A SHORT PROOF
 OF THE CONGRUENCE REPRESENTATION THEOREM FOR SEMIMODULAR LATTICES

G. GRÄTZER AND E. T. SCHMIDT

Abstract

In a 1998 paper with H. Lakser, the authors proved that every finite distributive lattice D can be represented as the congruence lattice of a finite semimodular lattice.

Some ten years later, the first author and E. Knapp proved a much stronger result, proving the representation theorem for rectangular lattices.

In this note we present a short proof of these results.

1. Introduction

In [5], the authors with H. Lakser proved the following result:
Theorem 1. Let D be a finite distributive lattice. Then there is a planar semimodular lattice K such that

$$
D \cong \operatorname{Con} K
$$

A stronger result was proved some 10 years later. To state it, we need a few concepts.

Let A be a planar lattice. A left corner (resp., right corner) of the lattice A is a doubly-irreducible element in $A-\{0,1\}$ on the left (resp., right) boundary of A.

We define a rectangular lattice L, as in G. Grätzer and E. Knapp [4], as a planar semimodular lattice that has exactly one left corner, u_{l}, and exactly one right corner, u_{r}, and they are complementary-that is, $u_{l} \vee u_{r}=1$ and $u_{l} \wedge u_{r}=0$.

The first author and E. Knapp [4] proved the following much stronger form of Theorem 1:

Theorem 2. Let D be a finite distributive lattice. Then there is a rectangular lattice K such that

$$
D \cong \operatorname{Con} K
$$

In this note we present a short proof of this result.

2. Notation

We use the standard notation, see [3].
For a rectangular lattice L, we use the notation $C_{\mathrm{ll}}=\mathrm{id}\left(u_{l}\right), C_{\mathrm{ul}}=\operatorname{fil}\left(u_{l}\right)$, $C_{\mathrm{lr}}=\operatorname{id}\left(u_{r}\right), C_{\mathrm{ur}}=\operatorname{fil}\left(u_{r}\right)$ for the four boundary chains; if we have to specify the

[^0]lattice L, we write $C_{\mathrm{ll}}(L)$, and so on. (See G. Czédli and G. Grätzer [1] for a survey of semimodular lattices, in general, and rectangular lattices, in particular.)

Figure 1. The M_{3}-grid for $n=3$ and the lattice S_{8}

Figure 2. A sketch of the lattice K_{i} for $n \geq 3$ and $3<i \leq e$

3. Proof

Let D be the finite distributive lattice of Theorem 2. Let $P=\mathrm{Ji} D$. Let n be the number of elements in P and e the number of coverings in P.

We shall construct a rectangular lattice K representing D by induction on e. Let $m_{i} \prec n_{i}$, for $1 \leq i \leq e$, list all coverings of P. Let P_{j}, for $0 \leq j \leq e$, be the
order we get from P by removing the coverings $m_{i} \prec n_{i}$ for $j<i \leq e$. Then P_{0} is an antichain and $P_{e}=P$.

For all $0 \leq i \leq e$, we construct a rectangular lattice K_{i} inductively. Let $K_{0}=$ C_{n+1}^{2} be a grid, in which we replace the covering squares of the main diagonal by covering M_{3}-s; see Figure 1 for $n=3$. Clearly, this lattice is rectangular and Con K_{0} is the boolean lattice with n atoms.

Now assume that K_{i-1} has been constructed. Let the three-element chain $0 \prec$ $m_{i} \prec n_{i}$ be represented by the lattice S_{8}, see Figure 1 .

Take the four lattices

$$
\mathrm{S}_{8}, K_{i-1}, \mathrm{C}_{3} \times C_{\mathrm{ul}}\left(K_{i-1}\right), C_{\mathrm{ur}}\left(K_{i-1}\right) \times \mathrm{C}_{3}
$$

and put them together as in Figure 2, where we sketch K_{i-1} for $n \geq 3$ and $3<i \leq e$. We add two more elements to turn two covering squares into covering M_{3}-s, see Figure 2, so that the prime interval of S_{8} marked by m defines the same congruence as the prime interval of K_{i-1} marked by m; and the same for n. Let K_{i} be the lattice we obtain. The reader should have no trouble to directly verify that K_{i} is a rectangular lattice. (See G. Czédli and G. Grätzer [1] for general techniques that could be employed.)

The lattice K for Theorem 2 is the lattice K_{e}.
See G. Grätzer [2] for a comparison how this short proof compares to the proofs in G. Grätzer, H. Lakser, and E. T. Schmidt [5] and in G. Grätzer and E. Knapp [4].

References

[1] G. Czédli and G. Grätzer, Planar Semimodular Lattices: Structure and Diagrams. Chapter in Lattice Theory: Empire. Special Topics and Applications. Birkhäuser Verlag, Basel, 2013.
[2] G. Grätzer, Planar Semimodular Lattices: Congruences. Chapter in Lattice Theory: Empire. Special Topics and Applications. Birkhäuser Verlag, Basel, 2013.
[3] G. Grätzer, Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2011. xxix +613 pp. ISBN: 978-3-0348-0017-4.
[4] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. III. Rectangular lattices. Acta Sci. Math. (Szeged) 75 (2009), 29-48.
[5] G. Grätzer, H. Lakser, and E. T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998), 290-297.

Department of Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
E-mail address, G. Grätzer: gratzer@me.com
$U R L, G$. Grätzer: http://server.maths.umanitoba.ca/homepages/gratzer/
Mathematical Institute of the Budapest University of Technology and Economics, H-1521 Budapest, Hungary

E-mail address, E.T. Schmidt: schmidt@math.bme.hu
URL, E. T. Schmidt: http://www.math.bme.hu/~schmidt/

[^0]: Date: March 30, 2013.
 2010 Mathematics Subject Classification. Primary: 06B10. Secondary: 06A06.
 Key words and phrases. principal congruence, order, semimodular, rectangular.
 The second author was supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. K77432.

