ON CHAINS IN H-CLOSED TOPOLOGICAL POSPACES

OLEG GUTIK, DUŠAN PAGON, AND DUŠAN REPOVŠ

ABSTRACT. We study chains in an H-closed topological partially ordered space. We give sufficient conditions for a maximal chain L in an H-closed topological partially ordered space such that L contains a maximal (minimal) element. Also we give sufficient conditions for a linearly ordered topological partially ordered space to be H-closed. We prove that any H-closed topological semilattice contains a zero. We show that a linearly ordered H-closed topological semilattice is an H-closed topological pospace and show that in the general case this is not true. We construct an example an H-closed topological pospace with a non-H-closed maximal chain and give sufficient conditions that a maximal chain of an H-closed topological pospace is an H-closed topological pospace.

1. INTRODUCTION

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the terminology of [3, 6, 7, 8, 12, 15]. If A is a subset of a topological space X, then we denote the closure of the set A in X by $cl_X(A)$. By a *partial order* on a set X we mean a reflexive, transitive and anti-symmetric binary relation \leq on X. If the partial order \leq on a set X satisfies the following linearity law

if
$$x, y \in X$$
, then $x \leq y$ or $y \leq x$.

then it is said to be a *linear order*. We write x < y if $x \leq y$ and $x \neq y$, $x \geq y$ if $y \leq x$, and $x \leq y$ if the relation $\leq y$ is false. Obviously if \leq is a partial order or a linear order on a set X then so is \geq . A set endowed with a partial order (resp., linear order) is called a *partially* ordered (resp., *linearly ordered*) set. If \leq is a partial order on X and A is a subset of X then we denote

 $\downarrow A = \{ y \in X \mid y \leqslant x \text{ for some } x \in A \} \text{ and } \uparrow A = \{ y \in X \mid x \leqslant y \text{ for some } x \in A \}.$

Also for any elements a, b of a partial ordered set X such that $a \leq b$ we denote $\uparrow a = \uparrow \{a\}$, $\downarrow a = \downarrow \{a\}, [a, b] = \uparrow a \cap \downarrow b$ and $[a, b) = [a, b] \setminus \{b\}$. A subset A of a partially ordered set X is called *increasing (decreasing)* if $A = \uparrow A$ $(A = \downarrow A)$.

A partial order \leq on a topological space X is said to be *lower (upper) semicontinuous* provided, that whenever $x \leq y$ ($y \leq x$) in X, then there exists an open set $U \ni x$ such that if $a \in U$ then $a \leq y$ ($y \leq a$). A partial order is called *semicontinuous* if it is both upper and lower semicontinuous. Next, it is said to be *continuous* or *closed* provided, that whenever $x \leq y$ in X, there exist open sets $U \ni x$ and $V \ni y$ such that if $a \in U$ and $b \in V$ then $a \leq b$. Clearly, the statement that the partial order \leq on X is semicontinuous is equivalent to the assertion that $\uparrow a$ and $\downarrow a$ are closed subsets of X for each $a \in X$. A topological space equipped with a continuous partial order is called a *topological partially ordered space* or shortly *topological pospace*. A partial order \leq on a topological space X is continuous if and only if the graph of \leq is a closed subset in $X \times X$ [15, Lemma 1]. Also a semicontinuous linear order on a topological space is continuous [15, Lemma 3].

Date: November 8, 2018.

²⁰⁰⁰ Mathematics Subject Classification. Primary 06B30, 54F05. Secondary 06F30, 22A26, 54G12, 54H12.

Key words and phrases. H-closed topological partially ordered space, chain, maximal chain, topological semilattice, regularly ordered pospace, MCC-chain, scattered space.

A chain of a partially ordered set X is a subset of X which is linearly ordered with respect to the partial order. A maximal chain is a chain which is properly contained in no other chain. The Axiom of Choice implies the existence of maximal chains in any partially ordered set. Every maximal chain in a topological pospace is a closed set [15, Lemma 4].

An element y in a partially ordered set X is called *minimal* (resp. *maximal*) in X whenever $x \leq y$ (resp. $y \leq x$) in X implies $y \leq x$ (resp. $x \leq y$). Let X and Y be partially ordered sets. A map $f: X \to Y$ is called *monotone* (or *partially order preserving*) if $x \leq y$ implies $f(x) \leq f(y)$ for any $x, y \in X$.

A Hausdorff topological space X is called H-closed if X is a closed subspace of every Hausdorff space in which it is contained [1, 2]. A Hausdorff pospace X is called H-closed if X is a closed subspace of every Hausdorff pospace in which it is contained. Obviously that the notion of H-closedness is a generalization of compactness. For any element x of a compact topological pospace X there exists a minimal element $y \in X$ and a maximal element $z \in X$ such that $y \leq x \leq z$ [8]. Every chain in a compact topological pospace is a compact subset and hence it contains minimal and maximal elements. Also for any point x of a compact topological pospace X there exists a base at x which consists of open order-convex subsets [12] (A non-empty set A of a partially ordered set is called order-convex if A is an intersection of increasing and decreasing subsets). We are interested in the following question: Under which condition an H-closed topological pospace has similar properties as a compact topological pospace?

In this paper we establish chains in H-closed topological pospace. We give sufficient conditions on a maximal chain L in an H-closed topological pospace such that L contains the maximal (minimal) element. Also we give sufficient conditions on a linearly ordered topological pospace to be H-closed. We prove that every H-closed topological semilattice contains a zero. We show that a linearly ordered H-closed topological semilattice is an H-closed topological pospace and show that in the general case it is not true. We construct an example an H-closed topological pospace with a non-H-closed maximal chain and give sufficient conditions that a maximal chain of an H-closed topological pospace is an H-closed topological pospace.

2. On maximal and minimal elements of maximal chains in *H*-closed topological pospaces

A chain L of a partially ordered set X is called *down-directed* (resp. *up-directed*) in X if for any $x \in X$ there exists $l \in L$ such that $l \leq x$ (resp. $x \leq l$).

Theorem 2.1. Any down-directed chain L of an H-closed topological pospace contains a minimal element of L.

Proof. Suppose there exists an H-closed topological pospace X with a down-directed chain L such that L does not contain a minimal element in L.

Let $x \notin X$. We extend the partial order \leq from X onto $X^* = X \cup \{x\}$ as follows:

1) $x \leq x$;

2) $x \leq y$ for each $y \in L$; and

3) $x \leq z$ for $z \in X \setminus L$ if and only if there exists $y \in L$ such that $y \leq z$.

Then by Lemma 1 [15] for any $a, b \in X$ such that $a \notin b$ there exist open neighbourhoods U(a) and U(b) of the points a and b respectively, such that

$$U(a) = \uparrow U(a), \quad U(b) = \downarrow U(b), \text{ and } U(a) \cap U(b) = \emptyset.$$

We define the family

 $\mathscr{U} = \{ (U(a), U(b)) \mid a \nleq b, \ a \in X, \ b \in L \}$

as follows: U(a) is an open neighbourhood of a and U(b) is an open neighbourhood of b such that

 $U(a) = \uparrow U(a), \quad U(b) = \downarrow U(b), \text{ and } U(a) \cap U(b) = \emptyset.$

We denote the topology on X by τ . On X^* we determine a topology τ^* as follows. For any point $y \in X$ the bases of topologies τ^* and τ at the point y coincide. For any $y \in X$ by $\mathscr{B}(y)$ we denote the base of the topology τ at the point y. We put

$$\mathscr{P}(x) = \left\{ \{x\} \cup U(b) \mid (U(a), U(b)) \in \mathscr{U}, \ a \notin b, \ a \in X, \ b \in L \right\}$$

and

 $\mathscr{B}(x) = \{ U_1 \cap \cdots \cap U_n \mid U_1, \dots, U_n \in \mathscr{P}(x), n = 1, 2, 3, \dots \}.$

Obviously, the conditions (BP1)–(BP3) of [7] hold for the family $\{\mathscr{B}(y)\}_{y \in X^*}$ and hence $\mathscr{B}(x)$ is a base of a topology τ^* at the point x.

Further we shall show that (X^*, τ^*, \leq) is a topological pospace. Let $y \in X$. Then $y \notin \downarrow x$. We consider two cases $y \in L$ and $y \in X \setminus L$. In the first case we have x < y, and since L does not contain a minimal element, there exists $b \in L$ such that b < y. We put $W(x) = \{x\} \cup U(b)$, where $(U(y), U(b)) \in \mathscr{U}$. Obviously,

$$W(x) = \downarrow W(x), \quad U(y) = \uparrow U(y), \text{ and } W(x) \cap U(y) = \emptyset.$$

Let $y \in X \setminus L$. Then there exists $b \in L$ such that $y \notin b$. In the other case we have $y \notin a$ for all $a \in L$, a contradiction to the fact that L is a down-directed chain in X. Then we put $W(x) = \{x\} \cup U(b)$, where $(U(y), U(b)) \in \mathscr{U}$. Therefore we have

$$W(x) = \downarrow W(x), \quad U(y) = \uparrow U(y), \text{ and } W(x) \cap U(y) = \varnothing.$$

Thus (X^*, τ^*, \leq) is a Hausdorff topological pospace which contains X as a dense subspace, a contradiction. The obtained contradiction implies that L contains a minimal element.

The proof of the following theorem is similar.

Theorem 2.2. Any up-directed chain of an H-closed topological pospace contains a maximal element.

A subset F of topological pospace X is said to be *upper* (resp. *lower*) *separated* if and only if for each $a \in X \setminus \uparrow F$ (resp. $a \in X \setminus \downarrow F$) there exist disjoint open neighbourhoods U of a and V of F such that U is decreasing (resp. increasing) and V is increasing (resp. decreasing) in X.

Theorem 2.3. Any maximal upper separated chain L of an H-closed topological pospace X contains a minimal element of L.

Proof. Suppose to the contrary that there exists an H-closed topological pospace X with a maximal upper separated chain L such that L does not contain a minimal element.

Let $x \notin X$. We extend the partial order \leq from X onto $X^* = X \cup \{x\}$ as follows:

1)
$$x \leq x;$$

2) $x \leq y$ for each $y \in L$; and

3) $x \leq z$ for $z \in X \setminus L$ if and only if there exists $y \in L$ such that $y \leq z$.

Then by Lemma 1 [15] we can to define the family

$$\mathscr{U} = \{ (U(a), U(b)) \mid a \leq b, \ a \in X, \ b \in L \}$$

as follows: U(a) is an open neighbourhood of a and U(b) is an open neighbourhood of b such that

 $U(a) = \uparrow U(a), \quad U(b) = \downarrow U(b), \text{ and } U(a) \cap U(b) = \emptyset.$

Since L is a upper separated chain for any $a \in X \setminus \uparrow L$ such that $a \notin l$ for each $l \in L$, there exist an open neighbourhood $V_a(L)$ of L and an open neighbourhood V(a) of a such that

 $V_a(L) = \uparrow V_a(L), \quad V(a) = \downarrow V(a), \text{ and } V_a(L) \cap V(a) = \emptyset.$

We define the family

$$\mathscr{V} = \{ (V_a(L), V(a)) \mid a \not\leqslant l \ \text{ for any } \ l \in L, \ a \in X \setminus \uparrow L \}$$

as follows: $V_a(L)$ is an open neighbourhood of the chain L and V(a) is an open neighbourhood of the point a such that

$$V_a(L) = \uparrow V_a(L), \quad V(a) = \downarrow V(a), \text{ and } V_a(L) \cap V(a) = \emptyset.$$

We denote the topology on X by τ . On X^{*} we determine a topology τ^* as follows. For any point $y \in X$ the bases of topologies τ^* and τ at the point y coincide. For any $y \in X$ by $\mathscr{B}(y)$ we denote the base of the topology τ at the point y. We put

$$\mathscr{U}(x) = \left\{ \{x\} \cup U(b) \mid (U(a), U(b)) \in \mathscr{U}, \ a \nleq b, \ a \in X, \ b \in L \right\},$$

$$\mathscr{V}(x) = \left\{ \{x\} \cup V_a(L) \mid (V_a(L), V(a)) \in \mathscr{V}, \ a \nleq l \text{ for any } l \in L, \ a \in X \setminus \uparrow L \right\},$$

$$\mathscr{P}(x) = \mathscr{U}(x) \cup \mathscr{V}(x), \quad \text{and}$$

$$\mathscr{B}(x) = \{U_1 \cap \dots \cap U_n \mid U_1, \dots, U_n \in \mathscr{P}(x), \ n = 1, 2, 3, \dots \}.$$

Obviously, the conditions (BP1)–(BP3) of [7] hold for the family $\{\mathscr{B}(y)\}_{y\in X^*}$ and hence $\{\mathscr{B}(y)\}_{y\in X^*}$ is a base of a topology τ^* at the point $y \in X^*$. Since the chain L does not contain a minimal element, every finite intersection of elements from the family $\mathscr{U}(x)$ contains infinitely many points from the chain L, and since every set of the family $\mathscr{V}(x)$ contains the chain L, we conclude that x is not an isolated point in (X^*, τ^*) .

Further we shall show that (X^*, τ^*, \leq) is a topological pospace. Let $y \in X$. We consider two cases $y \in L$ and $y \in X \setminus L$. In the first case we have x < y, and since L does not contains a minimal element there exists $b \in L$ such that b < y. We put $W(x) = \{x\} \cup U(b)$, where $(U(y), U(b)) \in \mathscr{U}(x)$. Obviously,

$$W(x) = \downarrow W(x), \quad U(y) = \uparrow U(y), \text{ and } W(x) \cap U(y) = \emptyset.$$

Let $y \in X \setminus L$. If $y \nleq x$, then there exists $b \in L$ such that $y \nleq b$. In other case we have $y \leqslant a$ for all $a \in L$, a contradiction to the maximality of the chain L. Then we put $W(x) = \{x\} \cup U(b)$, where $(U(y), U(b)) \in \mathscr{U}(x)$. Therefore we have

$$W(x) = \downarrow W(x), \quad U(y) = \uparrow U(y), \text{ and } W(x) \cap U(y) = \emptyset.$$

If $x \notin y$ then the definition of the family $\mathscr{V}(x)$ implies that there exist an open neighbourhood V(x) of the point x in X^{*} and an open neighbourhood V(y) of the point y in X^{*} such that

$$V(x) = \uparrow V(x), \quad V(y) = \downarrow V(y), \text{ and } V(x) \cap V(y) = \emptyset.$$

Thus (X^*, τ^*, \leq) is a Hausdorff topological pospace which contains X as a dense subspace, a contradiction. The obtained contradiction implies that L contains a minimal element. \Box

The proof of the following theorem is similar.

Theorem 2.4. Any maximal lower separated chain L of an H-closed topological pospace X contains a maximal element of L.

Similarly to [11, 13] we shall say that a topological pospace X is a C_i -space (resp. C_d -space) if whenever a subset F of X is closed, $\uparrow F$ (resp. $\downarrow F$) is a closed subset in X. A maximal chain of a topological pospace X is called an MCC_i -chain (resp. an MCC_d -chain) in X if $\uparrow L$ (resp. $\downarrow L$) is a closed subset in X. Obviously, if a topological pospace X is a C_i -space (resp. C_d -space) then any maximal chain in X is an MCC_i -chain (resp. MCC_d -chain) in X.

A topological pospace X is said to be upper (resp. lower) regularly ordered if and only if for each closed increasing (resp. decreasing) subset F in X and each element $a \notin F$, there exist disjoint open neighbourhoods U of a and V of F such that U is decreasing (resp. increasing) and V is increasing (resp. decreasing) in X [9, 4]. A topological pospace X is regularly ordered if it is upper and lower regularly ordered.

Theorem 2.3 implies

Corollary 2.5. Any maximal MCC_i -chain of an H-closed upper regularly ordered topological pospace contains a minimal element of L.

Theorem 2.4 implies

Corollary 2.6. Any maximal MCC_d -chain of an H-closed lower regularly ordered topological pospace contains a maximal element of L.

3. Some remarks on *H*-closed topological semilattices

A topological space S that is algebraically a semigroup with a continuous semigroup operation is called a *topological semigroup*. A *semilattice* is a semigroup with a commutative idempotent semigroup operation. A *topological semilattice* is a topological semigroup which is algebraically a semilattice.

If E is a semilattice, then the semilattice operation on E determines the partial order \leq on E:

$$e \leq f$$
 if and only if $ef = fe = e$.

This order is called *natural*. A semilattice E is called *linearly ordered* if the semilattice operation admits a linear natural order on E. The natural order on a topological semilattice E admits the structure of topological pospace on E (see: [8, Proposition VI-1.14]). Obviously, if S is a topological semilattice then $\uparrow e$ and $\downarrow e$ are closed subsets in S for any $e \in S$.

A topological semilattice S is called *H*-closed if it is a closed subset in any topological semilattice which contains S as a subsemilattice. Properties of *H*-closed topological semilattices were established in [5, 10, 14].

Theorem 3.1. Every H-closed topological semilattice contains the smallest idempotent.

Proof. Suppose to the contrary that there exists an *H*-closed topological semilattice *E* which does not contain the smallest idempotent. Let $x \notin E$. We put $E^* = E \cup \{x\}$, and extend the semilattice operation from *E* onto E^* as follows:

$$xx = xe = ex = x$$
 for all $e \in E$.

Since E is a topological pospace, there exist by Lemma 1 [15] for any $a, b \in E$ such that $a \notin b$ open neighbourhoods U(a) and U(b) of the points a and b respectively such that

$$U(a) = \uparrow U(a), \quad U(b) = \downarrow U(b), \text{ and } U(a) \cap U(b) = \emptyset.$$

We define the family

$$\mathscr{U} = \{ (U(a), U(b)) \mid a \leq b, \ a, b \in X \}$$

as follows: U(a) is an open neighbourhood of a and U(b) is an open neighbourhood of b such that

$$U(a) = \uparrow U(a), \quad U(b) = \downarrow U(b), \text{ and } U(a) \cap U(b) = \emptyset$$

We denote the topology on E by τ . On E^* we determine a topology τ^* as follows. For any point $y \in E$ the bases of topologies τ^* and τ at the point y coincide. For any $y \in E$ by $\mathscr{B}(y)$ we denote the base of the topology τ at the point $y \in E$. We put

$$\mathscr{P}(x) = \{\{x\} \cup U(b) \mid (U(a), U(b)) \in \mathscr{U}, \ a \nleq b, \ a, b \in E\}$$

and

$$\mathscr{B}(x) = \{U_1 \cap \dots \cap U_n \mid U_1, \dots, U_n \in \mathscr{P}(x), n = 1, 2, 3, \dots\}.$$

Obviously, the conditions (BP1)–(BP3) of [7] hold for the family $\{\mathscr{B}(y)\}_{y\in E^*}$ and hence $\mathscr{B}(y)$ is a base of a topology τ^* at the point $y \in E^*$.

We shall further show that (E^*, τ^*) is a topological semilattice. Let e be an arbitrary element of the semilattice E and let U be an arbitrary open neighbourhood of x in E^* such that $e \notin U$. Since the semilattice E does not contain the smallest idempotent, such open neighbourhood U of the point x exists in E^* . Otherwise we put $V = U \cap U(b)$, where $b \in U$, b < e, and $(U(e), U(b)) \in \mathscr{U}$. Thus $V = \downarrow V$ and $e \notin V$. Then there exist $a_1, \ldots, a_n, b_1, \ldots, b_n \in E$, $a_1 \notin b_1, \ldots, a_n \notin b_n$, $n = 1, 2, 3, \ldots$, and open neighbourhoods $U(a_1), \ldots, U(a_n), U(b_1), \ldots, U(b_n)$ of the points $a_1, \ldots, a_n, b_1, \ldots, b_n$ in E^* , respectively, such that 1) $U(a_1) = \uparrow U(a_1), \dots, U(a_n) = \uparrow U(a_n);$ 2) $U(b_1) = \downarrow U(b_1), \dots, U(b_n) = \downarrow U(b_n);$ 3) $U(a_1) \cap U(b_1) = \emptyset, \dots, U(a_n) \cap U(b_n) = \emptyset;$ and 4) $U = U(a_1) \cap \dots \cup U(a_n).$

Let $b_0 \in U \setminus \{x\}$ such that $b_0 < e$. Such element b_0 exists since the semilattice E does not contain the smallest idempotent. Since E is a topological semilattice there exist an open neighborhood V(e) of the point e and open neighbourhoods $W(b_0)$ and $V(b_0)$ of the point b_0 such that

$$V(e)V(b_0) \subseteq W(b_0) \subseteq U.$$

Then there exist an open neighbourhood U(e) of the point e and open neighbourhood $U(b_0)$ of the point b_0 such that $(U(e), U(b_0)) \in \mathscr{U}$. We put $O(e) = U(e) \cap V(e)$ and $W = U \cap U(b_0)$. Since E is a topological semilattice and $W = \downarrow W$, we have

$$O(e)W \subseteq W \subseteq U.$$

Obviously $W \in \mathscr{B}(x)$.

Therefore (E^*, τ^*) is a topological semilattice which contains E as a dense subsemilattice, a contradiction. The obtained contradiction implies the assertion of the theorem.

Proposition 3.2. Every linearly ordered topological pospace admits a structure of a topological semilattice.

Proof. Let X be a linearly ordered topological pospace and let \leq be a linear order on X. We define the semilattice operation "*" on X as follows:

$$x * y = y * x = x$$
 if $x \leq y$ $(x, y \in X)$.

Since \leq is a linear order on X, "*" is a semilattice operation on X.

We observe that if $A \subseteq X$, then A * A = A. Let $x, y \in X$ be such that x < y holds. Then x * y = x, and since X is a topological pospace, there exist neighbourhoods U(x) and U(y) of the points x and y in X, respectively, such that

$$U(x) = \downarrow U(x), \quad U(y) = \uparrow U(y), \text{ and } U(x) \cap U(y) = \emptyset.$$

Let V(x) be an arbitrary open neighbourhood of the point x in X. We put $W(x) = V(x) \cap U(x)$. Since X is a linearly ordered set we have

$$U(y) * W(x) = W(x) * U(y) = W(x) \subseteq V(x).$$

Therefore (X, *) is a topological semilattice.

Proposition 3.2 implies

Proposition 3.3. A linearly ordered topological semilattice is H-closed if and only if it is H-closed as a topological pospace.

A linearly ordered topological semilattice E is called *complete* if every non-empty subset of S has inf and sup.

In [10] Gutik and Repovš proved the following theorem:

Theorem 3.4. A linearly ordered topological semilattice E is H-closed if and only if the following conditions hold:

- (i) E is complete;
- (ii) $x = \sup A$ for $A = \downarrow A \setminus \{x\}$ implies $x \in cl_E A$, whenever $A \neq \emptyset$; and
- (*iii*) $x = \inf B$ for $B = \uparrow B \setminus \{x\}$ implies $x \in \operatorname{cl}_E B$, whenever $B \neq \emptyset$

Propositions 3.2, 3.3 and Theorem 3.4 imply the following:

Corollary 3.5. A linearly ordered topological pospace X is H-closed if and only if the following conditions hold:

- (i) X is a complete semilattice with the respect to the partial order on X;
- (ii) $x = \sup A$ for $A = \downarrow A \setminus \{x\}$ implies $x \in cl_X A$, whenever $A \neq \emptyset$; and
- (iii) $x = \inf B$ for $B = \uparrow B \setminus \{x\}$ implies $x \in \operatorname{cl}_X B$, whenever $B \neq \emptyset$

A semilattice S is called *algebraically closed* (or *absolutely maximal*) if S is a closed subsemilattice in any topological semilattice which contains S as a subsemilattice [14]. In [14] Stepp proved that a semilattice S is algebraically closed if and only if any chain in S is finite. Example 3.6 shows that the similar statement does not hold for an H-closed topological pospace.

Example 3.6. Let Y be an Hausdorff topological space with isolated points a and b. We put $X = Y \setminus \{a, b\}$. On Y we define a partial order \leq as follows:

- 1) $x \leq x$ for all $x \in Y$;
- 2) $x \leq b$ for all $x \in Y$; and
- 3) $a \leq x$ for all $x \in Y$.

Obviously, (Y, \leq) is a topological pospace, and moreover (Y, \leq) is an *H*-closed topological pospace if and only if X is an *H*-closed topological space.

We observe that the following conditions hold:

- 1. The partial order \leq on Y admits the lattice structure on Y:
 - 1) $b \lor x = b$ and $b \land x = x$ for all $x \in Y$;
 - 2) $x \wedge y = a$ and $x \vee y = b$ for all $x, y \in Y$; and
 - 3) $a \lor x = x$ and $a \land x = a$ for all $x \in Y$.

Hence the topological pospace (Y, \leq) is both up-directed and down-directed. Also we observe that the lattice operations \vee and \wedge are not continuous in Y.

- 2. The topological pospace (Y, \leq) is both a C_d and a C_i -space.
- 3. The topological pospace (Y, \leq) is upper and lower regularly ordered.

A partially ordered set A is called a *tree* if $\downarrow a$ is a chain for any $a \in A$. Example 3.7 shows that there exists an algebraically closed (and hence H-closed) topological semilattice $\mathscr{A}(\tau)$ which is a tree but $\mathscr{A}(\tau)$ is not an H-closed topological pospace.

Example 3.7. Let X be a discrete infinite space of cardinality τ and let $\mathscr{A}(\tau)$ be the one-point Alexandroff compactification of X. We put $\{\alpha\} = \mathscr{A}(\tau) \setminus X$ and fix $\beta \in X$. On $\mathscr{A}(\tau)$ we define a partial order \leq as follows:

- 1) $x \leq x$ for all $x \in \mathscr{A}(\tau)$;
- 2) $\beta \leq x$ for all $x \in \mathscr{A}(\tau)$; and
- 3) $x \leq \alpha$ for all $x \in \mathscr{A}(\tau)$.

The partial order \leq induces a semilattice operation '*' on $\mathscr{A}(\tau)$:

- 1) x * x = x for all $x \in \mathscr{A}(\tau)$;
- 2) $\beta * x = x * \beta = \beta$ for all $x \in \mathscr{A}(\tau)$;
- 3) $\alpha * x = x * \alpha = x$ for all $x \in \mathscr{A}(\tau)$; and
- 4) $x * y = y * x = \beta$ for all distinct $x, y \in X$.

Since X is a discrete subspace of $\mathscr{A}(\tau)$, X with induced from $\mathscr{A}(\tau)$ the semilattice operation is a topological semilattice. By [14, Theorem 9] X is an algebraically closed semilattice, and hence it is an *H*-closed topological semilattice. But X a dense subspace of $\mathscr{A}(\tau)$ and hence X is not an *H*-closed pospace.

4. Linearly ordered H-closed topological pospaces

Let C be a maximal chain of a topological pospace X. Then $C = \bigcap_{x \in C} (\downarrow x \cup \uparrow x)$, and hence C is a closed subspace of X. Therefore we get the following:

Lemma 4.1. Let K be a linearly ordered subspace of a topological pospace X. Then $cl_X(K)$ is a linearly ordered subspace of X.

Since the conditions (i)—(iii) of Corollary 3.5 are preserved by continuous monotone maps, we have the following:

Theorem 4.2. Any continuous monotone image of a linearly ordered H-closed topological pospace into a topological pospace is an H-closed topological pospace.

Also Proposition 4.3 follows from Corollary 3.5.

Proposition 4.3. Let (X, τ_X) be an *H*-closed pospace of a linearly ordered topological pospace (T, τ_T) . Then the set $\uparrow x \cap X$ ($\downarrow x \cap X$) contains a minimal (maximal) element for any $x \in T$.

A subset L of a linearly ordered set X is called a L-chain in X if $\uparrow x \cap \downarrow y \subseteq L$ for any $x, y \in L$, $x \leq y$.

Theorem 4.4. Let X be a linearly ordered topological pospace and let L be a subspace of X such that L is an H-closed topological pospace and any maximal $X \ L$ -chain in X is an H-closed topological pospace. Then X is an H-closed topological pospace.

Proof. Suppose to the contrary that the topological pospace X is not H-closed. Then by Lemma 4.1 there exists a linearly ordered topological pospace Y which contains X as a non-closed subspace. Without loss of generality we can assume that X is a dense subspace of a linearly ordered topological pospace Y.

Let $x \in Y \setminus X$. The assumptions of the theorem imply that the set $X \setminus L$ is a disjoint union of maximal $X \setminus L$ -chains $L_{\alpha}, \alpha \in \mathscr{A}$, which are *H*-closed topological pospaces. Therefore any open neighbourhood of the point *x* intersects infinitely many sets $L_{\alpha}, \alpha \in \mathscr{A}$.

Since any maximal $X \ L$ -chain in X is an H-closed topological pospace, one of the following conditions holds:

$$\uparrow x \cap L \neq \emptyset \quad \text{or} \quad \downarrow x \cap L \neq \emptyset.$$

We consider the case when the sets $\uparrow x \cap L$ and $\downarrow x \cap L$ are nonempty. The proofs in the other cases are similar.

By Proposition 4.3 the set $\uparrow x \cap L$ contains a minimal element x_m and the set $\downarrow x \cap L$ contains a maximal element x_M . Then the sets $\uparrow x_m$ and $\downarrow x_M$ are closed in Y and, obviously, $L \subset \downarrow x_M \cup \uparrow x_m$. Let U(x) be an open neighbourhood of the point x in Y. We put

$$V(x) = U(x) \setminus (\downarrow x_M \cup \uparrow x_m).$$

Then V(x) is an open neighbourhood of the point x in Y which intersects at most one maximal $S \ L$ -chain L_{α} , a contradiction. Therefore X is an H-closed topological pospace.

Corollary 4.5. Let X be a linearly ordered topological pospace and let L be a subspace of X such that L is a compact topological pospace and any maximal $X \ L$ -chain in X is a compact topological pospace. Then X is an H-closed topological pospace.

Example 4.6. Let \mathbb{N} be the set of all positive integers. Let $\{x_n\}$ be an increasing sequence in \mathbb{N} . Put $\mathbb{N}^* = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$ and let \leq be the usual order on \mathbb{N}^* . We put $U_n(0) = \{0\} \cup \{\frac{1}{x_k} \mid k \geq n\}$, $n \in \mathbb{N}$. A topology τ on \mathbb{N}^* is defined as follows:

- a) any point $x \in \mathbb{N}^* \setminus \{0\}$ is isolated in \mathbb{N}^* ; and
- b) $\mathscr{B}(0) = \{U_n(0) \mid n \in \mathbb{N}\}\$ is the base of the topology τ at the point $0 \in \mathbb{N}^*$.

It is easy to see that $(\mathbb{N}^*, \leq, \tau)$ is a countable linearly ordered σ -compact locally compact metrizable topological pospace and if $x_{k+1} > x_k + 1$ for every $k \in \mathbb{N}$, then $(\mathbb{N}^*, \leq, \tau)$ is a non-compact topological pospace. By Corollary 4.5 (\mathbb{N}^*, \leq, τ) is an *H*-closed topological pospace. Also (\mathbb{N}^*, \leq, τ) is a normally ordered (or monotone normal) topological pospace, i.e. for any closed subset $A = \downarrow A$ and $B = \uparrow B$ in X such that $A \cap B = \emptyset$ there exist open subsets $U = \downarrow U$ and $V = \uparrow V$ in X such that $A \subseteq U, B \subseteq V$, and $U \cap V = \emptyset$ [12]. Therefore for any disjunct closed subsets $A = \downarrow A$ and $B = \uparrow B$ in X the exists a continuous monotone function $f: X \to [0, 1]$ such that f(A) = 0and f(B) = 1 [12].

Example 4.6 implies negative answers to the following questions:

- (i) Is a closed subspace of an *H*-closed topological pospace *H*-closed?
- (*ii*) Does any locally compact topological pospace embed into a compact topological pospace?
- (*iii*) Has any locally compact topological pospace a subbasis of open decreasing and open increasing subsets?

Example 4.7 shows that there exists a countably compact topological pospace, whose space is H-closed. This example also shows that there exists a countably compact totally disconnected scattered topological pospace which is not embeddable into a locally compact topological pospace.

Example 4.7. Let $X = [0, \omega_1)$ with the order topology (see [7, Example 3.10.16]), and let $Y = \{0\} \cup \{\frac{1}{n} \mid n = 1, 2, 3, ...\}$ with the natural topology. We put $S = X \times Y$ with the product topology τ_p and the partial order \preccurlyeq :

$$(x_1, y_1) \preccurlyeq (x_2, y_2)$$
 if $y_1 > y_2$ or $y_1 = y_2$ and $x_2 \leqslant x_1$.

We extend the partial order \preccurlyeq onto $S^* = S \cup \{\alpha\}$, where $\alpha \notin S$, as follows: $\alpha \preccurlyeq \alpha$ and $\alpha \preccurlyeq x$ for all $x \in S$, and define a topology τ on S^* as follows. The bases of topologies τ and τ_p at the point $x \in S$ coincide and the family $\mathscr{B}(\alpha) = \{U_{\beta}(\alpha) \mid \beta \in \omega_1\}$ is the base of the topology τ at the point $\alpha \in S^*$, where

$$U_{\beta}(\alpha) = \{\alpha\} \cup ([\beta, \omega_1) \times \{1/n \mid n = 1, 2, 3, \ldots\}).$$

Obviously, $(S^*, \preccurlyeq, \tau)$ is a Hausdorff non-regular topological pospace. Proposition 3.12.5 [7] implies that (S^*, τ) is an *H*-closed topological space. By Corollary 3.10.14 [7] and Theorem 3.10.8 [7] the topological space (S^*, τ) is countably compact. Since every point of (S^*, τ) has a singleton component, the topological space (S^*, τ) is totally disconnected.

Let A be a closed subset of $(S^*, \preccurlyeq, \tau)$ such that $A \neq \{\alpha\}$. Then there exists $x \in [0, \omega_1)$ such that $\tilde{A} = A \cap ([0, x] \times Y) \neq \emptyset$. Since $[0, x] \times Y$ is compactum, \tilde{A} is a compact topological pospace, and hence \tilde{A} contains a maximal element of \tilde{A} . Let x_m be a maximal element of \tilde{A} . Definition of the topology τ on S^* implies that $\uparrow x_m$ is an open subset in (S^*, τ) . Then $\uparrow x_m \cap \tilde{A} = x_m$ and hence x_m is an isolated point of the space \tilde{A} with the induced topology from (S^*, τ) . Therefore every closed subset of (S^*, τ) has an isolated point in itself and hence (S^*, τ) is a scattered topological space.

Remark 4.8. The topological pospace $(\mathbb{N}^*, \leq, \tau)$ from Example 4.6 admits the structure of a topological semilattice:

$$ab = \min\{a, b\}, \quad \text{for} \quad a, b \in \mathbb{N}^*.$$

Also the topological pospace $(S^*, \preccurlyeq, \tau)$ from Example 4.7 admits the continuous semilattice operation

$$(x_1, y_1) \cdot (x_2, y_2) = (\max\{x_1, x_2\}, \max\{y_1, y_2\}) \text{ and } (x_1, y_1) \cdot \alpha = \alpha \cdot (x_1, y_1) = \alpha,$$

for $x_1, x_2 \in X$ and $y_1, y_2 \in Y$.

The following example shows that there exists a countable H-closed scattered totally disconnected topological pospace which has a non-H-closed maximal chain.

Example 4.9. Let $X = \{1, 2, 3, ...\}$ be the positive integers with the discrete topology, and let $Y = \{0\} \cup \{\frac{1}{n} \mid n = 1, 2, 3, ...\}$ with the natural topology. We put $T = X \times Y$ with the product topology τ_T and the partial order \preccurlyeq :

$$(x_1, y_1) \preccurlyeq (x_2, y_2)$$
 if $y_1 > y_2$ or $y_1 = y_2$ and $x_2 \leqslant x_1$.

We extend the partial order \preccurlyeq onto $T^* = T \cup \{\alpha\}$, where $\alpha \notin T$, as follows: $\alpha \preccurlyeq \alpha$ and $\alpha \preccurlyeq x$ for all $x \in T$, and define a topology τ^* on T^* as follows. The bases of topologies τ^* and τ_T at the point $x \in T$ coincide and the family $\mathscr{B}(\alpha) = \{U_k(\alpha) \mid k \in \{1, 2, 3, \ldots\}\}$ is the base of the topology τ^* at the point $\alpha \in T^*$, where

$$U_k(\alpha) = \{\alpha\} \cup (\{k, k+1, k+2, \ldots\} \times \{1/n \mid n = 1, 2, 3, \ldots\}).$$

It is obvious that $(T^*, \preccurlyeq, \tau^*)$ is a Hausdorff non-regular topological pospace. Proposition 3.12.5 [7] implies that (T^*, τ^*) is an *H*-closed topological space. Since every point of (T^*, τ^*) has a singleton component, the topological space (T^*, τ^*) is totally disconnected. The proof of the fact that (T^*, τ^*) is a scattered topological pospace is similar to the proof of the scatteredness of the topological pospace $(S^*, \preccurlyeq, \tau)$ in Example 4.7.

We observe that the set $L = (X \times \{0\}) \cup \{\alpha\}$ with the induced partial order from the topological pospace $(T^*, \preccurlyeq, \tau^*)$ is a maximal chain in T^* . The topology τ^* induces the discrete topology on L. Corollary 3.5 implies that L is not an H-closed topological pospace.

Theorem 4.10 gives sufficient conditions on a maximal chain of an *H*-closed topological pospace to be *H*-closed. We shall say that a chain *L* of a partially ordered set *P* has a $\downarrow \cdot$ maxproperty ($\uparrow \cdot \min$ -property) in *P* if for any $a \in P$ such that $\downarrow a \cap L \neq \emptyset$ ($\uparrow a \cap L \neq \emptyset$) the chain $\downarrow a \cap L$ ($\uparrow a \cap L$) has a maximal (minimal) element. If the chain of a partially ordered set *P* has $\downarrow \cdot \max$ - $\downarrow \cdot \max$ - and $\uparrow \cdot \min$ -properties, then we shall call that *L* has a $\uparrow \cdot m$ -property.

Similarly to [11, 13] we shall say that a topological pospace X is a CC_i -space (resp. CC_d -space) if whenever a chain F of X is closed, $\uparrow F$ (resp. $\downarrow F$) is a closed subset in X.

Theorem 4.10. Let X be an H-closed topological pospace. If X satisfies the following properties:

- (i) X is regularly ordered;
- (ii) X is CC_i -space; and
- (iii) X is CC_d -space,

then every maximal chain in X with $\uparrow \cdot m$ -property is an H-closed topological pospace.

Proof. Suppose to the contrary that there is a non-*H*-closed chain L with \uparrow m-property in X. Then by Corollary 3.5 at least one of the following conditions holds:

- I) the set L is not a complete semilattice with the induced partial order from X;
- II) there exist a non-empty subset A in L with $x = \inf A$ such that $A = \uparrow A \setminus \{x\}$ and $x \notin \operatorname{cl}_L(A)$;
- III) there exist a non-empty subset B in L with $y = \sup B$ such that $B = \downarrow B \setminus \{y\}$ and $y \notin \operatorname{cl}_L(B)$.

Suppose that condition I) holds. Since topological space with dual order to \leq is a topological pospace, without loss generality we can assume that there exists a subset S in L which does not have sup in L. Then the set $\downarrow S \cap L$ does not have sup in L either. Hence the set $I = L \setminus \downarrow S$ does not have inf in L. We observe that the maximality of L implies that there exist no inf I and sup S in such that sup $S \leq \inf I$. Also we observe that properties (ii) - (iii) of X and Corollaries 2.5, 2.6 imply that $I \neq \emptyset$. Therefore without loss of generality we can assume that $S = \downarrow S \cap L$, $I = \uparrow I \cap L$ and L is the disjoint inion of S and I.

Since the set S does not have sup in L, for any $s \in S$ there exists t > s, and hence there exist open neighbourhoods U(s) and U(t) of the points s and t respectively such that

 $U(s) = \downarrow U(s), \quad U(t) = \uparrow U(t), \text{ and } U(s) \cap U(t) = \emptyset.$

Therefore we conclude that S is an open subset of L and I is a closed subset of L. Similarly we get I is open in L and S is closed in L.

By Lemma 1 [15] for any $a, b \in X$ such that $a \notin b$ there exist open neighbourhoods U(a) and U(b) of the points a and b respectively such that

$$U(a) = \uparrow U(a), \quad U(b) = \downarrow U(b), \text{ and } U(a) \cap U(b) = \emptyset.$$

We define the families

$$\mathscr{S} = \{ (U(a), U(b)) \mid a \nleq b, a \in S, b \in X \} \quad \text{and} \quad \mathscr{I} = \{ (U(b), U(a)) \mid a \nleq b, b \in I, a \in X \}$$

as follows: U(a) is an open neighbourhood of a and U(b) is an open neighbourhood of b such that

$$U(a) = \uparrow U(a), \quad U(b) = \downarrow U(b), \text{ and } U(a) \cap U(b) = \varnothing.$$

Let $x \notin X$. We extend the partial order \leq from X onto $X^* = X \cup \{x\}$ as follows:

- 1) $x \leq x;$
- 2) $x \leq a$ for each $a \in I$;
- 3) $x \leq z$ for $z \in X \setminus L$ if and only if there exists $e \in I$ such that $e \leq z$;
- 4) $b \leq x$ for each $b \in S$; and
- 5) $z \leq x$ for $z \in X \setminus L$ if and only if there exists $e \in S$ such that $z \leq e$.

We denote the topology on X by τ_X . On X^* we determine a topology τ^* as follows. For any point $y \in X$ the bases of topologies τ^* and τ_X at the point y coincide. For any $y \in X$ by $\mathscr{B}(y)$ we denote the base of topology τ_X at the point y. We put

$$\mathcal{S}(x) = \{\{x\} \cup U(a) \mid (U(a), U(b)) \in \mathcal{S}, a \notin b, a \in S, b \in X\},$$
$$\mathcal{J}(x) = \{\{x\} \cup U(b) \mid (U(b), U(a)) \in \mathcal{S}, a \notin b, b \in I, a \in X\},$$
$$\mathcal{P}(x) = \mathcal{S}(x) \cup \mathcal{J}(x), \quad \text{and}$$

$$\mathscr{B}(x) = \{ U_1 \cap \cdots \cap U_n \mid U_1, \dots, U_n \in \mathscr{P}(x), n = 1, 2, 3, \dots \}.$$

Obviously, the conditions (BP1)–(BP3) of [7] hold for the family $\{\mathscr{B}(y)\}_{y\in X^*}$ and hence $\{\mathscr{B}(y)\}_{y\in X^*}$ is a base of a topology τ^* at the point $y \in X^*$. Since the set I has not an inf, for finite many pairs $(U(b_1), U(a_1)), \ldots, (U(b_n), U(a_n)) \in \mathscr{I}(x)$ we have that the set $U(b_1) \cap \ldots \cap U(b_n) \cap I$ is infinite. Similarly, since the set S does not have a sup, for finite many pairs $(U(a_1), U(c_1)), \ldots, (U(a_n), U(c_k)) \in \mathscr{I}(x)$ we have that the set $U(a_1) \cap \ldots \cap U(a_k) \cap S$ is infinite. Therefore x is a non-isolated point of the topological space (X^*, τ^*) .

Further we shall show that (X^*, τ^*, \leq) is a topological pospace. We consider three cases:

- 1) $y \in \uparrow I;$
- 2) $y \in \downarrow S$; and
- 3) $y \in X \setminus (\uparrow I \cup \downarrow S).$

If $y \in \uparrow I$ we have $x \leq y$, and since the set I does not have an inf, there exist $a, b \in I$ such that $x \leq b < a \leq y$. Let $(U(b), U(a)) \in \mathscr{I}$. Then $U_b(x) = \{x\} \cup U(b)$ and U(y) = U(a) are open neighbourhoods of the points x and y respectively such that

$$U_b(x) = \downarrow U_b(x), \quad U(y) = \uparrow U(y), \text{ and } U_b(x) \cap U(y) = \emptyset.$$

If $y \in \downarrow S$ then we have $y \leq x$, and since the set S does not have a sup, there exist $a, b \in S$ such that $y \leq b < a \leq y$. Let $(U(a), U(b)) \in \mathscr{S}$. Then $U_a(x) = \{x\} \cup U(a)$ and U(y) = U(b)are open neighbourhoods of the points x and y respectively such that

$$U_a(x) = \uparrow U_a(x), \quad U(y) = \downarrow U(y), \text{ and } U_a(x) \cap U(y) = \varnothing.$$

Suppose $y \in X \setminus (\uparrow I \cup \downarrow S)$. Then $x \notin y$. In the case $\downarrow y \cap L = \emptyset$ we put $s = \min L$, and since $s \notin y$, there exist open neighbourhoods U(s) and U(y) of the points s and y respectively

such that $(U(s), U(y)) \in \mathscr{S}$. Then $U_s(x) = \{x\} \cup U(s)$ and U(y) are open neighbourhoods of the points x and y respectively such that

$$U_s(x) = \uparrow U_s(x), \quad U(y) = \downarrow U(y), \text{ and } U_s(x) \cap U(y) = \emptyset.$$

If $\downarrow y \cap L \neq \emptyset$ then since the chain L has $\uparrow \cdot$ m-property, we put $t = \max(\downarrow y \cap L)$. Then since the set S does not have a sup, there exists $m \in S \setminus \downarrow y$ such that $t \leq m$. Obviously, $m \notin y$. Then there exist open neighbourhoods U(m) and U(y) of the points m and y respectively such that $(U(m), U(y)) \in \mathscr{S}$. Then $U_m(x) = \{x\} \cup U(m)$ and U(y) are open neighbourhoods of the points x and y respectively such that

$$U_m(x) = \uparrow U_m(x), \quad U(y) = \downarrow U(y), \text{ and } U_m(x) \cap U(y) = \emptyset.$$

Suppose $y \notin x$. Then by the statements dual to the previous statements we get that there exist open neighbourhoods U(x) and U(y) of the points x and y respectively such that

$$U(x) = \downarrow U(x), \quad U(y) = \uparrow U(y), \text{ and } U(x) \cap U(y) = \varnothing.$$

Therefore we get that (X^*, τ^*, \leq) is a topological pospace and X is a dense subspace of (X^*, τ^*, \leq) . This contradicts the assumption that X is an H-closed pospace.

Suppose that the statement II) holds, i. e., that there exists an open neighbourhood O(x) of $x = \inf A$ such that $O(x) \cap A = \emptyset$. Since X is a topological pospace, for every $t \in L \setminus (A \cup \{x\})$ there exists an open decreasing neighbourhood U(t) such that $x \notin U(t)$, and hence A is a closed subset of a topological space X.

Let $a \notin X$. We pu $X^{\dagger} = X \cup \{a\}$ and extend the partial order \leq from X onto X^{\dagger} as follows:

- 1) $a \leqslant a$;
- 2) $a \leq b$ for each $b \in A$;
- 3) $a \leq z$ for $z \in X \setminus L$ if and only if there exists $e \in A$ such that $e \leq z$;
- 4) $b \leq a$ for each $b \in L \setminus A$; and

5) $z \leq a$ for $z \in X \setminus L$ if and only if there exists $e \in L \setminus A$ such that $z \leq e$.

By Lemma 1 [15] we define the family

$$\mathscr{A} = \{ (U(t), U(b)) \mid b \notin t, t \in A, b \in X \}$$

as follows: U(t) and U(b) are open neighbourhoods of the points t and b respectively such that

$$U(t) = \downarrow U(t), \quad U(b) = \uparrow U(b), \text{ and } U(t) \cap U(b) = \varnothing.$$

Since X is a regularly ordered CC_i - and CC_d -space, we determine the family

$$\mathscr{V} = \{ (V_t(A), V(t)) \mid t \notin X \setminus \uparrow A \}$$

as follows: $V_t(A)$ and V(t) are open neighbourhoods of the set A and the point t respectively such that

$$V_t(A) = \uparrow V_t(A), \quad V(t) = \downarrow V(t), \text{ and } V_t(A) \cap V(t) = \emptyset.$$

We determine the topology τ^{\dagger} on X^{\dagger} as follows. Let τ_X be the topology on X. For any point $y \in X$ the base of topologies τ^{\dagger} and τ_X at the point y coincide. For every $y \in X$ by $\mathscr{B}(x)$ we denote a base of the topology τ_X at the point y. We put

$$\mathscr{A}(x) = \{\{a\} \cup U(t) \mid (U(t), U(b)) \in \mathscr{A}, b \leq t, t \in A, b \in X\},$$
$$\mathscr{V}(x) = \{\{a\} \cup V(A) \mid (V(A), V(t)) \in \mathscr{V}, t \in X \setminus \uparrow A\},$$
$$\mathscr{P}(x) = \mathscr{A}(x) \cup \mathscr{V}(x), \quad \text{and}$$
$$\mathscr{R}(x) = \{U_t \cap \dots \cap U_t \mid U_t = U_t \in \mathscr{R}(x), n = 1, 2, 3\}$$

$$\mathscr{B}(x) = \{U_1 \cap \dots \cap U_n \mid U_1, \dots, U_n \in \mathscr{P}(x), n = 1, 2, 3, \dots\}.$$

Obviously, the conditions (BP1)–(BP3) of [7] hold for the family $\{\mathscr{B}(y)\}_{y\in X^{\dagger}}$ and hence $\{\mathscr{B}(y)\}_{y\in X^{\dagger}}$ is a base of a topology τ^{\dagger} at the point $y \in X^{\dagger}$. Since for finitely many pairs $(U(t_1), U(b_1)), \ldots, (U(t_k), U(b_k)) \in \mathscr{A}$ the intersection $U(t_1) \cap \ldots \cap (U(t_k) \cap A$ is an infinite set, a is a non-isolated point of the topological pospace $(X^{\dagger}, \tau^{\dagger})$.

Further we shall show that $(X^{\dagger}, \tau^{\dagger}, \leq)$ is a topological pospace. We consider three cases:

- 1) $y \in \uparrow A;$
- 2) $y \in \downarrow (L \setminus A);$
- 3) $y \in X \setminus (\uparrow A \cup \downarrow (L \setminus A).$

If $y \in \uparrow A$ then we have $a \leq y$, and since the set A does not contain min, there exist $c, d \in A$ such that $a < c < d \leq y$. Let $(U(c), U(d)) \in \mathscr{A}$. Then $U_c(a) = \{a\} \cup U(c)$ and U(y) = U(d)are open neighbourhoods of the point a and y respectively such that

 $U_c(a) = \downarrow U_c(a), \quad U(y) = \uparrow U(y), \text{ and } U_c(a) \cap U(y) = \emptyset.$

If $y \in \downarrow (L \setminus A)$ then we have $y \leq x < a$. Let $(V_x(A), V(x)) \in \mathscr{V}$. Then $V_x(a) = \{a\} \cup V_x(A)$ and V(y) = V(x) are open neighbourhoods of the points a and y respectively such that

 $V_x(a) = \uparrow V_x(a), \quad V(y) = \downarrow V(y), \text{ and } V_x(a) \cap V(y) = \emptyset.$

Suppose $y \in X \setminus (\uparrow A \cup \downarrow (L \setminus A))$. Then $a \notin y$. Let $(V_y(A), V(y)) \in \mathscr{V}$. Then $V_y(a) = \{a\} \cup V_y(A)$ and V(y) are open neighbourhoods of the points a and y respectively such that

$$V_y(a) = \uparrow V_y(a), \quad V(y) = \downarrow V(y), \text{ and } V_y(a) \cap V(y) = \varnothing.$$

Suppose $y \notin a$. In the case $\uparrow y \cap A = \emptyset$ since by Corollary 2.6 max A exists, we put $s = \max A$. Then $y \notin s$ and hence there exists $(U(s), U(y)) \in \mathscr{A}$. Then $U_s(a) = \{a\} \cup U(s)$ and U(y) are open neighbourhoods of the points a and y respectively such that

$$U_s(a) = \downarrow U_s(a), \quad U(y) = \uparrow U(y), \text{ and } V_s(a) \cap V(y) = \emptyset.$$

If $\uparrow y \cap A \neq \emptyset$ then since the chain L has $\uparrow \cdot m$ -property, we put $t = \min(\uparrow y \cap L)$. Then since the set A does not contain a min, there exists $m \in A \setminus \uparrow y$ such that $m \leq t$. Obviously $y \leq m$, and hence there exists $(U(m), U(y)) \in \mathscr{A}$. Then $U_m(a) = \{a\} \cup U(m)$ and U(y) are open neighbourhoods of the points a and y respectively such that

$$U_m(a) = \downarrow U_m(a), \quad U(y) = \uparrow U(y), \text{ and } V_m(a) \cap V(y) = \emptyset.$$

Therefore we get that $(X^{\dagger}, \tau^{\dagger}, \leq)$ is a topological pospace and X is a dense subspace of $(X^{\dagger}, \tau^{\dagger}, \leq)$. This contradicts the assumption that X is an H-closed pospace.

In case III) we get a similar contradiction to II).

The obtained contradictions imply the statement of the theorem.

Remark 4.11. We observe that the topological pospace $(T^*, \preccurlyeq, \tau^*)$ from Example 4.9 is not regularly ordered and is not a CC_i -space. Also the topological pospace $(T^*, \preccurlyeq, \tau^*)$ admits the continuous semilattice operation

$$(x_1, y_1) \cdot (x_2, y_2) = (\max\{x_1, x_2\}, \max\{y_1, y_2\})$$
 and $(x_1, y_1) \cdot \alpha = \alpha \cdot (x_1, y_1) = \alpha$,

for $x_1, x_2 \in X$ and $y_1, y_2 \in Y$. Therefore a maximal chain of an *H*-closed topological semilattice is not necessarily to be an *H*-closed topological semilattice.

ACKNOWLEDGEMENTS

This research was support by the Slovenian Research Agency grants P1-0292-0101-04, J1-9643-0101 and BI-UA/07-08/001.

References

- P. Alexandroff and P. Urysohn, Sur les espaces topologiques compacts, Bull. Intern. Acad. Pol. Sci. Sér. A (1923), 5-8.
- [2] P. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts, Vehr. Akad. Wetensch. Amsterdam 14 (1929).
- [3] J. H. Carruth, J. A. Hildebrant and R. J. Koch, *The Theory of Topological Semigroups*, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.
- [4] T. H. Choe and Y. S. Park, Embedding ordered topological spaces into topological semilattices, Semigroup Forum 17 (1979), 189—199.

- [5] I. Chuchman and O. Gutik, On H-closed topological semigroups and semilattices, Algebra and Discrete Mathematics, no. 1 (2007), 13-23.
- [6] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Vol. I. Amer. Math. Soc. Surveys 7, 1961; Vol. II. Amer. Math. Soc., Surveys 7, 1967.
- [7] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
- [8] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, *Continuous Lattices and Domains*, Cambridge Univ. Press, Cambridge, 2003.
- [9] M. D. Green, A locally convex topologies on a preordered space, Pacific J. Math. 26:3 (1968), 487–491.
- [10] O. Gutik and D. Repovš, On linearly ordered H-closed topological semilattices, Semigroup Forum (to appear).
- [11] S. D. McCartan, Bicontinuous preordered topological spaces, Pacific J. Math. 38:2 (1971), 523-529.
- [12] L. Nachbin, Topology and Order, D. van Nostrand Company, Inc., Princeton, 1965.
- [13] H. A. Priestley, Ordered topological spaces and the representation of distribuve lattices, Proc. London Math. Soc. (3) 24 (1972), 507-520.
- [14] J. W. Stepp, Algebraic maximal semilattices, Pacific J. Math. 58:1 (1975), 243–248.
- [15] L. E. Ward, Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. 5:1 (1954), 144-161.

DEPARTMENT OF MECHANICS AND MATHEMATICS, IVAN FRANKO LVIV NATIONAL UNIVERSITY, UNIVER-SYTETSKA 1, LVIV, 79000, UKRAINE

E-mail address: o_gutik@franko.lviv.ua, ovgutik@yahoo.com

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS, AND FACULTY OF NATURAL SCIENCES AND MATHEMATICS, UNIVERSITY OF MARIBOR, JADRANSKA 19, LJUBLJANA, 1000, SLOVENIA

E-mail address: dusan.pagon@uni-mb.si

INSTITUTE OF MATHEMATICS, PHYSICS AND MECHANICS, AND FACULTY OF MATHEMATICS AND PHYSICS UNIVERSITY OF LJUBLJANA, P. O. B. JADRANSKA 19, LJUBLJANA, 1000, SLOVENIA *E-mail address*: dusan.repovs@guest.arnes.si