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Packing Posets in the Boolean Lattice
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Abstract

We are interested in maximizing the number of pairwise unrelated copies of

a poset P in the family of all subsets of [n]. For instance, Sperner showed that

when P is one element,

(

n

⌊n2 ⌋

)

is the maximum number of copies of P . Griggs,

Stahl, and Trotter have shown that when P is a chain on k elements,
1

2k−1

(

n

⌊n2 ⌋

)

is asymptotically the maximum number of copies of P . We prove that for any P

the maximum number of unrelated copies of P is asymptotic to a constant times
(

n

⌊n2 ⌋

)

. Moreover, the constant has the form
1

c(P )
, where c(P ) is the size of the

smallest convex closure over all embeddings of P into the Boolean lattice.

1 Introduction

Using standard notation, let Bn be the inclusion poset of all subsets of [n] = {1, 2, . . . , n}.

Let P be any poset. Let f : P → Bn be a weak embedding of the poset P into Bn, i.e.,

if a < b ∈ P , then f(a) ⊂ f(b). We call f(P ) a copy of P in Bn. Let {Fi} be pairwise
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unrelated copies of P , i.e., if Ai ∈ Fi, Aj ∈ Fj, and i 6= j, then Ai and Aj are unrelated.

We say the family F = ∪iFi is a family constructed from pairwise unrelated copies of P .

Let Pa(n, P ) denote the maximum size of a family constructed from pairwise unrelated

copies of P in Bn. This quantity can be generalized to apply to a collection of posets;

let Pa(n, {Pi}) denote the maximum size of a family in Bn constructed from pairwise

unrelated copies of posets chosen from the collection of posets {Pi}.

The motivation for finding Pa(n, {Pi}) comes from a question under intensive study

in recent years, that of finding the maximum size La(n,Q), which is the maximum size

of a family F ⊆ Bn that contains no copy of poset Q. This seems to be a challenging

problem in extremal set theory, even determining the asymptotic growth of La(n,Q), as

n → ∞, for posets as simple as the four element diamond (which is B2). For a survey on

the topic, see [3]. For the most recent progress on the diamond, see [8].

It is natural to extend this notion to collections of posets {Qj}, seeking to find the

maximum size La(n, {Qj}) of a family F ∈ Bn that contains no copy of any poset Qj in the

collection. We noticed that for the collection {V,Λ}, where V = V2 is the poset on {a, b, c}

with a < b and a < c, and Λ is the poset on {a, b, c} with a > b and a > c, La(n, {V,Λ}) is

the same as Pa(n, {B0,B1}), since any collection of subsets that contains no copy of V or

Λ has components consisting only of single sets and/or two-element chains, all unrelated

to each other. We recently learned that Katona and Tarján [7] solved this very problem

years ago, showing that La(n, {V,Λ}) = 2

(

n− 1

⌊n−1
2
⌋

)

. We were able to derive the same

result, applying a 1984 result of Griggs, Stahl, and Trotter [4] that gives Pa(n,B1); we

present their more general result for the path Pk below.

More generally, for any collection {Qj}, La(n, {Qj}) is equivalent to Pa(n, {Pi}), where

{Pi} is the collection of all possible connected posets that do not contain any of the

posets in {Qj} as a subposet. Note that the collection {Pi} may be infinite. For instance,

La(n,V) is the same as Pa(n, {Pi}) where Pi is the i-fork consisting of one set that contains
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i (unrelated) sets, i ≥ 0. So the problem of determining Pa(n, {Pi}) can be viewed as

more general than the La(n, {Qj}) problem.

In this paper we now concentrate on finding the asymptotic behavior of Pa(n, P ) for

single posets P . We hope that these ideas might help with solving the more difficult

problem of finding La(n, {Qj}). To start us off, here are some examples in the literature

of finding Pa(n, P ) for specific P . A natural technique in proving results on posets is to

count full chains. We define a full chain in Bn to be a chain of Bn that includes a subset

of [n] of every size. In Sperner’s classic theorem (1928), he finds Pa(n, P ) for P = B0.

Theorem 1.1 ([10]) Pa(n,B0) is

(

n

⌊n
2
⌋

)

.

We include a proof of Sperner’s Theorem to demonstrate a basic outline for our later

proofs. Here is a proof introduced by Lubell [9]:

Proof. Each copy of B0 is just a subset of [n]. If a copy of B0 is a subset of size a, then it

meets a!(n− a)! full chains in Bn; this is at least ⌊n/2⌋!⌈n/2⌉! full chains. There are only

n! full chains in Bn. No chain may hit more than one copy of B0. The number of copies

of B0 is
Pa(n,B0)

|B0|
. Counting the full chains gives the inequality

Pa(n,B0)

|B0|

(

⌊n/2⌋!⌈n/2⌉!
)

≤ n!, and hence

Pa(n,B0) ≤ |B0|
n!

⌊n/2⌋!⌈n/2⌉!
= |B0|

(

n

⌊n
2
⌋

)

=

(

n

⌊n
2
⌋

)

.

This bound is tight, as the copies of B0 may be chosen to be the middle level of Bn. �

This proof was generalized by Griggs, Stahl, and Trotter (1984) for P = Pk, the chain

(or path) on k + 1 elements. The earlier paper of Bollobás [2] also implies this result.

Theorem 1.2 ([4]) Pa(n,Pk) is (k + 1)

(

n− k

⌊n−k
2
⌋

)

∼
k + 1

2k

(

n

⌊n
2
⌋

)

.
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Proof. For a chain P, with a minimum set A ⊆ [n] and maximum B ⊆ [n], define IP as

[A,B], the interval from A to B. For two chains P and P ′ to be pairwise unrelated copies

of Pk, a full chain in Bn hits at most one of IP or IP ′ . A full chain that hits IP is a chain

constructed from all the elements of A before any of the elements of [n] \ B. There are

n− |B \ A| elements in A or not in B. Therefore, the number of chains that hit IP is

n!
(

n− |B \ A|

|A|

) ≥
n!

(

n− k

⌊n−k
2
⌋

)

so each of the
Pa(n,Pk)

|Pk|
intervals from the copies of Pk meets at least

n!
(

n− k

⌊n−k
2
⌋

) full

chains. This gives that

Pa(n,Pk)

|Pk|

n!
(

n− k

⌊n−k
2
⌋

) ≤ n!, or

Pa(n,Pk) ≤ |Pk|

(

n− k

⌊n−k
2
⌋

)

= (k + 1)

(

n− k

⌊n−k
2
⌋

)

∼
k + 1

2k

(

n

⌊n
2
⌋

)

.

The bound is tight, as the following construction demonstrates. Fix a set S ⊆ [n] such

that |S| = k. The A’s corresponding to the chains are all the ⌊n−k
2
⌋-sets of [n] \ S, and

the Pk’s are chosen as any full chain in the interval [A,A ∪ S] for each A. �

Notice the steps in the proof above. For the upper bound, first, each copy of Pk is

contained in a larger set system IP , where a full chain hits at most one IP . Second, a

lower bound on the number of full chains that hit an IP is found. Now n! divided by this

lower bound is an upper bound on
Pa(n, P )

|P |
, the number of copies of P . As for the lower

bound, a construction is found. In this particular example, the construction is multiple

copies of Pk, where each copy’s minimum is on a base rank ⌊n−k
2
⌋, and the minimum is

constructed from just the elements of [n] \S. The set S restricts the choices of which sets
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in the base level to include in the packing. Each copy of P can then easily be built on

top of its minimum using the elements of S.

A similar method may be used to find Pa(n, P ) for general P . One important concept

is how each copy of Pk is contained in a larger set system IP , where a full chain hits at

most one IP . Similarly, we contain a copy of P inside the convex closure of that copy.

The convex closure of a set system is defined as follows: Let F ⊆ Bn. In Bn, F generates

an ideal (or down-set) and a filter (or up-set) denoted as follows:

D(F) = {S ∈ Bn|S ⊆ A for some A ∈ F}, and

U(F) = {S ∈ Bn|A ⊆ S for some A ∈ F}.

We define a closure operator on F as F := D(F) ∩ U(F). Another definition would be

F := {S ∈ Bn|A ⊆ S ⊆ B for some A,B ∈ F}.

Here S, A, and B could be equal, so clearly F ⊆ F . A family F such that F = F is

called convex. Note that convex families appear in the literature, including the conjecture

by P. Frankl and J. Akiyama:

Conjecture 1.1 ([1]) For every convex family F ⊆ Bn, there exists an antichain A ⊆ F

such that |A| / |F| ≥

(

n

⌊n
2
⌋

)

/2n.

If two copies of P are unrelated, then their closures must be unrelated as well. There-

fore, we are more interested in the size and structure of the closure of a copy of P than

of the copy of P itself. For a weak embedding f of P into Bk, there exists a minimum

value of
∣

∣

∣
f(P )

∣

∣

∣
over all choices of f and k. Denote this minimum as c(P ).

Here are some examples. If P is the three-element poset V, we have that f may be

embed V into B2 such that f(V) = {∅, {1}, {2}}. Now f(V) = f(V) so c(V) = |V| = 3.
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In the proof of Theorem 1.2, the closure of an embedding of a chain Pk is the smallest

interval in which it is enclosed, IP in the proof. The smallest size of this interval is 2k so

c(Pk) = 2k.

Here is one of the two main theorems, finding Pa(n, P ) asymptotically for any P in

terms of c(P ) and |P |.

Theorem 1.3 For any poset P , as n → ∞, Pa(n, P ) ∼
|P |

c(P )

(

n

⌊n
2
⌋

)

.

We may also ask the similar question, what is the maximum number of pairwise

unrelated induced copies of P in Bn, where each copy is a strong embedding of P ? A

strong embedding f of P is such that for a, b ∈ P , a < b if and only if f(a) ⊂ f(b). We

will denote the maximum size of a family in Bn constructed from induced copies of P as

Pa∗(n, P ). We can also define the more general quantity Pa∗(n, {Pi}).

We can similarly define c∗(P ) as the minimum size of the closure of a strong embedding

of P in Bn over all possible n. In general, c∗(P ) 6= c(P ). Take for instance the poset

J = {a, b, c, d}, a < b < c, and a < d; J may be weakly embedded into B2 so c(J) = 4.

As for f , a strong embedding of J into Bk, there exists a set B′ ∈ Bk, f(b) 6= B′, such

that f(a) ⊂ B′ ⊂ f(c) so B′ ∈ f(J), but f(d) 6= B′ because f(d) * f(c). Therefore,

c∗(J) ≥ 5. Also, a strong embedding of J into B3 is easy to find such that c∗(J) = 5.

The second main theorem finds Pa∗(n, P ) asymptotically for any P in terms of c∗(P )

and |P |.

Theorem 1.4 For any poset P , as n → ∞, Pa∗(n, P ) ∼
|P |

c∗(P )

(

n

⌊n
2
⌋

)

.

While preparing this manuscript, we learned that this problem of determining asymp-

totically the maximum number of unrelated copies of a poset P in Bn was already proposed

by Katona at a conference lecture in 2010 [5]. We also learned that Katona and Nagy [6]

have recently (and independently) obtained results essentially equivalent to our two main

results above. Our extension of the problem to a family of posets, Pa(n, {Pi}), appears

to be new.
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The following two sections are a proof of Theorem 1.3. The proof of Theorem 1.4 will

require only a few alterations. This will be demonstrated after the main proof.

2 The Upper Bound

We obtain the upper bound on the number of unrelated copies of poset P from an asymp-

totic lower bound on the number of full chains that meet the closure of a copy of P . For

a family F of subsets of [n], let a(F) be the number of full chains in Bn that intersect F .

While a(F) will be as large as n!, if, say, F contains ∅, we are interested in how small it

can get. If F consists of m subsets of size k, then a(F) will be mk!(n− k)! = m(n!/
(

n

k

)

),

which is at least m
(

n!
/

(

n

⌊n
2
⌋

)

)

. For fixed m, as n grows we expect this last formula to

be the minimum asymptotically. Let us denote by a(m,n) the minimum of a(F), over all

families F ⊆ Bn with |F| = m.

Proposition 2.1 Let integer m ≥ 1. Then as n → ∞ the minimum number of full

chains in Bn that meet a family of m subsets in Bn, a(m,n) ∼ m
(

n!
/

(

n

⌊n
2
⌋

)

)

.

Proof. Let F = {A1, . . . , Am} be a family of m subsets of [n]. For convenience let

us assume that the subsets are labeled so that for all i < j, |Ai| ≤ |Aj |. For any

1 ≤ i1 < · · · , ik ≤ m let b(i1, . . . , ik) denote the number of full chains that pass through

all of Ai1 , . . . , Aik . Of course, b(i1, . . . , ik) is nonzero if and only if the sets Ai1 , . . . , Aik

form a chain. Inclusion-exclusion gives us that a(F) is the sum of the b(i1) minus the

sum of the b(i1, i2) plus the sum of the b(i1, i2, i3) minus and so on. Our difficulty now is

that some terms b(i1, . . . , ik) with k ≥ 2 can actually be large compared to some singleton

terms b(i1), so we cannot immediately dismiss them. For instance, if n = 100 and F

happens to be a chain with |Ai| = i for all i, then b(1, 2) = 1!1!98! is much larger than

b(50) = 50!50!. However, we can exploit the fact that terms b(i1, . . . , ik) with k ≥ 2 are
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considerably smaller than some b(i1) terms. In the example, we could instead compare

b(1, 2) to b(1) = 1!99!.

By making all signs for terms with k ≥ 2 negative, our alternating sum lower bound

above is at least the sum of the b(i1) minus the sum over all k ≥ 2 of the terms b(i1, . . . , ik).

For the 2m −m − 1 terms being subtracted, we assign each one to a particular positive

singleton term b(j) as follows: For a term b(i1, . . . , ik) with k ≥ 2, by our labeling we have

|Ai1 | ≤ · · · ≤ |Aik |. Let u := |Ai1 | and v := |Aik |. We assign this term to one of b(i1) or

b(ik), resp., according to whether |u− (n/2)| is at least (less than, resp.) |v− (n/2)|. For

instance in the example above, the terms b(20, 28) and b(20, 30, 80) are assigned to b(20),

while b(20, 30, 81) is assigned to b(81).

We have then each singleton term b(j) = |Aj|!(n − |Aj|)!. There are less than 2m−1

terms b(i1, . . . , ik) with k ≥ 2 assigned to b(j). For those terms that are nonzero, it means

that Ai1 ⊂ · · · ⊂ Aik and either i1 or ik is j, according to which is farther from n/2.

Suppose j = i1 (so i1 < n/2). Then this term b(i1, . . . , ik) is a product of factorials that

refines b(i1): While i1! is still a factor, (n − i1)! is replaced by a product of factorials no

more than 1!(n− i1 − 1), so in total, we get at most b(i1) divided by (n− i1), which is at

least n/2. In this case, and similarly when j = ik, we see that the term b(i1, . . . , ik) is at

most b(j) divided by n/2. Therefore, the sum of all the terms assigned to b(j) is at most

b(j) times 2m/n. Hence,

a(F) ≥
m
∑

j=1

b(j)(1 − (2m/n)).

Since each term b(j) = j!(n− j)! ≥ n!
/

(

n

⌊n
2
⌋

)

, and this bound holds independent of F ,

we see that as n → ∞ for fixed m, a(m,n) ∼ m
(

n!
/

(

n

⌊n
2
⌋

)

)

. �

Now we consider our poset packing problem. Assume that we have Pa(n, P )/ |P |

unrelated copies Fi of our poset P contained in the Boolean lattice Bn. In fact, if a full
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chain passes through the closure Fi of one of these families Fi, it does not pass through

the closure of any other Fj , since Fi and Fj are unrelated. That is, the closures Fi are

also unrelated. Each closure Fi has at least m = c(P ) subsets in it so it meets at least

a(m,n) full chains.

Altogether, the number of full chains that meet some closure Fi is then at least

a(m,n) Pa(n, P )/ |P |. This is in turn at most the total number of full chains, n!. Hence,

Pa(n, P )/ |P | is at most n!/a(m,n), which is asymptotic to (1/m)

(

n

⌊n
2
⌋

)

for large n. This

gives the desired asymptotic upper bound.

3 The Lower Bound Construction

Let m, k, and f be such that f embeds P into Bk, and
∣

∣

∣
f(P )

∣

∣

∣
= m = c(P ). We will

construct an F ⊆ Bn from pairwise unrelated copies of f(P ) so that the number of copies

of P in F is
|F|

|P |
∼

1

m

(

n

⌊n
2
⌋

)

.

We will construct F through a finite number of iterations. Fix an i ∈ N. This i is the

number of iterations for which we construct asymptotically
(2k −m)j

(2k)j+1

(

n

⌊n
2
⌋

)

unrelated

copies of P for each 0 ≤ j ≤ i − 1. Because we may choose i to be arbitrarily large, we

will have

|F|

|P |
∼

i−1
∑

j=0

(

(2k −m)j

(2k)j+1

)(

n

⌊n
2
⌋

)

∼
∞
∑

j=0

(

(2k −m)j

(2k)j+1

)(

n

⌊n
2
⌋

)

=
1

2k

[

1

1 − 2k−m
2k

](

n

⌊n
2
⌋

)

=
1

m

(

n

⌊n
2
⌋

)

.

Let’s now create such an F ⊆ Bn for each n. For the rest of the argument, let (A+ x)

be the translation {a + x | a ∈ A} for a set A ⊆ [n] and an integer x. For the ease of

notation, define Sj := [k(j + 1)] \ [kj] = {kj + 1, kj + 2, . . . , kj + k} = ([k] + kj), the set

9



[k] translated by a multiple of k.

A level (or row) of Bn is all subsets of [n] of the same size, the rank of the level. The

level of rank r is often denoted as
(

[n]
r

)

. Define a layer of Bn (denoted as ℓ) to be k + 1

consecutive levels of Bn. We call the smallest rank in layer ℓ its base rank, bℓ. Specifically,

ℓ =
(

[n]
bℓ

)

∪
(

[n]
bℓ+1

)

∪ · · · ∪
(

[n]
bℓ+k

)

. We define our layers by taking the base ranks to be

⌊n/2⌋ + z(k + 1) for all integers z; in this way, we partition the levels of Bn and any

two layers are disjoint. We construct F by populating certain layers with many copies

of f(P ). A layer ℓ that is populated corresponds to a triple (jℓ, Rℓ, bℓ); ℓ has base rank

bℓ, the iteration in which it is populated jℓ (ranges from 0 to i− 1), and a restriction set

Rℓ ⊆ [kjℓ], which defines which elements of ℓ are in F . The following is exactly how F is

constructed in a layer ℓ:

ℓ ∩ F =
{

Rℓ ∪ A ∪B
∣

∣A ⊆ Sjℓ , (A− kjℓ) ∈ f(P ),

B ⊆ [n] \ [k(jℓ + 1)], and

|Rℓ| + |B| = bℓ
}

.

Our choice for the Rℓ and the order of the bℓ’s, as we will show later, prevents any two

copies of P in different layers from having any related sets. For a fixed B, the family of all

the A’s forms a copy of P that is f(P ) translated, from using the elements in [k] to using

the elements from Sjℓ. There is then one copy of P in ℓ for each choice of B. The purpose

of B is to combine with Rℓ to be in the base level of the layer, i.e., B ∪Rℓ ∈
(

[n]
bℓ

)

. There

are

(

n− k(jℓ + 1)

bℓ − |Rℓ|

)

choices for B. Notice that copies of P within a layer are unrelated;

every set in a copy of P has the same base set Rℓ ∪B, and the copies of P in a layer have

unrelated base sets.

For each iteration j, we will be populating (2k −m)j layers. This gives a total of only

L := 1 populated layers if 2k−m = 1, or L :=
∑i−1

j=0(2
k−m)j =

(2k −m)i − 1

(2k −m) − 1
populated

10



layers otherwise. The order of the bℓ’s of the populated layers is important in preventing

any two copies of P from being related, but as long as the order of the populated layers

is maintained, the bℓ’s for the populated layers may be chosen close to the middle level,

i.e., |bℓ − ⌊n/2⌋| ≤ (k+ 1)L, where L is a constant defined above that does not depend on

n and k + 1 is the number of levels in each layer. Each layer has

(

n− k(jℓ + 1)

bℓ − |Rℓ|

)

copies

of P . This is now asymptotic to
1

(2k)jℓ+1

(

n

⌊n
2
⌋

)

copies since bℓ − |Rℓ| is at most a fixed,

finite distance from n/2. This results in our desired number of copies of P ,

|F|

|P |
∼

i−1
∑

j=0

(

(2k −m)j

(2k)j+1

)(

n

⌊n
2
⌋

)

.

We will now demonstrate how each Rℓ is chosen and in what order are the populated

layers to ensure that the copies of P are pairwise unrelated.

Let’s start with j = 0. We start by populating one layer of F ; let F ⊇ {A ∪ B | A ∈

f(P ), B ∈ [n]\ [k], |B| = ⌊n/2⌋}. In other words, the layer ℓ with bℓ = ⌊n/2⌋ is populated

with Rℓ = ∅ and jℓ = 0. Now |F| ≥ |P |

(

n− k

⌊n/2⌋

)

, which is asymptotically
1

2k

(

n

⌊n
2
⌋

)

copies of P . So if m = 2k, (i.e., f(P ) = Bk,) we are done. If not, we would like to add

more copies of P then just those in our middle layer so we will need to know which of the

elements of Bn are available to include in the family; we consider which elements of Bn

are unrelated to any element of this middle, populated layer. Consider a set B ∈ Bn and

B[k] := B ∩ [k] and b :=
∣

∣B \B[k]

∣

∣. This set B is unrelated to all sets in F if and only if

one of the following is true:

1. B[k] is unrelated to all sets in f(P );

2. B[k] * C for all C ∈ f(P ) and b < ⌊n/2⌋; or

3. B[k] + C for all C ∈ f(P ) and b > ⌊n/2⌋.

The choices for B[k] that can provide more sets to add to the family are exactly the sets

11



B[k] ∈ Bk \ f(P ). In fact, each one of the B[k] ∈ Bk \ f(P ) can lead to a distinct layer of

copies of P by choosing the base levels correctly; the new layers are the layers from the

second iteration (so would have jℓ = 1), and the layer’s restriction set would be B[k]. The

next step is identifying appropriate base levels for each new layer and then demonstrating

how this process iterates.

Let’s order the elements of U := Bk \ f(P ). First, split U into two sets, U+ and U−:

U+ :=Bk \ U(f(P ))

={V ∈ U | V + C for all C ∈ f(P )}, and

U− :=U \ U+

=U(f(P )) \ f(P )

⊆{V ∈ U | V * C for all C ∈ f(P )}.

The set U+ contains both the elements of U contained in some element of f(P ) and

the subsets of [k] that are unrelated to any element of f(P ). On the other hand, U−

contains the elements of U containing some element of f(P ). Let ≤U be any ordering of

the elements in U such that if V1 ∈ U− and V2 ∈ U+, then V1 ≤U V2, else if V1 ⊇ V2, then

V1 ≤U V2. We will use this ordering ≤U to order the base ranks to guarantee all copies of

P remain unrelated.

For j = 0, we have the populated layer corresponding to (0, ∅, ⌊n/2⌋). For j = 1,

we populate the layers corresponding to (1, V, bV ) for each V ∈ U . We can choose the

bV ’s such that if V ∈ U−, then bV < ⌊n/2⌋, and if V ∈ U+, then bV > ⌊n/2⌋, and

if V1 <U V2, then bV1
< bV2

. For an iteration j > 1, for each layer corresponding to

(j − 1, R, b) populated in iteration j − 1, we can populate 2k − m new layers, one for

each set in U . These new layers correspond to
(

j, R ∪
(

V + k(j − 1)
)

, bℓ

)

for each

V ∈ U . Inductively, there are then (2k −m)j layers populated in iteration j, each with
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asymptotically
1

(2k)j+1

(

n

⌊n
2
⌋

)

copies of P , for a total of
(2k −m)j

(2k)j+1

(

n

⌊n
2
⌋

)

copies of P

associated with iteration j. All that is left to prove is that we can put the layers in an

appropriate order, i.e., the base ranks (bℓ) may be chosen in such a way as to prevent any

two copies of P from being related.

Let (ℓs)1≤s≤L be the sequence of populated layers, ℓs corresponding to (js, Rs, bs), in

the order of the rank of the base levels, i.e., for all s1 < s2, bs1 < bs2 . Let’s consider our

ordered set U again. Let’s add to U the character E to indicate the ‘end’ of a word. Let

E be between U− and U+ in ≤U . Consider words V0V1 . . . Vj−1E, where the letters come

from U , the words always end in E, and E is only at the end of a word. We only consider

words of length j + 1, where 0 ≤ j ≤ i − 1. There is a bijection between the layers (ℓs)

and the possible words of length at most i. Specifically, given a word V0V1 . . . Vj−1E, its

corresponding js is j and Rs = ∪j−1
p=0(Vp + kp). Let W be the set of all words of length

at most i. Order these words lexicographically using ≤U . Specifically, for any two words

in W , wp = U0 . . . Us and wq = V0 . . . Vt, we say w1 < w2 if and only if Ui = Vi for

0 ≤ i ≤ j − 1 and Uj <U Vj for some j ≥ 0. Use this ordering of W and the bijection

between the words and the layers to directly define the corresponding ordering of the (bs).

Specifically, for two layers ℓ1 and ℓ2 with base level ranks b1 and b2 respectively, b1 < b2

if and only if the word corresponding to ℓ1 is less than the word corresponding to ℓ2.

Now we show that no two copies of P are related. We have already seen that no

two copies of P in the same layer can be related. For two copies of P , Pp in layer ℓp

(with base rank bp) and Pq in layer ℓq (with base rank bq), consider their corresponding

words, wp = U0 . . . Us and wq = V0 . . . Vt. Without loss of generality, let wp <U wq so

bp < bq. Consider the subscript c for the first character where wp and wq differ, i.e.,

U0 . . . Uc−1 = V0 . . . Vc−1 and Uc 6= Vc, Uc <U Vc. Choose any representatives of the copies

of P , Ap ∈ Pp and Aq ∈ Pq, and define Bp := Ap ∩ Sc and Bq = Aq ∩ Sc. Since bp < bq,

we have that Aq * Ap; next we show that Ap * Aq.

13



The order of the words, and hence the order of the bℓ’s, was chosen specifically to

prevent any copies of P from being pairwise related. If Uc = E, then (Bp − kc) ∈ f(P )

and Vc ∈ U+ so Vc + C for all C ∈ f(P ), i.e., (Vc + kc) = Bq + Bp for any Bp such that

(Bp − kc) ∈ f(P ). But Bq + Bp implies Aq + Ap. For similar reasoning, if Vc = E, then

Ap * Aq. If neither Uc = E nor Vc = E, then Uc < Vc implies Uc * Vc, but Uc = (Bp +kc)

and Vc = (Bq + kc) so Bp * Bq so Ap * Aq. Either way, no set from Pp is related to any

set from Pq. This completes the proof of Theorem 1.3.

4 Concluding Remarks

We now explain how we may modify the proof above to prove Theorem 1.4. In proving

the upper bound of Theorem 1.3, we use the fact that the closure of a copy of P meets

at least a(c(P ), n) full chains in Bn. For Theorem 1.4, using only strong embeddings,

we have that a copy of P meets at least a(c∗(P ), n), which similarly gives us the upper

bound. In the lower bound of Theorem 1.3, we created a family F ⊆ Bn constructed from

multiple copies of f(P ), a weak embedding of P into Bk such that f(P ) = c(P ). If we

instead take f to be a strong embedding such that f(P ) = c∗(P ), then the same method

of construction will achieve the asymptotic lower bound.

For a finite collection of posets, the quantities Pa(n, {P1, . . . , Pk}) and Pa∗(n, {P1, . . . , Pk})

may be found asymptotically as well. Specifically, as n goes to infinity,

Pa(n, {P1, P2, . . . , Pk}) ∼ max
1≤i≤k

(

|Pi|

c(Pi)

)

(

n

⌊n
2
⌋

)

, and

Pa∗(n, {P1, P2, . . . , Pk}) ∼ max
1≤i≤k

(

|Pi|

c∗(Pi)

)

(

n

⌊n
2
⌋

)

.

As for future work, it would be nice to know how to find c(P ) and c∗(P ) quickly for

any P , or at least to find the complexity of such an algorithm. Also, in the examples

14



in the introduction, the exact values for Pa(n, P ) are found, not just their asymptotic

values. It would be nice to have exact values for Pa(n, P ) and Pa∗(n, P ).
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