⊆
⋃

Bm−1 ⊆ · · · ⊆
⋃

B0, hene

k ∈ M . This shows

⋃

B ⊆ M . Thus M =
⋃

B and B is a blok. Let b, c ∈ B,
then b, c ∈ Bn for some n, hene they are not omparable as Bn is a barrier.

Altogether this shows that B is a barrier.

For b ∈ B let mb := min {m : b ∈
⋂

{Bn : n ≥ m}}. We de�ne f : B → Q
by f(b) := fmb

(b) and show that f is minimal w.r.t. `shorter' and bad. f is

shorter than fn for all n, beause `shorter' is transitive, B is an extended sub-

barrier of Bn, if b ∈ B ∩ Bn then mb ≤ n hene f(b) = fmb
(b) = fn(b), and

if c ∈ B properly extends b ∈ Bn, then mc > n and f(c) = fmc
(c) ≤ fn(b)
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and ρ(f(c)) = ρ(fmc
(c)) < ρ(fn(b)). f is bad, beause if b, c ∈ B, and w.l.o.g.

mb ≤ mc, then f(b) = fmc
(b) and f(c) = fmc

(c) and fmc
is bad. By our

general assumption there is some bad f ′ : B′ → Q whih is shorter than f .
Then there are b′ ∈ B′

and b ∈ B suh that b′ properly extends b. Choose n
with kn > max b′. Now f ′

is shorter than fn beause f is shorter than fn and

`shorter' is transitive. But this ontradits the minimality of k(fn). Hene our

general assumption has been wrong, and the theorem is proved.

Reall that the rank rk′(L) of L ∈ C ′
is given by the minimal α suh that

L ∈ C ′
α+1. A C ′

-term for L ∈ C ′
with rk′(L) > 0 is a faithful witness for

L ∈ C ′
, i.e. a deomposition L =

∑

Li + p+
∑∗

iL with all the Li and iL in C ′

and rk′(Li) < rk′(L) and rk′(iL) < rk′(L) for all i.

Lemma 22. Let L and K be in C
′
, with L =

∑

Li + p +
∑∗

iL and K =
∑

Ki + q +
∑∗

iK being C ′
-terms of them. If p ≤ q and eah Li is embeddable

into some Kj and eah iL is embeddable into some jK, then L � K.

Proof. Let the assumptions of the lemma be ful�lled. Then there are ki, li ∈ ω
suh that ki < ki+1, li < li+1 and Li � Kki

and iL � liK beause L,K are in

C ′
. Fix sm-embeddings σi : domLi → domKki

and iσ : dom iL → dom liK
witnessing Li � Kki

resp. iL � liK, and let b := limi(sup domLi) and c :=
limi(sup domKi). We de�ne a map σ : domL→ domK by

σ(a) :=











σi(a) if a ∈ domLi

iσ(a) if a ∈ dom iL

c if a = b

Then σ is a sm-embedding witnessing L � K.

Proof of Theorem 20. Assume for the sake of ontradition that (C ′,�) is not
a bqo. By applying Lemma 21 we an �nd some f : B → C

′
whih is bad

and minimal w.r.t. `shorter'. For eah b ∈ B we �x some C ′
-term f(b) =

∑

Li + p+
∑∗

iL.
For any a, b ∈ B with a ⊳ b we have that f(a) =

∑

Li + p +
∑∗

iL �
∑

Ki + q +
∑∗

iK = f(b), hene, by applying Lemma 22, we see that at least

one of the following holds:

(i) p � q

(ii) for some i: Li � Kj for all j,

(iii) for some i: iL � jK for all j.

By applying Theorem 10 we an �nd a sub-barrier B′
suh that one the ases

(i), (ii), (iii) always happens on B′
. In the �rst ase this would form a bad

sequene in (Q,≤) whih would ontradit that (Q,≤) is a wqo. Thus, w.l.o.g.

we may assume that for all a, b ∈ B′
with a ⊳ b there is some i suh that

Li � Kj for all j. Let B
′(2) := {b1 ∪ b2 : b1, b2 ∈ B′

and b1 ⊳ b2}, then B′(2) is
an extended sub-barrier of B. De�ne g : B′(2) → C

′
by letting g(b1∪ b2) be the

�rst Li in f(b1) =
∑

Li + p+
∑∗

iL whih is not embeddable into any Kj from

f(b2) =
∑

Ki + q +
∑∗

iK. Then obviously g is shorter than f . But also g is

bad, beause if b1 ∪ b2 ⊳ b3 ∪ b4 then b2 = b3 and hene g(b1 ∪ b2) � g(b3 ∪ b4).
This ontradits the minimality of f .
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Theorems 19 and 20 together yield the following result:

Corollary 23. (C ,�) is a wqo.

For the next orollary, we need the following two well-known properties of

wqo's:

Lemma 24. Let (Q,≤) be a wqo with unountable many ≡-equivalene lasses.
Then there exists a 1-1 monotone map f : ω1 → Q.

Proof sketh. W.l.o.g. let eah equivalene lass of Q/ ≡ onsist of one element.

If eah unountable subset Q′ ⊆ Q ontains some element q suh that also

{r ∈ Q′ : q � r} is unountable, then we an �nd sequene

Q = Q0 ⊇ Q1 ⊇ Q2 ⊇ · · ·

of unountable sets with elements qn ∈ Qn, Qn+1 := {r ∈ Qn : qn � r}. But

then qn � qk for all n < k, ontraditing the assumption that Q is wqo.

So there must be an unountable subset Q′ ⊆ Q suh that for any q ∈ Q′
,

the set {r ∈ Q′ : q � r} is ountable. But then we an easily �nd a opy of ω1

in Q′
.

Alternatively, start with any 1-1 sequene 〈qi : i ∈ ω1〉 in Q; de�ne a oloring
f : [ω1]

2 → 2 by f(i < j) = 0 i� qi < qj , and apply the Erd®s-Dushnik-Miller

theorem ω1 → (ω1, ω). (See [EHMR84, Theorem 11.1℄.)

Lemma 25. Let Q be a ountable bqo (or at least assume that Q has only

ountably many ≡-equivalene lasses).

Then Qω
(quasiordered as in De�nition 5) has only ountably many equiva-

lene lasses.

Proof. Part I: We �rst onsider the set Q∗
of all sequenes ~q = 〈q0, q1, . . .〉 ∈ Qω

satisfying

∀k ∃n > k : qk ≤ qn.

and show that this set is ountable (modulo ≡).
By Theorem 9, Qω

and hene alsoQ∗
is a wqo. Assume that Q∗

has unount-

ably many ≡-lasses, then by Lemma 24 we an �nd a sequene

〈

~q i : i ∈ ω1

〉

,

~q i = 〈qi0, q
i
1, . . .〉 ∈ Q∗

with i < j ⇒ ~q i ≤ ~q j
, ~q j � ~q i

.

Let α < ω1 be so large suh that every element of Q whih appears some-

where as qjn is ≤ to some qj
′

n′ with j′ < α.
We laim that ~q α+1 ≤ ~q α

, whih will be the desired ontradition.

By de�nition of α, ∀n ∃i < α ∃n′ : qα+1
n ≤ qin′ . So for every n there is n′′

with qα+1
n ≤ qαn′′ . Using ~q α ∈ Q∗

, we an �nd a sequene k0 < k1 < · · · with

qα+1
n ≤ qαkn

for all n, whih means ~q α+1 ≤ ~q α
.

Part II: For any sequene ~q = 〈q0, q1, . . .〉 ∈ Qω
we an �nd a natural number

N = N~q suh that ∀k ≥ N ∃n > k : qk ≤ qn, otherwise we get (as in the proof

of Theorem 18) a ontradition to our assumption that Q is a wqo.
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Now assume that Qω/≡ is unountable, then we an �nd a natural num-

ber N∗
and an unountable family

〈

~q i : i < ω1

〉

of pairwise nonequivalent se-

quenes in Qω
suh that for all i, N~q i = N∗

. Moreover, we may assume that

all initial segments 〈qi0, . . . , q
i
N∗〉 are equal to eah other. Consider the tails

〈qiN∗+1, q
i
N∗+2, . . .〉 ∈ Qω

. By de�nition of N~q i
, these tails are all in Q∗

, de�ned

in part I, above.

Hene we an �nd i 6= j suh that

〈qiN∗+1, q
i
N∗+2, . . .〉 ≡ 〈qjN∗+1, q

j
N∗+2, . . .〉.

But then also ~q i ≡ ~q j
.

Corollary 26. Assume that our basi wqo Q is ountable. Then, for any set

O ⊆ C with O/≡ ountable we also have that S′(O)/≡ and even S(O)/≡ are

ountable.

Proof. If 〈L0, L1, . . .〉 � 〈L′
0, L

′
1, . . .〉 and 〈0L, 1L, . . .〉 � 〈0L′, 1L

′, . . .〉 and p ≤
p′, then also

L0 + L1 + · · ·+ p+ · · · 1L+ 0L � L′
0 + L′

1 + · · ·+ p+ · · · 1L
′ + 0L

′.

So the orollary follows from Lemma 25.

Corollary 27. Assume that our basi wqo Q is ountable. W.r.t. ontinuous

bi-embeddability there are exatly ω1 many equivalene lasses of Q-lo's.

Proof. It is easy to see (using the ountable ordinals) that the number of equiv-

alene lasses is at least ℵ1.

On the other hand, Corollary 26 implies that |Cα| ≤ ℵ0 for all α < ω1, so

|Cω1
| ≤ ℵ1.

3 Gödel logis

Gödel logis are one of the oldest and most interesting families of many-valued

logis. Propositional �nite-valued Gödel logis were introdued by Gödel in

[Göd33℄ to show that intuitionisti logi does not have a harateristi �nite ma-

trix. They provide the �rst examples of intermediate logis (intermediate, that

is, in strength between lassial and intuitionisti logis). Dummett [Dum59℄

was the �rst to study in�nite valued Gödel logis, axiomatizing the set of tautolo-

gies over in�nite truth-value sets by intuitionisti logi extended by the linearity

axiom (A → B) ∨ (B → A). Hene, in�nite-valued propositional Gödel logi

is also alled Gödel-Dummett logi or Dummett's LC. In terms of Kripke se-

mantis, the harateristi linearity axiom piks out those aessibility relations

whih are linear orders.

Quanti�ed propositional Gödel logis and �rst-order Gödel logis are natural

extensions of the propositional logis introdued by Gödel and Dummett. For

both propositional quanti�ed and �rst-order Gödel logis it turns out to be

inevitable to onsider more omplex truth value sets than the standard unit

interval.

Gödel logis our in a number of di�erent areas of logi and omputer

siene. For instane, Dunn and Meyer [DM71℄ pointed out their relation to
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relevane logis; Visser [Vis82℄ employed LC in investigations of the provability

logi of Heyting arithmeti; three-valued Gödel logi has been used to model

strong equivalene between logi programs. Furthermore, these logis have re-

ently reeived inreasing attention, both in terms of foundational investigations

and in terms of appliations, as they have been reognized as one of the most

important formalizations of fuzzy logi [Háj98℄.

Perhaps the most surprising fat is that whereas there is only one in�nite-

valued propositional Gödel logi, there are in�nitely many di�erent logis at

the �rst-order level [BLZ96, Baa96, Pre02℄. In the light of the general result

of Sarpellini [Sa62℄ on non-axiomatizability, it is interesting that some of the

in�nite-valued Gödel logis belong to the limited lass of reursively enumerable

linearly ordered �rst-order logis [Hor69, TT84℄.

Reently a full haraterization of axiomatizability of Gödel logis was given

[Pre03℄, where also the ompatness of the entailment relation is disussed.

But one of the most basi questions has been left open until now: How many

Gödel logis are there? Lower bounds to this question have been given in

[Baa96, Pre02℄, and speial sublasses of logis determined by ordinals have

been disussed [MTO90℄, but it was a long open question whether there are

only ountably many or unountably many di�erent Gödel logis.

3.1 Syntax and Semanti

In the following we �x a relational language L of prediate logi with �nitely or

ountably many prediate symbols. In addition to the two quanti�ers ∀ and ∃ we

use the onnetives ∨, ∧, → and the onstant ⊥ (for `false'); other onnetives

are introdued as abbreviations, in partiular we let ¬ϕ := (ϕ→ ⊥).
Originally, Gödel logis have been de�ned only based on the �xed truth value

set [0, 1]. But we an �x a (nearly) arbitrary subset of [0, 1] and onsider the

Gödel logi indued by this truth value set.

De�nition 28 (Gödel set). A Gödel set is any losed set of real numbers,

V ⊆ [0, 1] whih ontains 0 and 1.

The (propositional) operations on Gödel sets whih are used in de�ning the

semantis of Gödel logis have the property that they are projeting, i.e. that

the operation uses one of the arguments (or 1) as result:

De�nition 29. For a, b ∈ [0, 1] let a ∧ b := min(a, b), a ∨ b := max(a, b),

a→ b :=

{

1 if a ≤ b
b otherwise

The last operation is alled `Gödel's impliation'. Note that

(a→ b) = sup{ x : (x ∧ a) ≤ b };

in order theory this is expressed as `the maps x 7→ (a∧ x) and y 7→ (a→ y) are
residuated'.

We de�ne ¬a := (a → 0), so ¬0 = 1, and ¬a = 0 for all a > 0.

The semantis of Gödel logis, with respet to a �xed Gödel set as truth

value set and a �xed relational language L of prediate logi, is de�ned using the
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extended language L M
, where M is a universe of objets. L M

is L extended

with symbols for every element of M as onstants, so alled M -symbols. These

symbols are denoted with the same letters.

De�nition 30 (Semantis of Gödel logi). Fix a Gödel set V (and a rela-

tional language L ). A valuation v into V onsists of

1. a nonempty set M =Mv
, the `universe' of v,

2. for eah k-ary prediate symbol P , a funtion P v : Mk → V .

Given a valuation v, we an naturally de�ne a value v(A) for any losed

formula A of L M
For atomi formulas ϕ = P (m1, . . . ,mn), we de�ne v(ϕ) =

P v(m1, . . . ,mn), and for omposite formulas ϕ we de�ne v(ϕ) naturally by:

v(⊥) = 0 (1)

v(ϕ ∧ ψ) = min(v(ϕ), v(ψ)) (2)

v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)) (3)

v(ϕ→ ψ) = v(ϕ) → v(ψ) (4)

v(∀xϕ(x)) = inf{v(ϕ(m)) : m ∈M} (5)

v(∃xϕ(x)) = sup{v(ϕ(m)) : m ∈M} (6)

(Here we use the fat that our Gödel sets V are losed subsets of [0, 1], in order

to be able to interpret ∀ and ∃ as inf and sup in V.)

For any losed formula ϕ and any Gödel set V we let

‖ϕ‖V := inf{v(ϕ) : v a valuation into V }

Remark. Note that the reursive omputation of v(ϕ) depends only on the values
Mv

, P v
and not diretly on the set V . Thus, if V1 ⊆ V2 are both Gödel sets,

and v is a valuation into V1, then v an be seen also as a valuation into V2, and
the values v(ϕ), omputed reursively using (1)�(6), do not depend on whether

we view v as a V1-valuation or a V2-valuation.
If V1 ⊆ V2, there are more valuations into V2 than into V1. Hene ‖ϕ‖V1

≥
‖ϕ‖V2

for all losed ϕ.
Similarly, for any map h : V1 → V2, any valuation v1 into V1 indues a

valuation v2 into V2 as follows:

Mv1 =Mv2 , P v1(~m) = h(P v2(~m)).

If h : V1 → V2 is a sm-embedding from V1 into V2 whih moreover preserves 0
and 1, and if v2 is the valuation indued by v1 and h, then it is easy to verify

by indution on the omplexity of the losed formula ϕ that v2(ϕ) = h(v1(ϕ)),
and hene

h(‖ϕ‖V1
) ≥ ‖ϕ‖V2

for all losed formulas ϕ.

De�nition 31 (Gödel logis based on V ). For a Gödel set V we de�ne

the �rst order Gödel logi GV as the set of all losed formulas of L suh that

‖ϕ‖V = 1.
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From the above remark it is obvious that if h is as above or V1 ⊆ V2, the
Gödel logi GV2

is a subset of GV1
.

De�nition 32 (Submodel, elementary submodel). Let v1, v2 be valua-

tions. We write v1 ⊆ v2 (v2 extends v1) i� M
v1 ⊆ Mv2

, and for all k, all k-ary
prediate symbols P in L , we have

P v1 = P v2 ↾ (Mv1)k

or in other words, if v1 and v2 agree on losed atomi formulas.

We write v1 ≺ v2 if v1 ⊆ v2 and v1(ϕ) = v2(ϕ) for all L Mv1

-formulas ϕ.

Fat 33 (downward Löwenheim-Skolem). For any valuation v (with Mv

in�nite) there is a valuation v′ ≺ v with a ountable universe Mv′

.

De�nition 34. The only sub-formula of an atomi formula P in L M
is P

itself. The sub-formulas of ϕ⋆ψ for ⋆ ∈ {→,∧,∨} are the subformulas of ϕ and

of ψ, together with ϕ ⋆ ψ itself. The sub-formulas of ∀xϕ(x) and ∃xϕ(x) with
respet to a universe M are all subformulas of all ϕ(m) for m ∈ M , together

with ∀xϕ(x) (or, ∃xϕ(x), respetively) itself.
The set of valuations of sub-formulas of ϕ under a given valuation v is

denoted with

Val(v, ϕ) = {v(ψ) : ψ sub-formula of ϕ w.r.t. Mv}

Lemma 35. Let v be a valuation with v(ϕ) < b < 1 and b does not our in

Val(v, ϕ). Let v′ be the valuation with the same universe as v, de�ned by

v′(ψ) =

{

v(ψ) if v(ψ) < b

1 otherwise

for atomi subformulas ψ of ϕ w.r.t. Mv
, and arbitrary for all other atomi

formulas. Then v′ is a valuation and v′(ϕ) = v(ϕ).

Proof. Let hb(a) = a if a < b and= 1 otherwise. By indution on the omplexity

of the formula ψ we an easily show that v′(ψ) = hb(v(ψ)) for all subformulas

ψ of ϕ w.r.t. Mv
.

Lemma 36. Assume that M ⊂ R is a ountable set and P a perfet set. Then

there is a sm-embedding from M into P .

In [Pre03℄ there is a proof of this lemma whih was used to extend the proof

of reursive axiomatizability of `standard' Gödel logis (those with V = [0, 1])
to Gödel logis with a truth value set ontaining a perfet set in the general

ase. Here we give a simple proof.

Proof. Sine there are unountable many disjoint sets of the form Q − x :=
{q−x : q ∈ Q}, there is some x suh thatM∩(Q−x) = ∅, so also (M+x)∩Q = ∅.
So we may assume that M ∩Q = ∅. We may also assume M ⊆ [0, 1].

Sine P is perfet, we an �nd an sm-embedding c from the Cantor set

C ⊆ [0, 1] into P .
Let i be the natural bijetion from 2ω (the set of in�nite {0, 1}-sequenes,

ordered lexiographially) onto C. i is an order preserving homeomorphism.
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For every m ∈ M let w(m) ∈ 2ω be the binary representation of m. Sine

M does not ontain any dyadi rational numbers, this representation is unique;

moreover, the map w is sm. Now c◦ i◦w is an sm embedding fromM into P .

M
w

−→ 2ω
i

−→ C
c

−→ P

Lemma 37. Let V be a truth value set with non-empty perfet kernel P , and
let W = V ∪ [inf P, 1], then the logis indued by V and W are the same, i.e.

GV = GW .

Proof. As V ⊆W we have GW ⊆ GV . (Cf. Remark before De�nition 31.)

Now assume that vW (ϕ) < 1. Due to Fat 33, there is a v′W suh that Mv′

is ountable and v′W (ϕ) = vW (ϕ). The set M := Val(v′W , ϕ) has ardinality at

most ℵ0, thus there exists a b ∈W suh that b /∈M , v′W (ϕ) < b < 1. Aording
to Lemma 36 there is a sm-embedding h from [inf P, b] ∩ (M ∪ {b}) into P .
De�ne vV (ψ) for all atomi subformulas of ϕ as follows:

vV (ψ) =











v′W (ψ) if 0 < v′W (ψ) < inf P

h(v′W (ψ)) if inf P ≤ v′W (ψ) ≤ b

1 otherwise

and 1 for all other atomi formulas. Aording to Lemma 35 we obtain that

vV (ϕ) =

{

v′W (ψ) < b < 1 if 0 < v′W (ψ) < inf P

h(v′W (ϕ)) < h(b) ≤ 1 if inf P ≤ v′W (ψ) ≤ b

thus vV (ϕ) < 1 and GV ⊆ GW .

Lemma 38. Let V1 and V2 be Gödel sets and Q = {0, 1} with 0 <Q 1. Let

A1 and A2 be Q-labeled los de�ned by dom(Ai) = Vi, Ai(0) = Ai(1) = 1 and

Ai(x) = 0 otherwise. If A1 is (Q-sm-)embeddable into A2, then the Gödel logi

determined by V1 is a superset of the Gödel logi determined by V2.

Proof. In this ase of a very simple labeling the property that A1 is embeddable

into A2 redues to the existene of a sm-embedding of V1 into V2 preserving 0
and 1. Aording to the Remark following De�nition 30 this indues the reverse

inlusion of the respetive Gödel logis.

Corollary 39. The set of Gödel logis

(a) is ountable

(b) is a (lightfae) Σ1
2 set

() is a subset of Gödel's onstrutible universe L.

Proof. (a) First note that the set of ountable Gödel logis (i.e. those with

ountable truth value set), ordered by ⊇, is a wqo. To see this, assume that

〈Gn : n ∈ ω〉 is a sequene of ountable Gödel logis. Take the sequene of

ountable Gödel sets 〈Vn : n ∈ ω〉 generating these logis and de�ne the re-

spetive Q-labeled lo (also denoted with Vn) with Q = {0, 1}, 0 <Q 1 and
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Vn(0) = Vn(1) = 1, and Vn(x) = 0 otherwise. Aording to Corollary 23 this

sequene of Q-labeled los must be good, hene there are numbers n < m suh

that Vn is sm-embeddable into Vm. Then Lemma 38 implies that Gn must

be a superset of Gm. This shows that the original sequene of Gödel logis

〈Gn : n ∈ ω〉 must be good, too.

As eah ountable Gödel logi is a subset of a �xed ountable set (the set of

all formulas), the family of ountable Gödel logis annot ontain a opy of ω1.

So by Lemma 24, the family of ountable Gödel logis must be ountable.

Aording to Lemma 37 any unountable Gödel logi, i.e. Gödel logi de-

termined by an unountable Gödel set, suh that 0 is not inluded in the pre-

fet kernel P of the Gödel set is ompletely determined by the ountable part

V ∩ [0, inf P ]. So the total number of Gödel logis is at most two times the

number of ountable Gödel logis plus 1 for the logi based on the full interval,

i.e. ountable.

(b) First, note that the set

{(v, ϕ, v(ϕ)) :Mv = N}

is a Borel set, sine we an show by indution on the quanti�er omplexity of ϕ
that the sets {(v, q) : Mv = N, v(ϕ) ≥ q} are Borel sets (even of �nite rank).

Next, as set G of formulas is a Gödel logi i�

There exists a losed set V ⊆ [0, 1] (say, oded as the omplement

of a sequene of �nite intervals) suh that:

� For every ϕ ∈ G, for every v with Mv = N, v(ϕ) = 1, and

� For every ϕ /∈ G, there exists v with Mv = N, v(ϕ) < 1.

(We an restrit our attention to valuations v with vM = N beause of

Fat 33.)

Counting quanti�ers we see that this is a Σ1
2 property.

() follows from (a) and (b) by the Mans�eld-Solovay theorem (see [Man70℄,

[Mos80, 8G.1 and 8G.2℄).

Questions and future work

De�ne ωG
1 as the smallest ordinal α suh that: For every well-ordered Gödel set

V there is a well-ordered Gödel set V ′
of order type < α with GV = GV ′

.

De�ne ωGCB
1 as the smallest ordinal α suh that: For every Gödel set V

there is a Gödel set V ′
whose Cantor-Bendixson rank is < α with GV = GV ′

.

By Corollary 39, both these ordinals are ountable. Furthermore, ωG
1 ≤

ωGCB
1 . It would be interesting to desribe the ordinals ωG

1 and ωGCB
1 by giv-

ing lower and upper estimates in terms of well-known losure ordinals, e.g. for

indutive de�nitions and related re�etion priniples of set theory. Are they

equal? Note that ωCK
1 ≤ ωG

1 .
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