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A NOTE ON EUCLIDEAN ORDER TYPES

PETE L. CLARK

Abstract. Euclidean functions with values in an arbitrary well-ordered set
were first considered in a 1949 work of Motzkin and studied in more detail
in work of Fletcher, Samuel and Nagata in the 1970’s and 1980’s. Here these
results are revisited, simplified, and extended. The two main themes are (i)
consideration of Ord-valued functions on an Artinian poset and (ii) use of
ordinal arithmetic, including the Hessenberg-Brookfield ordinal sum. In par-
ticular, to any Euclidean ring we associate an ordinal invariant, its Euclidean

order type, and we initiate a study of this invariant. The main new result
gives upper and lower bounds on the Euclidean order type of a finite product
of Euclidean rings in terms of the Euclidean order types of the factor rings.

Throughout, “a ring” means a commutative ring with multiplicative identity. We
denote by R• the set R \ {0} and by R× the group of units of R. We denote by N
the natural numbers, including 0. When we are thinking of N as the least infinite
ordinal, we denote it by ω. If S is any class equipped with a “zero element” – here,
either the least element of an ordered class or the identity element of a monoid –
then we put S• = S \ {0}.

By an ordered setX we mean a pair (X,≤) with X a set and≤ a reflexive, anti-
symmetric, transitive relation on X (i.e., what is often called a partial ordering).

We will encounter some ordinal arithmetic, and it is important to remember
that the “ordinary” sum and product of transfinite ordinal numbers need not be
commutative. The literature seems to agree that for α, β ∈ Ord, α + β should
be the order type of a copy of β placed above a copy of α, so that ω + 1 > ω,
1 + ω = ω. However, both conventions on αβ seem to be in use. We take the one
in which 2ω = ω + ω, not the one in which 2ω = 2 + 2 + . . . = ω.

1. Ordered Classes, Isotone Maps, and Length Functions

1.1. Isotone Maps and Artinian Ordered Classes.

For a set X , let OrdX denote the class of all maps f : X → Ord, ordered by
f ≤ g ⇐⇒ ∀x ∈ X, f(x) ≤ g(x).1 Note that every nonempty subclass C = {fc}

has an infimum in OrdX : that is, there is a largest element f ∈ OrdX with the
property that f ≤ fc for all fc ∈ C. Indeed, we may take fC(x) = minc fc(x).

An ordered class C is downward small if for all x ∈ C, {y ∈ X | y ≤ x} is a

set. For any set X , OrdX is downward small.

Let X and Y be ordered classes. We denote by X × Y the Cartesian product

Thanks to David Krumm and Robert Varley for providing the inspiration for this work.
c© Pete L. Clark, 2012.
1We hasten to reassure the reader that this is the limit of our set-theoretic ambitiousness: we

will never consider the collection of all maps between two proper classes!
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endowed with the ordering (x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2. A map
f : X → Y is weakly isotone (resp. isotone) if x1 ≤ x2 ∈ X =⇒ f(x1) ≤ f(x2)
(resp. x1 < x2 =⇒ f(x1) < f(x2)). The composite of (weakly) isotone maps is
(weakly) isotone.

An ordered class X is Noetherian (resp. Artinian) if there is no isotone map
f : Z+ → X (resp. f : Z− → X). Thus a well-ordered class is precisely a linearly
ordered Artinian class.

For an ordered set X , we define Iso(X) ⊂ OrdX to be the subclass of isotone
maps, with the induced partial ordering.

Lemma 1. Let X be an ordered set. Then every nonempty subclass of Iso(X) has
an infimum in Iso(X).

Proof. Let C = {fc} be a nonempty subclass of Iso(X), and let f be the infimum

in OrdX ; it suffices to show that f is isotone. If x < y in X , then fi(x) < fi(y) for
all i ∈ I, so f(x) = mini∈I fi(x) < mini∈I(fi(x) + 1) ≤ mini∈I fi(y) = f(y). �

Theorem 2. For a downward small ordered class X, TFAE:
(i) There is an isotone map f : X → Ord.
(ii) There is an Artinian ordered set Y and an isotone map f : X → Y .
(iii) X is Artinian.

Proof. (i) =⇒ (ii): If f : X → Ord(X) is an isotone map, then f : X → f(X) is
an isotone map with codomain an Artinian ordered set.
(ii) =⇒ (iii): Suppose not: then there is an isotone map ι : Z− → X is an isotone
map. But then f ◦ ι : Z− → Y is isotone, so Y is not Artinian.
(iii) =⇒ (i) [Na85, Prop. 4]: We will construct λX ∈ Iso(X) by a transfinite
process. For α ∈ Ord, at the αth stage we assign some subset Xα ⊂ X the
value α. Let X0 be the set of minimal elements of X . Having defined Xβ for all
β < α, we assign the value α to all x ∈ X \Xβ such that there is Yx ⊂ Xβ with
x = supYx. Then, for arbitrary X , taking X ′ =

⋃
αXα, this defines λX ∈ Iso(X ′).

We claim that since X is Artinian and downward small, X ′ = X : if not, let x be
a minimal element of X \ X ′. Then λX is defined on D◦(x) = {y ∈ X | y < x}
and x = supD◦(x), so if α = supλX(D◦(x)), then λX(x) = α (if α /∈ λX(D◦(x))
or λX(x) = α+ 1 (if α ∈ D◦(x)). �

1.2. Length Functions.

By Theorem 2 and Lemma 1, for any Artininan ordered set X , Iso(X) has a bottom
element. Indeed the map λX : X → Ord constructed in the proof of Theorem 2 is
the bottom element of Iso(X). Following [Br02], we call λX the length function.

If X has a top element T , we define the length of X to be len(X) = λX(T ).

Example 1.1: For α ∈ Ord and x ≤ α, λα+1(x) = x, so len(α+ 1) = λα+1(α) = α.

Example 1.2: For m,n ∈ Z+, let X1 = {0, . . . ,m} and X2 = {0, . . . , n}, and
let X = X1 ×X2. Then for all (i, j) ∈ X , λX(i, j) = i+ j and len(X) = m+ n.
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For α, β ∈ Ord, we define the Brookfield sum

α⊕B β := len((α + 1)× (β + 1)).

We recall the following, a version of the Cantor normal form: for any α, β ∈ Ord

there are γ1, . . . , γr ∈ Ord, r ∈ Z+ and m1, . . . ,mr, n1, . . . , nr ∈ N with

α = m1ω
γ1 + . . .+mrω

γr , β = n1ω
γ1 + . . .+ nrω

γr .

This representation of the pair (α, β) is unique if we require max(mi, ni) > 0 for
all i. We may then define the Hessenberg sum

α⊕H β = (m1 + n1)ω
γ1 + . . .+ (mr + nr)ω

γr .

Theorem 3. For all α, β ∈ Ord, α⊕B β = α⊕H β.

Proof. See [Br02, Thm. 2.12]. �

In view of Theorem 3 we write α ⊕ β for α ⊕B β = α ⊕H β and speak of the
Hessenberg-Brookfield sum. This operation is well-known to the initiates of
ordinal arithmetic, who call it the “natural sum”. The next result collects facts
about α⊕ β for our later use.

Proposition 4. Let α, β ∈ Ord.
a) If β < ω, then α+ β = α⊕ β.
b) In general we have

(1) max(α + β, β + α) ≤ α⊕ β ≤ αβ + βα.

Proof. Left to the reader. �

2. Euclidean Functions

2.1. Basic Definitions.

A Euclidean function is a function ϕ : R• → Ord such that for all a ∈ R,
b ∈ R•, there are q, r ∈ R with a = qb + r and (r = 0 or ϕ(r) < ϕ(b)). A ring is
Euclidean if it admits a Euclidean function.

Example 2.1: Let R = Z. Then n 7→ |n| is a Euclidean function.

Example 2.2: Let k be a field and let R = k[t]. Then ϕ : R• → Z+ given by
P 7→ 1 + degP is a Euclidean function, as is P 7→ 2degP .

Example 2.3: [Sa71, Prop. 5] Let R be a semilocal PID with nonassociate prime
elements π1, . . . , πn. We may write x ∈ R× as uπa1

1 · · ·πan

n for a1, . . . , an ∈ N, and
then x 7→ a1 + . . .+ an is a Euclidean function.

Proposition 5. a) Let ϕ : R• → Ord be a Euclidean function. For every nonzero
ideal I of R, let x ∈ I• be such that ϕ(x) ≤ ϕ(y) for all y ∈ I•. Then I = 〈x〉.
b) In particular, a Euclidean ring is principal.

Proof. Left to the reader; or see [Sa71, Prop. 3]. �

Extension at zero: It will be convenient to define our Euclidean functions at the
zero element of R. There are several reasonable ways to do this. Although the
initially appealing one is to take ϕ(0) = 0 and require ϕ to take nonzero values on
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R•, in the long run it turns out to be useful to take a quite different convention: we
allow Euclidean functions to take the value zero at nonzero arguments – so that,
in particular, the bottom Euclidean function ϕR will take the value 0 precisely at
the units – and we define ϕ(0) = supx∈R• ϕ(x) + 1. This is actually not so strange:
after all, 0 is the top element of R with respect to the divisibility quasi-ordering.

2.2. Structure Theory of Principal Rings.

Theorem 6. a) If R =
∏r

i=1Ri, then R is principal iff Ri is principal for all i.
b) For every principal ring R there is r ∈ N, a finite set of principal ideal domains
R1, . . . , Rn and a principal Artinian ring A such that R ∼=

∏n
i=1Ri × A. The

Ri’s are uniquely determined by R up to isomorphism (and reordering), and A is
uniquely determined by R up to isomorphism: we call A the Artinian part of R.
c) A ring is Artinian principal iff it is isomorphic to a finite product of local
Artinian principal rings.

Proof. See [ZS, p. 245]. �

2.3. Generalized Euclidean Functions.

A generalized Euclidean function is a function ϕ from R• to an Artinian or-
dered class X such that for all x ∈ R, y ∈ R•, there are q, r ∈ R with a = qx + r
such that either r = 0 or ϕ(r) < ϕ(b).

As several authors have observed over the years, nothing in the theory of Euclidean
functions is lost by entertaining Euclidean functions with values in any Artinian
ordered class. In particular, the proof of Proposition 5 carries over easily to show
that a ring admitting a generalized Euclidean function is principal. But there is a
better way to see this:

Lemma 7. Let X,Y be Artinian ordered classes, ϕ : R → X a generalized Eu-
clidean function and f : X → Y an isotone map. Then f ◦ ϕ : R → Y is a
generalized Euclidean function.

Proof. Left to the reader. �

Corollary 8. ([Sa71, Prop. 11], [Na85, Prop. 4]) A ring which admits a generalized
Euclidean function is Euclidean.

Proof. If ϕ : R → X is generalized Euclidean, λX ◦ ϕ : R→ Ord is Euclidean. �

Proposition 8 may suggest that there is nothing to gain in considering Euclidean
functions with values in a non-well-ordered sets. But this is not the case!

Lemma 9. ([Na85, Thm. 2]) Let R1, R2 be commutative rings, X1, X2 be Ar-
tinian ordered classes, and ϕ1 : R1 → X1, ϕ2 : R2 → X2 be generalized Euclidean
functions. Then ϕ1 ×ϕ2 : R1 ×R2 → X1 ×X2 is a generalized Euclidean function.

Proof. Let x = (x1, x2) ∈ R, y = (y1, y2) ∈ R•. We may assume y ∤ x and thus
x ∈ R•. Since ϕ1 and ϕ2 are Euclidean, for i = 1, 2 there are qi, ri ∈ Ri with
xi = qiyi + ri and (ri = 0 or ϕi(ri) < ϕi(yi)). Since y ∤ x, r 6= 0. Now:
Case 1: Suppose that any one of the following occurs:
(i) r1 6= 0, r2 6= 0.
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(ii) r1 = y1 = 0, and thus r2, y2 6= 0.
(iii) r2 = y2 = 0, and thus r1, y1 6= 0.
Put q = (q1, q2) and r = (r1, r2), so x = qy + r and

ϕ(r) = (ϕ(r1), ϕ(r2)) < (ϕ(y1), ϕ(y2)) = ϕ(y).

Case 2: Suppose r1 = 0, y1 6= 0, and thus r2 6= 0. Then take q = (q1 − 1, q2) and
r = (y1, r2), so x = qy + r and

ϕ(r) = (ϕ(y1), ϕ(r2)) < (ϕ(y1), ϕ(y2)) = ϕ(y).

Similarly if r2 = 0, y2 6= 0.
Case 3: Suppose r2 = 0, y2 6= 0, and thus r1 6= 0. Put q = (q1, q2 − 1) and
r = (r1, y2), so x = qy + r and

ϕ(r) = (ϕ(r1), ϕ(y2)) < (ϕ(y1), ϕ(y2)) = ϕ(y).

�

2.4. Isotone Euclidean Functions.

For a ring R, the divisibility relation is a quasi-ordering – i.e., reflexive and tran-
sitive but not necessarily anti-symmetric. If X and Y are quasi-ordered sets, we
can define an isotone map f : X → Y just as above: if x1 < x2 =⇒ f(x1) < f(x2).

Lemma 10. Let X be a quasi-ordered set and Y be an ordered set. Suppose that
f : X → Y is an isotone map. Then X is ordered.

Proof. For x1, x2 ∈ X , x1 < x2, x2 < x1 =⇒ f(x1) < f(x2), f(x2) < f(x1). �

If X is a quasi-ordered set, it has an ordered completion: i.e., an ordered set X and
a weakly isotone map X → X which is universal for weakly isotone maps from X
into an ordered set. Indeed, we simply take the quotient of X under the equivalence
relation x1 ∼ x2 if x1 ≤ x2 and x2 ≤ x1. If we do this for the divisibility relation
on R, we get precisely the ordered set PrinR of principal ideals of R. All this is to
motivate the following definition.

A Euclidean function ϕ : R → Ord is weakly isotone (resp. isotone) if when-
ever x divides y, ϕ(x) ≤ ϕ(y) (resp. whenever x strictly divides y, ϕ(x) < ϕ(y).

Example 2.4: Define ϕ : Z• → Ord• by 1 7→ 2 and n 7→ |n| else. Then ϕ is
Euclidean. But (1) = (−1) and ϕ(1) 6= ϕ(−1), so ϕ is not weakly isotone.

Theorem 11. Let ϕ : R• → Ord be a Euclidean function. Then the set of isotone
Euclidean functions ψ ≤ ϕ has a maximal element

ϕ : x ∈ R• 7→ min
y∈(x)•

ϕ(y).

Proof. Step 1: We show ϕ is a Euclidean function: let a ∈ R, b ∈ R•. Then there
exists c ∈ R such that bc 6= 0 and ϕ(b) = ϕ(bc). Since ϕ is Euclidean, there are
q, r ∈ R with a = qbc+ r and either r = 0 – so b |a– or ϕ(r) ≤ ϕ(r) < ϕ(bc) = ϕ(b).

Step 2: We show ϕ is isotone: If ac 6= 0, then ϕ(a) = miny | ay 6=0 ϕ(ay) ≤
mincy | acy 6=0 ϕ(acy) = ϕ(ac). Conversely, suppose ϕ(ac) = ϕ(a), and write a =
qac + r with r = 0 or ϕ(r) < ϕ(ac) = ϕ(a). But if r 6= 0, then by what we have

just shown, ϕ(r) = ϕ(a(1 − qc)) ≥ ϕ(a), a contradiction. So r = 0 and (a) = (ac).
Step 3: By construction ϕ ≤ ϕ. Moreover, if ψ ≤ ϕ is an isotone Euclidean function,

then for all a, c ∈ R with ac 6= 0, ψ(a) ≤ ψ(ac) ≤ ϕ(ac), so ψ(a) ≤ ϕ(a). �
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Corollary 12. A Euclidean function is weakly isotone iff it is isotone.

Proof. Of course any isotone function is weakly isotone. Conversely, let ϕ : R• →
Ord be a weakly isotone Euclidean function, let a, c ∈ R with ac 6= 0, and suppose
ϕ(ac) = ϕ(c). Write a = qac+ r with r = 0 or ϕ(r) < ϕ(ac) = ϕ(a). If r 6= 0, then
ϕ(r) = ϕ(a(1 − qc)) ≥ ϕ(a), contradiction. So r = 0 and (a) = (ac). �

2.5. The Bottom Euclidean Function and the Euclidean Order Type.

For any commutative ring R, let Euc(R) ⊂ OrdR be the subclass of Euclidean
functions ϕ : R → Ord, with the induced partial ordering.

Lemma 13. Let R be a commutative ring. Then every nonempty subclass of
Euc(R) has an infimum in Euc(R).

Proof. Let C = {ϕc} be a nonempty subclass of Euc(R), and let ϕ be the infimum

in OrdR; it suffices to show that ϕ is Euclidean. Let a, b ∈ R with b ∤ a. Choose
i ∈ I such that ϕ(b) = ϕi(b). Since ϕi is Euclidean, there are q, r ∈ R such that
ϕi(r) < ϕi(b), and then ϕ(r) ≤ ϕi(r) < ϕi(b) = ϕ(b). �

Theorem 14. Let R be a Euclidean ring.
a) The class Euc(R) of all Euclidean functions on R has a bottom element ϕR.
b) The bottom Euclidean function ϕR is isotone.
c) The set ϕR(R) is an ordinal.

Proof. a) This is immediate from Lemma 13.
b) Since ϕR is the bottom Euclidean function, we must have ϕR = ϕR.

c) It’s enough to show ϕR(R) is downward closed: we need to rule out the existence
of α < β ∈ Ord such that ϕR(R) contains β but not α. Let α′ be the least element
of ϕR(R) exceeding α. If we redefine ϕR to take the value α whenever ϕR takes
the value α′, we get a smaller Euclidean function than ϕR: contradiction. �

Proposition 15. If R is Euclidean, the bottom Euclidean function ϕR is isotone.

Proof. By Theorem 11, ϕR is an isotone Euclidean function. But ϕR is the bottom
Euclidean function, so ϕR = ϕR. �

For any Euclidean ring R we define the order type e(R) = ϕR(R) ∈ Ord. This
ordinal invariant of R is our main object of interest: given a Euclidean ring R we
would like to compute its order type e(R); conversely we would like to know which
ordinals arise as order types of Euclidean rings.

Example 2.5: Let R = Z. The map n ∈ Z 7→ # of binary digits of |n| is the
bottom Euclidean function, so e(Z) = ω.

Example 2.6: Let R = k[t]. The map x ∈ k[t] 7→ 1 + deg t is the bottom Eu-
clidean function, so e(k[t])) = ω.

Theorem 16. Suppose R is Euclidean with e(R) ≤ ω. Then:
a) For all x ∈ R•, R/(x) is Artinian.
b) R is either a PID or an Artinian principal ring.



A NOTE ON EUCLIDEAN ORDER TYPES 7

Proof. a) IfR/(x) were not Artinian, there would be a sequence of elements {xn}
∞
n=0

in R with x0 = x and (xn+1) ( (xn) for all n ∈ N. Applying Corollary 12b) we get
ϕ(x) = ϕ(x0) > ϕ(x1) > . . . > ϕ(xn) > . . ., contradicting ϕ(x) ∈ ω.
b) This follows immediately from Theorem 6. �

Corollary 17. (Fletcher [Fl71])
a) If A is an Artinian Euclidean ring, then e(R) < ω.
b) A Euclidean ring R with e(R) = ω is a domain.

Proof. a) The value of ϕA at x ∈ R depends only on the ideal (x). But an Artinian
principal ring has only finitely many ideals! So e(R) < ω.
b) This follows immediately from Theorem 16b) and part a). �

2.6. The Localized Euclidean Function.

Theorem 18. Let R be a Euclidean domain, and let S ⊂ R be a multiplicatively
closed subset. Then the localization S−1R is Euclidean and e(S−1R) ≤ e(R).

Proof. See [Mo49, §4] or Samuel [Sa71, Prop. 7]. �

2.7. The Quotient Euclidean Function.

Theorem 19. Let ϕ : R → Ord be a Euclidean function. Let b ∈ R• be an ideal
of R, and let f : R → R/(b) be the quotient map. For x ∈ R/(b), let x̃ ∈ f−1(x) be
any element such that ϕ(x̃) ≤ ϕ(y) for all y ∈ f−1(x).
a) Then ϕ′ : x ∈ (R/(b))• 7→ ϕ(x̃) is a Euclidean function.
b) For the bottom Euclidean function ϕR, we have

(2) ϕ′
R(0) = sup

x6=0

ϕ′
R(x) + 1 = ϕR(b).

Proof. a) For x ∈ R/(b), y ∈ (R/(b))•, x̃ ∈ R, ỹ ∈ R•, so there are q, r ∈ R with
x̃ = qỹ + r and ϕ(r) < ϕ(ỹ). Then x = f(q)y + f(r) and hence

ϕ′(f(r)) ≤ ϕ(r) < ϕ(ỹ) = ϕ′(y).

b) The first equality in (2) is the definition of the extension to 0 of any Euclidean
function. The second equality is a key – in fact, characteristic – property of the
bottom Euclidean function which is proved in [Sa71, Prop. 10]. �

Corollary 20. If R is Euclidean, so is every quotient ring R′, and e(R′) ≤ e(R).

2.8. The Product Theorem.

Lemma 21. (Ordinal Subtraction)
a) For α ≤ β ∈ Ord, there is a unique γ ∈ Ord such that α + γ = β. We may
therefore define

−α+ β = γ.

b) Suppose we have ordinals α, β, γ such that γ ≤ α < β. Then −γ + α < −γ + β.

Proof. a) Existence of γ: If α = β, then we take γ = 0. Otherwise, α ( β; let x0
be the least element of β \ α and let γ be the order type of {x ∈ β | x ≥ x0}.
Uniqueness of γ: suppose we have two well-ordered setsW1 andW2 such that α+W1

is order-isomorphic to α+W2. Then the unique order-isomorphism between them
induces an order-isomorphism from W1 to W2.
b) For if not, −γ+β ≤ −γ+α, and then β = γ+(−γ+β) ≤ γ+(−γ+α) = α. �



8 PETE L. CLARK

Theorem 22. (Product Theorem) Let R1, . . . , Rn be Euclidean rings.
a) The ring

∏n
i=1Ri is Euclidean iff Ri is Euclidean for all i.

b) If the equivalent conditions of part a) hold, then

(3) e(R1) + . . .+ e(Rn) ≤ e(
n∏

i=1

Ri) ≤ e(R1)⊕ . . .⊕ e(Rn).

Proof. Induction reduces us to the case n = 2. Put R = R1 ×R2.
a) This is immediate from Lemma 9, Corollary 8 and Theorem 19.
b) Let b = (0, 1), so R/(b) = R1 and thus by Theorem 19b), we have ϕR(b) = e(R1).
For y ∈ R2, b = (0, 1) | (0, y), so by Proposition 15, ϕR((0, 1)) ≤ ϕR((0, y)). By
Lemma 21 we may put

ψ(y) = −ϕR((0, 1)) + ϕR((0, y)).

We claim ψ : R2 → Ord is a Euclidean function. Granting this for the moment,
it then follows that ψ ≥ ϕR2

, so

e(R) = ϕR((0, 0)) = ϕR((0, 1)) + ψ(0) ≥ e(R1) + e(R2).

proof of claim: Let x ∈ R2, y ∈ R•
2; as usual, we may assume y ∤ x. Since ϕR is

Euclidean, there are q = (q1, q2), r = (r1, r2) ∈ R such that (0, x) = q(0, y) + r =
(r1, q2y+r2) and either r = 0 or ϕR(r) < ϕR((0, y)). Thus r1 = 0 and x = q2y+r2.
Since y ∤ x we have r2 6= 0, so r 6= 0 and thus ϕR((0, r2)) < ϕR((0, y)). By Lemma
21b) we may subtract ϕR(0, 1) – on the left! – from both sides to get

ψ(r2) = −ϕR((0, l))− ϕR((0, r2)) < −ϕR((0, 1))− ϕR((0, y)) = ψ(y).

For the second inequality of (3), let ϕ1 : R1 → e(R1), ϕ2 : R2 → e(R2) be the bot-
tom Euclidean functions on R1 and R2. By definition of the Hessenberg-Brookfield
sum, we have an isotone map λ : (e(R1) + 1) × (e(R2) + 1) → e(R1) ⊕ e(R2) and
thus a Euclidean function λ ◦ (ϕ1 × ϕ2) : R → e(R1)⊕ e(R2). �

Remark 2.7: The upper bound on the order type of the product ring in (3) is
essentially due to Nagata. Moreover, in the proof of Proposition 6 of [Sa71], Samuel
gives the bound e(R1 ×R2) ≤ e(R1)× e(R2) + e(R2)× e(R1). By Proposition 4b),
Samuel’s bound is not as good as Nagata’s: there is a penalty to pay for employing
the “usual” ordinal operations rather than the Hessenberg-Brookfield sum.

2.9. Applications.

Let R be a nonzero local principal ring with maximal ideal (π). Then every el-
ement x ∈ R• may be written as uπa for u ∈ R× and a unique a ∈ N. If R is a
domain, then we take the convention that 0 = 1 · πω. Otherwise R is Artinian and
there is a least positive integer a such that 0 = 1 · πa; this a is nothing else than
ℓ(R), the length of R as an R-module.

Theorem 23. a) (Samuel) Let R be a local principal ring with maximal ideal
generated by π. The map ϕ : R→ Ord by uπa 7→ a is a Euclidean function on R.
b) In fact ϕ = ϕR is the bottom Euclidean function, hence:
• If R is a domain, e(R) = ω.
• If R is Artinian, then e(R) = ℓ(R).
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Proof. a) Let x = u1π
a ∈ R, y = u2π

b ∈ R•. If b ≤ a then y | x and we may write
x = qy + 0. If b > a we may write x = 0 · y + x, and then ϕ(x) < ϕ(y).
b) Let ϕR be the bottom Euclidean function on R, which is isotone by Proposition
15. Suppose first that R is a domain. Then for all a ∈ ω we must have

0 = ϕR(π
0) < ϕR(π

1) < . . . < ϕR(π
a) < . . . ,

and thus ϕ ≤ ϕR, so ϕR = ϕ and

e(R) = ϕ(0) = sup
a∈N

ϕ(πa) + 1 = ω.

Similarly, if R is Artinian then

0 = ϕR(π
0) < ϕR(π

1) < . . . < ϕR(π
ℓ(R)),

and as above this forces ϕR = ϕ and e(R) = ϕ(0) = ℓ(R). �

Corollary 24. If R is an Artinian principal ring, then R is Euclidean and e(R) =
ℓ(R), the length of R as an R-module.

Proof. This follows immediately from Theorem 23 and Theorem 22. �

Theorem 25. Let R =
∏r

i=1Ri ×A = R′ ×A be a Euclidean ring.
a) We have e(R) = e(R′) + ℓ(A).
b) e(R′) is a limit ordinal (possibly zero).
c) e(R′) ≥ rω.

Proof. a) By Corollary 24, A is Euclidean with e(A) = ℓ(A); then by Theorem 22,

e(R′) + ℓ(A) = e(R′) + e(A) ≤ e(R) ≤ e(R′)⊕ e(A) = e(R′) + e(A) = e(R′) + ℓ(A).

The remaining assertions hold trivially if r = 0, so we assume r ≥ 1.
b) Since R′ is a product of domains, the set of nonzero ideals of R has no minimal
element, so e(R′) is a nonzero limit ordinal.
c) By part b) and Theorem 22, rω ≤ e(R1) + . . .+ e(Rr) ≤ e(R′). �

Corollary 26. (Fletcher) A Euclidean ring R with e(R) = ω is a domain.

We say a Euclidean ring R ∼=
∏r

i=1 Ri × A(R) is small if e(Ri) = ω for all i;
otherwise we say R is large.

Theorem 27. a) Let R ∼=
∏r

i=1Ri ×A be a small Euclidean ring. Then

e(R) = rω + ℓ(A),

where n is the length of the Artinian principal ring A.
b) For every ordinal α < ω2, there is a small Euclidean ring R with e(R) = α.

Proof. a) By Theorem 25, e(A) = ℓ(A) < ω. Now we apply the Product Theorem:

rω + ℓ(A) = e1(R) + . . .+ er(R) + e(A) ≤ e(R) ≤
r⊕

i=1

e(Ri)⊕ ℓ(A) = rω + ℓ(A).

b) The ordinals less than ω2 are of the form rω + n for r, n ∈ ω. By part a),

e(C[t]r × C[t]/(tn)) = rω + n.

�
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Are all Euclidean rings small? If so, Theorem 27 would be the ultimate result on
Euclidean order types. This question was implicit in [Mo49] and made explicit in
[Sa71]. It was later answered negatively by Hiblot [Hi75], [Hi77] and Nagata [Na78].
It seems that the Euclidean order type of these large Euclidean domains has never
been investigated...and, alas, will not investigated here. However, the following
result shows that Euclidean rings of the sort familiar in number theory are small.

Proposition 28. ([Sa71, Prop. 15]) Let R be a Euclidean domain such that R/(a)
is a finite ring for all a ∈ R•. Then R is small.

Proof. If not, there is b ∈ R with ϕR(b) = ω. Let ϕ : R/(b) → Ord be the quotient
Euclidean function. Write the elements of R/(b) as x1 = 0, x2, . . . , xn. For all i > 1,
ϕ(xi) < ϕ(0) ≤ ω. But ϕ(0) = supi>1 ϕ(xi) + 1 < ω. Thus, there exists b′ ∈ (b)
with ϕR(b

′) < ω, contradicting the fact that ϕR is isotone. �

3. Length Functions on Rings

3.1. The length function on a Noetherian ring.

In this section we closely follow work of Gulliksen [Gu73] and Brookfield [Br02].

Let R be a ring, and let I(R) be the lattice of ideals of R. Then I(R) is Noe-
therian (resp. Artinian) iff R is Noetherian (resp. Artinian). Thus the dual lattice
I∨(R) is Artinian (resp. Noetherian) iff R is Noetherian (resp. Artinian).

Henceforth we suppose R is Noetherian, so I∨(R) is Artinian with top element
(0). By the results of §1 there is a least isotone map λR : I∨(R) → Ord, the
length function λR of R, and we define the length of R as len(R) = λR((0)).

For any ideal I of R, R/I is Noetherian, so λR/I and len(R/I) are well-defined. If
we denote the quotient map R → R/I by q, then the usual pullback of ideals q∗

identifies I(R/I) with an ordered subset of I(R) and hence also I∨(R/I) with an
ordered subset of I∨(R), and it is easy to see that under this identification we have

λR|I∨(R/I) = λR/I ,

and thus also

len(R/I) = λR/I((0))) = λR(q
∗((0))) = λR(I).

To ease notation, for x ∈ R we put ℓ(x) = λR((x)).

Proposition 29. Let ϕ be a Euclidean function on R. For all x ∈ R, ℓ(x) ≤ ϕ(x).

Proof. Since R admits a Euclidean function, it is a principal ring, and thus I∨(R) =
R•/R×. We may assume that ϕ = ϕR is the bottom Euclidean function on R. Then
both ℓ and ϕ induce well-defined isotone functions on R•/R×. But by definition
ℓ = λR is the least isotone function on I∨(R), so ℓ(x) ≤ ϕR(x) for all x ∈ R. �

If R is a PID and x ∈ R•, then the ring R/(x) is an Artinian ring and thus its
length, which is equal to ℓ(x), is finite. In particular, for all x ∈ R• ℓ(x) < ω and
ℓ(0) = ω. From this the next result follows directly.
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Proposition 30. Let R be a PID which is not a field, and let x ∈ R.
a) If x ∈ R×, then ℓ(x) = 0.
b) If x ∈ R• \ R×, we may write x = π1 · · ·πn for not necessarily distinct prime
elements π1, . . . , πn, and then ℓ(x) = n.
c) We have ℓ(0) = len(R) = ω.

3.2. ℓ-Euclidean rings.

A ring R is ℓ-Euclidean if the function x ∈ R 7→ ℓ(x) ∈ Ord• is a Euclidean
function on R. The point is that if ℓ is a Euclidean function on R, it is then the
least Euclidean function on R, so that e(R) = len(R).

Example 3.1: a) The ring Z is not ℓ-Euclidean.
b) For a field k, the ring k[t] is ℓ-Euclidean iff k is algebraically closed.

Example 3.2: A norm on a nonzero ring R is a function | · |R → N such that
|x| = 0 ⇐⇒ x = 0, |x| = 1 ⇐⇒ x ∈ R× and |xy| = |x||y| for all x, y ∈ R. A
ring admitting a norm is necessarily a domain: if x, y ∈ R•, |xy| = |x||y| 6= 0, so
xy ∈ R•. An ℓ-Euclidean domain admits a Euclidean norm: x ∈ R• 7→ 2x.

Proposition 31. A localization of an ℓ-Euclidean domain is ℓ-Euclidean.

Proof. Left to the reader. �

Proposition 31 furnishes further examples of ℓ-Euclidean domains, namely any ring
between k[t] and its fraction field. One wonders about further examples.

Question 32. Is there a classification of ℓ-Euclidean domains?
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