
ar
X

iv
:1

40
6.

30
77

v1
  [

m
at

h.
C

O
] 

 1
1 

Ju
n 

20
14

GENERALIZED LAMINAR FAMILIES AND

CERTAIN FORBIDDEN MATRICES

Peter J. Dukes

September 4, 2018

Abstract. Recall that in a laminar family, any two sets are either disjoint or contained one in
the other. Here, a parametrized weakening of this condition is introduced. Let us say that a set
system F ⊆ 2X is t-laminar if A,B ∈ F with |A ∩ B| ≥ t implies A ⊆ B or B ⊆ A. We obtain

very close asymptotic bounds in terms of n on the maximum size of a 2-laminar family F ⊆ 2[n].
A construction for 3-laminar families and a crude analysis for general t are also given.

1. Introduction

LetX be a set. A laminar family of subsets L ⊆ 2X has the property that for A,B ∈ L, either A ⊆ B,
B ⊆ A, or A∩B = ∅. Consider a finite set X , say of cardinality n. (Usually X = [n] := {1, . . . , n} is
assumed.) Then |L| ≤ 2n by an easy (strong) induction argument. Equality is achieved if L consists
of a full chain of size n+ 1, along with singletons.

Said another way, L is laminar if A,B ∈ L with |A ∩ B| ≥ 1, implies A ⊆ B or B ⊆ A. Now, let t
be a positive integer and say a family F ⊆ 2X is t-laminar if, whenever A,B ∈ F with |A ∩B| ≥ t,
we have A ⊆ B or B ⊆ A. It is clear that an s-laminar family is also t-laminar for t > s.

From the point of view of obtaining upper bounds on t-laminar families F , there is no loss in

assuming
(

[n]
≤t

)

⊆ F . Also, the set [n] itself can be thrown into F for free.

The author’s original motivation for this topic was not to generalize laminar families. It originated
from a certain problem of Richard Anstee on forbidden configurations in zero-one matrices, [1] .

In this direction, say that a zero-one matrix M avoids another zero-one matrix Z if no permutation
of rows and columns of Z appears as a submatrix of M . This is especially interesting when M is
has a fixed number n of columns and both M and Z have no repeated rows. (It should be clarified
that Anstee works with the transpose: m rows and no repeated columns, but the difference is not
too important here.) Under the assumption of distinct rows, it follows that sufficiently large M are
guaranteed to contain a copy of Z. The key question is how many rows M can have while avoiding
Z.

The rows of M can be interpreted as characteristic vectors of distinct subsets of [n]. Likewise, a set
system F ⊆ 2[n] defines a |F| × n matrix M(F) with rows indexed by F and

M(F)A,i =

{

1 if i ∈ A ∈ F ,

0 if i 6∈ A.
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Now consider the matrix

Z =

[

0 1 1 1
1 0 1 1

]

.

We have chosen Z = F⊤
0112 from [1], where in that more general context the subscripts denote the

number of rows (our columns) which are 00, 01, 10, and 11. Incidentally, among all 2× 4 matrices,
the forbidden configuration problem is by far least understood for our Z.

Observe that M(F) contains Z as a (possibly permuted) submatrix if and only if there exist four
points w, x, y, z ∈ [n] and two sets A,B ∈ F so that

• x, y, z ∈ A but w 6∈ A; and
• w, y, z ∈ B but x 6∈ B.

It follows that forbidding Z corresponds to building a 2-laminar family. More generally, forbidding
the 2× (t+ 2) matrix F⊤

011t corresponds with t-laminar families for each positive integer t.

In another direction, let us recall that 2[n] is a graded poset. In a laminar family, we must have that
every rank one element (singleton set) belongs to a unique maximal chain in the induced ordering.
Similarly, in a t-laminar family, every element of rank t sits below a unique maximal chain. This
is potentially a natural property for other graded posets; e.g. in the number-theoretic setting ([n]
with divisibility) or finite geometric setting (Fk

q with subspace containment).

Summarizing the above, we claim a collection of equivalent properties for set systems.

Proposition 1.1. The following are equivalent for F ⊆ 2[n]:

(1) F is t-laminar;

(2) the matrix M(F) avoids F⊤
011t;

(3) every element of F ∩
(

[n]
t

)

belongs to a unique maximal chain in F ∩
(

[n]
≥t

)

.

In this note, we are especially interested in asymptotic upper bounds on such families F for the case
t = 2 and n ≫ 0. We obtain fairly close estimates as our main result.

Theorem 1.2. Let f(n) + n+ 1 be the maximum size of a 2-laminar family on an n-set. Then

(a) lim inf
n→∞

f(n)
(

n

2

)−1
≥ 1.3818, and

(b) lim sup
n→∞

f(n)
(

n
2

)−1
≤ 1.3821.

As the reader might expect, the lower bound follows from a constructive argument. The upper bound
is obtained from a recursive linear program. These define Sections 2 and 3 to follow. Interestingly,
obtaining even slightly better bounds is probably very difficult; indeed, determining an exact limit
as above is essentially as hard as settling certain open cases for projective planes. We are also able
to say something about the case t = 3, but (for now) this represents a barrier.

2. The lower bound: designs and packings

A t-wise balanced design is a pair (V,B), where V is a set of v points and B is a collection of subsets
of V called blocks (and having size ≥ t) such that every t-subset of points belongs to exactly one
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block. A t-wise packing is defined similarly, except that some t-subsets of points may belong to zero
blocks.

If the block sizes are a constant k, we speak of a t-(v, k, 1) design (or packing). Here, the ‘1’ denotes
the (maximum) number of blocks containing a fixed t-subset; in more general settings this parameter
may be any nonnegative integer λ.

The connection with t-laminar families is straight from definitions.

Proposition 2.1. Let F ⊆ 2[n] be a t-laminar family. Then any antichain in F forms the blocks

of a t-wise packing on n points. In particular, the maximal sets in F \ {[n]} form a t-wise packing

and the sets in F of fixed cardinality k > t in F form a t-(n, k, 1) packing.

A t-laminar family can arise from ‘nested’ packings.

Construction 2.2. Suppose ([n],B) is a t-wise packing. Define F by replacing each block K ∈ B
by any copy of a t-laminar family on K. Then F is t-laminar with ground set [n].

Proof. For K ∈ B, let EK denote the t-laminar family replacing K in the construction, so that
F = ∪K∈BEK . Consider A,B ∈ F . If A,B ∈ EK for some K, it follows that A ⊆ B, B ⊆ A, or
|A∩B| < t. On the other hand, if A and B each belong to different EK1

and EK2
, then |K1∩K2| < t

since B is a t-packing. It follows that |A ∩B| < t in this case. �

In the notation of our main result, Theorem 1.2, recall that we are letting f(n) denote the maximum

|F ∩
(

[n]
≥2

)

| over all 2-laminar families F .

Corollary 2.3. Suppose there exists a 2-(n,m, 1) packing with b blocks. Then f(n) ≥ b ·f(m)+1.

Note the ‘+1’ is due to the universal set [n]. Now, Construction 2.2 can be used inductively. The
choice of packings (or designs) and block sizes must now be explored further. To this end, we recall
two famous families of designs.

Lemma 2.4. There exists a 2-(q2, q, 1) design and a 2-(q2 + q + 1, q + 1, 1) design for every prime

power q.

The designs stipulated in Lemma 2.4 are, respectively, the affine and projective planes of order q.
In particular, the projective plane for q = 2 is the well known Fano plane, a 2-(7, 3, 1)-design. They
lead to an easy construction of 2-laminar families for an infinite sequence of n.

Proposition 2.5. Let n = 72
r

. Then

(2.1) f(n) ≥

(

n

2

)

[

1 +
1
(

3
2

) +
1
(

7
2

) +
1

(

49
2

) + · · ·+
1
(

n
2

)

]

.

Proof. Use induction on r. If r = 0, then n = 7 and we construct a family F0 :=
(

[7]
2

)

∪ B ∪ {[7]},

where B ⊆
(

[7]
3

)

are the
(

7
2

)

/
(

3
2

)

blocks of a Fano plane.

It is easy to check that F0 is 2-laminar, leading to f(7) ≥ 21+ 7+ 1 = 29. Now for i ≥ 1, construct

Fi from Fi−1 by applying Construction 2.2 to the 2-(72
i

, 72
i−1

, 1) design in Lemma 2.4. It follows
that Fr is 2-laminar with ground set [n]. It remains to count |Fr|.
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In general, there are
(

n
2

)(

m
2

)−1
blocks in a 2-(n,m, 1) design. With m = 72

r−1

and n = m2, we have

f(n)
(

n
2

) ≥
|Fr|
(

n
2

) =
|Fr−1|
(

m
2

) +
1
(

n
2

) .

We obtain the (2.1) after an easy induction. �

To obtain a construction for general n ≫ 0, we make use of an asymptotic result on maximum
2-packings.

Lemma 2.6 ([2]). Given any k, there exists a universal constant ck such that, for all n, the

maximum size of a 2-(n, k, 1) packing is at least ⌊n
k
⌊n−1
k−1 ⌋⌋ − ck.

We are now ready to prove the first half of our main result.

Proof of Theorem 1.2(a). Let k = 74. It follows from Proposition 2.5 and a quick calculation

that f(k) ≥ 1.3818
(

k

2

)

. Now, take an (n, k, 1)-packing, which by Lemma 2.6 has at least b =
(

n
2

)(

k
2

)−1
− o(n2) blocks. It follows from Corollary 2.3 that f(n) > [1.3818− o(1)]

(

n
2

)

, as desired. �

For t = 3, there is a classical family of designs we can use to take the place of the finite planes.

Lemma 2.7. There exists a 3-(q2 + 1, q + 1, 1) design for every prime power q.

These designs are known as circle geometries. They arise from the action of PGL(2, q2) on Fq ∪{∞}
with its natural containment in Fq2 ∪ {∞}. Using the same construction as for t = 2, we have the
following.

Proposition 2.8. Let n = 32
r

+ 1. There exists a 3-laminar family of [n] with size

(2.2) 1 +

(

n

1

)

+

(

n

2

)

+

(

n

3

)

[

1 +
1
(

4
3

) +
1

(

10
3

) + · · ·+
1
(

n
2

)

]

≈ 1.5083

(

n

3

)

.

Incidentally, the new result of Keevash [4] provides an analog of Lemma 2.6 for general t. Thus we
can expect (2.2) as an asymptotic lower bound on 3-laminar families for all integers n ≫ 0, not just
n = 32

r

+1. For t > 3, the difficult part is finding good t-(n, k, 1) packings where n is not too much
larger than k. This is the fundamental challenge to going further. All we can say in general is that
t-laminar families exist with size at least (1 + ǫ)

(

n
t

)

, where ǫ > 0 depends on t.

3. The upper bound: linear programming

We begin with a structural lemma on 2-laminar families.

Lemma 3.1. Let F ⊆
(

[n]
≥2

)

be a 2-laminar family and define F∗ to be the set of maximal elements

of F \ {[n]}. Let there be bi elements of F∗ of cardinalty i. Then

|F| ≤ 1 +
∑

2≤k<n

f(k)bk.

Proof. Every element of F \ {[n]} is contained in a unique element of F∗. For each K ∈ F∗, the
restriction of F to sets contained in K is a 2-laminar family, say F|K . But |F|K | ≤ f(|K|), and so
the result follows by summing on K. �
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Next, recall from Proposition 2.1 that the maximal elements of F \ {[n]} form a 2-packing on [n].
In this way, we can constrain the parameters bk appearing above.

Lemma 3.2. Let ([n],B) be a 2-packing with bk blocks of size k, 2 ≤ k ≤ n. Then

(3.1)
∑

2≤k≤n

(

k

2

)

bk ≤

(

n

2

)

.

Moreover, if bm > 0 and bk = 0 for m < k ≤ n, we have

(3.2)
∑

2≤k≤m

(

k − 1

2

)

bk ≤

(

n−m

2

)

+

(

m− 1

2

)

.

Proof. The inequality (3.1) follows simply by counting
(

[n]
2

)

in two ways. Next, let B ∈ B with

|B| = m and count
(

[n]\B
2

)

. By the packing condition, every other block of size k intersects [n] \ B
in at least k − 1 points. It follows that

∑

K∈B,K 6=B

(

|K| − 1

2

)

≤

(

n−m

2

)

,

from which (3.2) easily follows. �

Using just Lemma 3.1 and inequality (3.1), we arrive at a recursive upper bound.

Proposition 3.3. For all n > 2,

f(n)
(

n
2

) ≤
1
(

n
2

) + max
2≤k<n

f(k)
(

k

2

) .

Proof.

f(n)
(

n
2

) ≤
1
(

n
2

) +
∑

2≤k<n

f(k)
(

n
2

) bk =
1
(

n
2

) +
1
(

n
2

)

∑

2≤k<n

f(k)
(

k
2

) ·

(

k

2

)

bk ≤
1
(

n
2

) +max
k<n

f(k)
(

k
2

) . �

Corollary 3.4. For all n > 2, f(n) ≤ 2
(

n
2

)

.

Proof. Note that f(3) = 4. For n > 3, Proposition 3.3 gives

f(n)
(

n
2

) ≤
f(3)
(

3
2

) +
∑

k>3

(

k

2

)−1

= 2. �

To use (3.2), we consider m as the maximum cardinality of a set in F∗. On the one hand, larger
values of m contribute a larger f(m) to the bound on f(n). On the other hand, larger values of m
constrain the packing via (3.2). To explore this trade-off, we set up a (recursive) linear program.

Define a function f̄ : Z≥2 → Q by f̄(2) = 1, f̄(3) = 4 and, for n > 3,

f̄(n) = 1 + max
2≤m<n

LP(n,m),

where LP(n,m) is the solution to the linear program

(3.3)
maximize:

∑

2≤k≤m f̄(k)bk
subject to: bm ≥ 1, bk ≥ 0 for 3 ≤ k < m,

(3.1) and (3.2).
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Since this is a fractional relaxation of Lemma 3.1 and the packing constraints hold, we have an upper
bound on f(n).

Proposition 3.5. For all n > 2, f(n) ≤ f̄(n).

The linear program (3.3) is somewhat tricky to analyze because of the recursive dependence on f̄ .
It is probably easiest to just appeal to a long computation which stores f̄ in memory.

Proof of Theorem 1.2(b). We compute f̄(50000)
(

50000
2

)−1
≈ 1.38206. Then, appealing to Propo-

sition 3.1 we have

f(n)

(

n

2

)−1

≤ 1.38206+
∑

k>50000

(

k

2

)−1

≈ 1.3821. �

It is worth providing some additional details on the computation. First, let us dualize and slightly
rewrite (3.3) so that LP(n,m) is also the solution of the (now two-variable) program

(3.4)
minimize:

(

n−m
2

)

x+ (
(

n
2

)

−
(

m
2

)

)y
subject to: x ≥ 0, y ≥ 1, and

(

k−1
2

)

x+
(

k

2

)

y ≥ f̄(k) for k = 3, . . . ,m.

A major advantage now is that (3.4) seems to have many redundant constraints. For k ≥ 2, let ηk
denote the halfspace

ηk =

{

(x, y) :

(

k − 1

2

)

x+

(

k

2

)

y ≥ f̄(k)

}

.

For example, η2 is defined by y ≥ 1. As a special definition, let η1 be the right halfspace defined by
x ≥ 0. As we build a table of f̄(n), we keep track of the intersection

Θn :=
n
⋂

k=1

ηk,

which is the feasible region for (3.4). When n is incremented, it is a simple check whether Θn ⊆ ηn+1.
If so (and this almost always happens), the constraint ηn+1 is eliminated. For instance, we compute

Θ10000 = η1 ∩ η2 ∩ η3 ∩ η7 ∩ η43 ∩ η1807,

and we note that these subscripts (starting with 2) are obtained by iterating the map k 7→ k2−k+1.
These are the sizes of hypothetical ‘nested’ projective planes. (Owing to the nonexistence of the
2-(43, 7, 1) design, though, our construction in Section 2 must shift to use powers of 7. This is
essentially what accounts for the small gap between our bounds.) In any case, eliminating constraints
at each stage reduces the calculation of LP(n,m) to a minimum of evaluations of the objective
function at the handful of extreme points of Θm. This is efficient enough for our purposes to
sidestep a more rigorous analysis. However, assuming one can prove the pattern of critical halfspaces

continues, a slightly sharper upper bound than Theorem 1.2(b) is possible, namely f(n)
(

n
2

)−1
≤

1 +
(

3
2

)−1
+
(

7
2

)−1
+
(

43
2

)−1
+ . . . .

The technique in this section can, in principle, extend to t > 2, though the bounds likely far exceed
what we can construct. A general upper bound of O(nt) on t-laminar families follows by a similar
argument as in Corollary 3.4, and that is enough for an order-of-magnitude determination.
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