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POSET ENTROPY VERSUS NUMBER OF LINEAR EXTENSIONS: THE

WIDTH-2 CASE

SAMUEL FIORINI AND SELIM REXHEP

Abstract. Kahn and Kim (J. Comput. Sci., 1995) have shown that for a finite poset P , the
entropy of the incomparability graph of P (normalized by multiplying by the order of P ) and
the base-2 logarithm of the number of linear extensions of P are within constant factors from
each other. The tight constant for the upper bound was recently shown to be 2 by Cardinal,
Fiorini, Joret, Jungers and Munro (Combinatorica, 2013). Here, we refine this last result in
case P has width 2: we show that the constant can be replaced by 2 − ε if one also takes
into account the number of connected components of size 2 in the incomparability graph of P .
Our result leads to a better upper bound for the number of comparisons in algorithms for the
problem of sorting under partial information.

1. Introduction

The entropy of a graph is an information theoretic concept introduced by Körner in 1973 [8].
Since then, links with many interesting combinatorial objects have been found, see the survey
paper of Simonyi [10] for more information.

In this paper, we consider the case in which the graph is the incomparability graph G(P )
of a (finite) poset P . We denote by H(P ) := H(G(P )) the entropy of this graph. Kahn and
Kim [7] have proved that |P | ·H(P) is within a constant of log e(P ), the base-2 logarithm of the
number of linear extensions of P . (Throughout this paper, log denotes the base-2 logarithm).

Theorem 1 (Kahn and Kim [7]). For every poset P :

log e(P ) 6 |P | ·H(P ) 6 c0 log e(P )

for c0 = (1 + 7 log e) ≃ 11.1.

Cardinal, Fiorini, Joret, Jungers and Munro [2] improved the constant in the upper bound
to 2. This is tight since if P is a two-elements antichain we have |P |·H(P) = 2 and log e(P ) = 1.

Theorem 2 (Cardinal et al. [2]). For every poset P :

|P | ·H(P ) 6 2 log e(P ).

Our starting point is the observation that the upper bound is tight if every element of P is
incomparable to at most one other element, that is, P is the ordinal sum of one-element and
two-elements antichains: P = A1 ⊕ A2 ⊕ · · · ⊕ Ak where each |Ai| 6 2. Thus it seems likely
that for some small enough constant ε > 0, one can prove that the posets with |P | · H(P ) >
(2 − ε) log e(P ) possess a very constrained structure. Our main result is to establish such a
phenomenon for width-2 posets and thus refine Theorem 2 in this case. We recall that the
width of poset P is the size of a largest antichain of P .

Theorem 3. Let P be a width-2 poset and let κ2(P ) denote the number of size-2 connected
components of G(P ). Then

(1) |P | ·H(P ) 6 (2− ε) log e(P ) + ε κ2(P )

for ε = 2− 3 log 3−2
log 3

≃ 0.26.
1
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Note that Inequality (1) can be written

|P | ·H(P ) 6

(

2− ε

(

1−
κ2(P )

log e(P )

))

log e(P )

where 1− κ2(P )
log e(P )

is nonnegative since e(P ) > 2κ2(P ) with equality if and only if the components

of G(P ) are all of size either 1 or 2. From this we deduce:

Corollary 4. Let P be a width-2 poset, then |P |·H(P) = 2 log(e(P )) if and only if the maximum
degree of G(P ) is 1.

We remark also that upper bounds such as those in Theorems 1 and 2 translate to upper
bounds on the worst case number of comparisons performed by algorithms for a sorting problem
known as sorting under partial information, see e.g. [2],[7] for more details. In the context of
this problem, Theorem 3 yields an improvement in the width-2 case (merging under partial
information) because after comparing each of the κ2(P ) pairs of elements that form connected
components of G(P ), the constant in front of log e(P ) decreases from 2 to 2 − ε ≃ 1.74.
Furthermore, we point out that the algorithm given by Cardinal et al. [2] reduces the general
problem to the width-2 case, hence Theorem 3 also gives an improvement in the general case.

We begin in Section 2 with a brief account of the definitions and main properties of graph
entropy. In Section 3, we specialize this to (in)comparability graphs of posets. In order to
help the reader understanding the proof, its general structure is explained in Section 4. The
intermediate results stated in Section 4 are then proved in detail in Sections 5, 6 and 7. The
final discussion (concluding the proof) is presented in Section 8. Finally, Section 9 handles a
few particular cases that are not covered by our general argument.

2. Graph Entropy

Here we recall the definition and main properties of the entropy H(G) of a (finite, simple
and undirected) graph G = (V,E), as well as the algorithm of Körner and Marton to compute
H(G) in case G is bipartite. For a more detailed discussion of graph entropy, including the
origins of the concept, see the paper of Simonyi [10]. Here, we only state the facts that are
used in this work.

The definition of H(G) we use relies on the stable set polytope

STAB(G) := conv
(
{χS ∈ R

V | S ⊆ V, S stable set of G}
)

with conv(·) denoting the convex hull in R
V ∼= R

|V | and χS ∈ {0, 1}V the characteristic vector
of S, defined by χSv = 1 if and only if v ∈ S.

Letting n := |V |, the entropy of G is defined as

(2) H(G) := min
x∈STAB(G), x>0

−
∑

v∈V

1

n
log xv = min

x∈STAB(G), x>0

∑

v∈V

1

n
log

1

xv
.

Note that the function f(x) := −
∑

v∈V
1
n
log xv is continuous over R

V
>0 and that the point 1

n
χV

is always in STAB(G), with f( 1
n
χV ) = logn. Thus the minimum in (2) can be computed over

the set STAB(G) ∩ {x ∈ R
V
>0 | f(x) 6 logn}, which is compact. This proves that H(G) is

well-defined. Moreover, we have 0 6 H(G) 6 logn. Finally, since f(x) is strictly convex, its
minimizer over STAB(G) ∩ R

V
>0 is unique.

We remark that the original definition of graph entropy involves an arbitrary probability
distribution on the vertex set V of the graph, whereas the definition used here assumes a
uniform distribution. This explains the factor 1

n
appearing in H(G).

We start with a basic result that enables us to compute the entropy of disconnected graphs.
The proof follows directly from the fact that STAB(G1∪G2) = STAB(G1)×STAB(G2) in case
G1 and G2 have disjoint vertex sets.
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Proposition 5. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with disjoint vertex sets
and G = G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2) their disjoint union. Then

|G| ·H(G) = |G1| ·H(G1) + |G2| ·H(G2).

For general graphs G, no complete linear description of STAB(G) is known. (In fact, the
existence of a tractable description for all graphs G would imply NP = co-NP). Note however
that we always have:

STAB(G) ⊆ {x ∈ R
V
>0 |

∑

v∈K
xv 6 1 for all cliques K of G}.

It turns out that the reverse inclusion holds if and only if G is a perfect graph, see Theorem 6
below. Recall that a graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G,
where ω(H) is the size of the largest clique of H and χ(H) is the chromatic number of H . The
reader can find more basic information on perfect graphs, e.g., in Diestel [6]. Later we will use
the well-known fact that a graph G is perfect if and only if its complement G is perfect.

Theorem 6 (Chvátal [4]). A graph G = (V,E) is perfect if and only if

STAB(G) = {x ∈ R
V
>0 |

∑

v∈K
xv 6 1 for all cliques K of G}.

Assume that G is perfect and consider the optimal solution x∗ to (2). Let y∗ be the point with
y∗v :=

1
nx∗v

for v ∈ V . By optimality of x∗, the inequality
∑

v∈V y
∗
vxv 6 1 is valid for STAB(G).

Then Theorem 6 (together with Farkas’s lemma) implies that y∗ is a convex combination of
characteristic vectors of cliques of G. Thus y∗ ∈ STAB(G). Now, since x∗ ∈ STAB(G),
the inequality

∑

v∈V x
∗
vyv 6 1 is valid for STAB(G). Moreover, this inequality is tight at y∗,

implying that y∗ is a locally optimal solution of (2) for G. By convexity, y∗ is a globally optimal
solution.

This argument implies in particular the following important result due to Csiszár, Körner,
Lovász, Marton and Simonyi [5], which in fact can be turned into a characterization of perfect
graphs by considering arbitrary probability distributions supported on V , see [8]:

Theorem 7 (Csiszár et al. [5]). For every n-vertex perfect graph G,

H(G) +H(G) = log n.

We will make intensive use of the following theorem of Körner and Marton on the entropy
of bipartite graphs, and also of the algorithm on which the proof is based. We describe their
algorithm after stating the result.

Theorem 8 (Körner and Marton [9]). Let G be a n-vertex bipartite graph with bipartition
A∪B. Then one can find disjoint subsets A1, . . . , Ak and B1, . . . , Bk of A and B (respectively)
with A = A1 ∪ · · · ∪ Ak and B = B1 ∪ · · · ∪Bk such that

(3) H(G) =
k∑

i=1

|Ai|+ |Bi|

n
h

(
|Ai|

|Ai|+ |Bi|

)

with h : [0, 1] → R defined by h(x) := −x log x − (1 − x) log(1 − x) for x ∈ (0, 1) and h(0) =
h(1) := 0.

In their paper [9], Körner and Marton gave the following algorithm to find pairs Ai, Bi as
in Theorem 8. For simplicity, we assume first that G has no isolated vertex. Let A1 be a
subset of A maximizing the ratio |A1|/|B1| where B1 := N(A1) is the set of neighbors of A1.
Furthermore, choose A1 inclusion-wise minimal with this property. Now iterate this on the
graph G − A1 − B1 with bipartition (A − A1) ∪ (B − B1) to have the pair A2, B2, and so on
until A− A1 − . . .−Ai−1 is empty (in which case B − B1 − . . .−Bi−1 is empty, too).
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In case G has isolated vertices, then the first pairs Ai, Bi are of the form {a},∅ where a ∈ A
is isolated in G, with ratio |Ai|/|Bi| = +∞. The algorithm stops whenever A−A1− . . .−Ai−1

is empty. It may be that B − B1 − . . . − Bi−1 is not empty, but then it consists of vertices
that are isolated in the initial graph G. These are collected in further pairs Ai, Bi of the form
∅, {b}.

We refer to the algorithm described in the two last paragraphs as the KM algorithm (for
Körner and Marton).

Lemma 9. Let G be a bipartite graph and Ai, Bi for i = 1, . . . , k denote the pairs constructed
by the KM algorithm. Then G[Ai ∪ Bi] is connected for all i.

Proof. If G[Ai∪Bi] is not connected, then Ai is the disjoint union of two subsets A1
i and A

2
i with

disjoint neighborhoods B1
i and B2

i respectively, in the graph G−A1 −B1 − . . .−Ai−1 −Bi−1.
Then

|Ai|

|Bi|
=

|A1
i |+ |A2

i |

|B1
i |+ |B2

i |
6 max

{
|A1

i |

|B1
i |
,
|A2

i |

|B2
i |

}

,

contradicting the fact that Ai was chosen inclusion-wise minimal among the sets with |Ai|/|Bi|
maximum. �

Now, we sketch a proof of Theorem 8 based on the KM algorithm. First, consider the point
x∗ ∈ STAB(G) given by

x∗u =
|Ai|

|Ai|+ |Bi|
if u ∈ Ai and x∗v =

|Bi|

|Ai|+ |Bi|
if v ∈ Bi.

Then, represent each vertex of G by a rectangle of width x∗v, height y
∗
v :=

1
nx∗v

and thus area 1
n
.

Arrange the n rectangles into a (perfect) packing of the unit square, as illustrated on Figure 1.
Since the graph G has no edge from Ai to Bj and |Ai|/|Bi| > |Aj|/|Bj| whenever i < j, we have

x∗u+x
∗
v 6 1 for all uv ∈ E and hence x∗ ∈ STAB(G). Proving that y∗ ∈ STAB(G) requires a bit

more work, but notice that we at least have
∑

v∈K y
∗
v 6 1 for all cliques K of G corresponding

to rectangles meeting a common vertical. By Theorem 7, both x∗ and y∗ are optimal solutions
to their respective minimization problems and thus (3) holds.

A1

A2

A3

A4

A5

B3

B4

B5

B6

Figure 1. Illustration of the KM algorithm.

3. Poset Entropy

If P = (X,6) is a finite poset, the entropy of P is defined to be the entropy of its compara-
bility graph G(P ). We will write this H(P ). The entropy of the incomparability graph G(P )
of P is written H(P ).
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We insist on the fact that, in this paper, H(P ) denotes the (Körner) entropy of the poset P
and not the Shannon entropy of a probability distribution.

Now, we give an equivalent and more intuitive definition of H(P ) due to Cardinal et al. [3].
A collection {(yv−, yv+)}v∈X of open intervals contained in (0, 1) is called consistent with P if
the associated interval order is an extension of 6, that is, if v < w in P implies yv+ 6 yw− or
in other words the interval for v is entirely to the left of the interval for w. If I(P ) denotes the
set of all these collections of intervals then we have the following result.

Theorem 10 (Cardinal et al. [3]). If P = (X,6) is a poset of order n then

(4) H(P ) = min

{

−
1

n

∑

v∈X
log xv | ∃{(yv−, yv+)}v∈X ∈ I(P ) with xv = yv+ − yv−∀v ∈ X

}

.

It turns out that not only the lengths xv of the intervals in an optimal solution to (4) are
unique, but also the intervals themselves.

Lemma 11. The collection of intervals {(y∗v−, y
∗
v+)}v∈X ∈ I(P ) giving the minimum in (4) is

unique.

Proof. Let x∗v denote the length of the interval for v ∈ X in any optimal solution to (4). We
know that x∗ ∈ STAB(G(P )) and is unique. We have to prove that the lengths x∗v determine
the intervals. To see this define z∗ ∈ STAB(G(P )) by letting z∗v =

1
nx∗v

as in the discussion after

Theorem 6. Recall that the inequality
∑

v∈X z
∗
vxv 6 1 is valid for STAB(G(P )) and thus z∗ is

a convex combination of cliques of G(P ), that is, of chains of P . For each of these chains C, we
have

∑

v∈C x
∗
v = 1. In the collection of intervals {(y∗v− , y

∗
v+)}v∈X , the chain C is thus formed of

consecutive intervals spanning the whole interval (0, 1). Therefore we can infer the endpoints
of each of the intervals in the chain directly from their lengths. Since the support of z∗ is X ,
every element v is contained in such a tight chain C. The result follows. �

Following Lemma 11, we denote I(P ) the interval order represented by the optimal collection
of intervals for P . The collection {(y∗v−, y

∗
v+)}v∈X is called the canonical interval representation

of I(P ).
The following lemma is a direct consequence of the definition of I(P ).

Lemma 12. If I(P ) is the interval order represented by the optimal collection of intervals for
P then:

(i) the poset I(P ) is an extension of P ;
(ii) the graph G(I(P )) is a subgraph of G(P );

(iii) we have H(P ) = H(I(P )).

Proof. The first assertion is obvious by definition of I(P ). The second one follows from the first
one. For the last assertion, let {(y∗

v−
, y∗
v+
)}v∈X be the canonical interval representation of I(P ),

where X is the ground set of P . Since I(P ) is an extension of P , we have H(P ) 6 H(I(P )).
Furthermore, by definition, the collection of intervals {(y∗v− , y

∗
v+)}v∈X gives the optimum in (4)

and is at the same time consistent for I(P ). Thus H(P ) = H(I(P )) and H(P ) = H(I(P )). �

Hence, to prove Theorem 3, it is tempting to work with I(P ) rather than P . Indeed, we have

H(P ) = H(I(P )) and G(I(P )) has more structure than G(P ): for instance, it is an interval
graph. However, it turns out that the number of connected components of G(I(P )) and of
G(P ) may be different, and so κ2(P ) 6= κ2(I(P )) in general. This we now explain with an
example.

Example 1. Consider the poset P = ({a, b, c, d, e, f},6) whose incomparability graph is a path
on 6 vertices, see Figure 2.

Then G(P ) is bipartite with bipartition A = {a, b, c}, B = {d, e, f} and a straightforward
application of the KM algorithm gives us H(P ) = 1 with k = 3, A1 = {a}, B1 = {d}, A2 = {b},
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a

b

c f

e

d
a b c

d e f

P G(P ) G(I(P ))

a b c

d e f

Figure 2. A poset on six elements whose incomparability graph is a path.

B2 = {e}, A3 = {c} and B3 = {f}. Notice that Theorem 3 holds in this case because we have
e(P ) = 13 and κ2(P ) = 0, therefore

|P | ·H(P ) = 6 =
6

log 13
log 13 6 1.63 log 13 6 (2− ε) log e(P ).

We now find the graph G(I(P )) and compare it to G(P ). Notice first that

H(P ) = log 6−H(P ) = log 3.

Define now the following collection of intervals contained in (0, 1):

(y∗a−, y
∗
a+) = (y∗d−, y

∗
d+) = (0, 1/3),

(y∗b−, y
∗
b+) = (y∗e−, y

∗
e+) = (1/3, 2/3),

(y∗c−, y
∗
c+) = (y∗f−, y

∗
f+) = (2/3, 1).

Then it is a straighforward task to check that {(yv−, yv+) | v ∈ {a, b, c, d, e, f}} is consistent for
P . Moreover, letting x∗v := y∗v+ − y∗v− we have

−
1

6

∑

v∈{a,b,c,d,e,f}
log x∗v = log 3

hence we do have the optimal collection of intervals for P . The associated graph G(I(P )) con-
sists of three disjoint edges, see Figure 2. In particular, we see that κ2(P ) = 0 and κ2(I(P )) = 3.

This example shows that it is not possible to work with I(P ) directly because some edges in
G(P ) may disappear in G(I(P )). The next section explains how we can handle this problem.

4. Structure of the proof of Theorem 3

The proof of our main theorem being involved, we explain its structure and the intermediate
results here. The details will be given in the following sections.

Our proof is by induction on n := |P |. Since the case n 6 2 is clear, we assume n > 3.
Furthermore, if G(P ) is not connected, then P is an ordinal sum P ′

1 ⊕P ′
2 of two smaller posets

and we have:

|P | ·H(P ) = |P ′
1| ·H(P ′

1) + |P ′
2| ·H(P ′

2) (by Proposition 5),

log e(P ) = log e(P ′
1) + log e(P ′

2) and

κ2(P ) = κ2(P
′
1) + κ2(P

′
2).

By induction, (1) is satisfied by P ′
1 and P ′

2, and thus also for P .
Hence, we may assume that G(P ) is connected. Note that in this case, κ2(P ) = 0 since n > 3.

We study the structure of G(P ) closely under the hypothesis G(P ) connected and n > 3.
As explained in Section 3, it is tempting to work with I(P ) rather than P . Example 1 shows

that this is not really possible because G(I(P )) may be disconnected even if G(P ) is connected,
hence the number of connected components of size 2 are not necessarily the same for G(I(P ))
and G(P ).



POSET ENTROPY VERSUS NUMBER OF LINEAR EXTENSIONS: THE WIDTH-2 CASE 7

To handle this problem, we will add somes edges between the connected components of
G(I(P )). These edges are chosen among those edges of G(P ) that disappeared in G(I(P )), we
will call them ‘phantom edges’. The graph G(I(P )) together with the phantom edges is the
incomparabilty graph of a width-2 interval order Q, and we show that we can assume P = Q
for the rest of the proof. These statements concerning the graph G(P ) and G(I(P )) are proved
carefully in Sections 5 and 6.

Our strategy now is to seek two elements u, v that are incomparable in P and whose intervals
in the canonical interval representation of I(P ) have ‘small’ overlap. We will prove that the
removal of uv from G(P ) yields a new poset P ′ satisfying the following three conditions:

(C1) ∆h 6 (2− ε)∆e with ∆h := nH(P )− nH(P ′) and ∆e := log e(P )− log e(P ′) ;
(C2) the poset P ′ decomposes as an ordinal sum P ′

1 ⊕ P ′
2;

(C3) κ2(P
′
1) = κ2(P

′
2) = 0.

Assuming that such an edge uv can be found, we get

|P | ·H(P ) = |P ′| ·H(P ′) + ∆h (by definition of ∆h)

=
∑

i=1,2

|P ′
i | ·H(P ′

i ) + ∆h (since P ′ = P ′
1 ⊕ P ′

2)

6
∑

i=1,2



(2− ε) log e(P ′
i ) + ε κ2(P

′
i )

︸ ︷︷ ︸

=0



+∆h (by induction)

6
∑

i=1,2

(2− ε) log e(P ′
i ) + (2− ε)∆e (since ∆h 6 (2− ε)∆e)

6 (2− ε)(log e(P ′) + ∆e) (since P ′ = P ′
1 ⊕ P ′

2)

= (2− ε) log e(P ) + ε

=0
︷ ︸︸ ︷

κ2(P ) (by definition of ∆e).

and this concludes the proof. Again, the fact that such an edge exists is not obvious, and we
prove this in Section 7.

The final discussion is presented in Section 8. Actually, for a few particular posets, the
existence of the edge uv is not guaranteed, and we have to treat these cases by hand. This is
done in Section 9.

5. The structure of G(P ) and G(I(P ))

Since our poset P = (X,6) has width 2, we know that G(P ) is bipartite with bipartition,
say, A ∪ B. Hence A and B correspond to disjoint chains that cover the poset P . Moreover,
transitivity of 6 implies immediately that for each u in A (respectively in B), the neighbors of
u in B (respectively in A) form a chain in B (in A).

Because G(P ) is bipartite, the canonical interval representation of I(P ) can be constructed
with the KM algorithm. Denote by z∗ ∈ STAB(G(P )) the optimal solution of (2) for G(P ).
Letting x∗v :=

1
nz∗v

for v ∈ V , we find the optimal solution of (2) for G(P ). Thus the lengths of

the intervals are given by:

x∗u =
|Ai|+ |Bi|

n
·

1

|Ai|
if u ∈ Ai and x∗v =

|Ai|+ |Bi|

n
·

1

|Bi|
if v ∈ Bi.

Notice that we have

∑

u∈A
x∗u =

k∑

i=1

∑

u∈Ai

x∗u =
k∑

i=1

|Ai|

(
|Ai|+ |Bi|

n
·

1

|Ai|

)

= 1

and similarly
∑

v∈B
x∗v = 1
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thus each of the chains A and B yield a chain of consecutive intervals spanning (0, 1) in the
canonical interval representation of I(P ) (unless Ai = ∅ or Bi = ∅ for some i, that is, unless
if P has some cutpoint —see Figure 4 for an illustration). The endpoints of all the intervals
can be directly inferred from this. Moreover, as the following lemma shows, the pairs Ai, Bi

are distributed in a very orderly way in the chains A,B. Since the result follows directly from
Lemma 9 and [2, Lemma 10], we omit the proof. For D and E two disjoint subsets of the poset
P , we write D 6 E if d 6 e for every d ∈ D and e ∈ E. Then:

Lemma 13. Let P be a width-2 poset, let Ai, Bi for i = 1, . . . , k be the pairs given by the
KM algorithm and moreover let Ci := Ai ∪ Bi for all i. Then there exists a permutation σ of
{1, . . . , k} such that Cσ(1) 6 · · · 6 Cσ(k) in P . In particular, each Ai and each Bi is an interval
in its respective chain.

It follows from Lemma 13 that the canonical representation of I(P ) has

• |Aσ(i)| consecutive intervals all of length
|Cσ(i)|
n

· 1
|Aσ(i)| as well as

• |Bσ(i)| consecutive intervals of length
|Cσ(i)|
n

· 1
|Bσ(i)|

within the interval
(
∑

j<i

|Cσ(j)|
n

,
∑

j6i

|Cσ(j)|
n

)

for i = 1, . . . , k.

Similarly to Figure 1, we can represent I(P ) as a perfect packing of n rectangles of area 1
n
in

the unit square. This time we rotate the packing by 90 degrees and use the linear order on the
Ci’s induced by P . We represent each element v ∈ X by a rectangle of width x∗v and height z∗v ,
in such a way that the projections of the rectangles on the x axis form the canonical interval
representation of I(P ), see Figure 3.

Aσ(1) Aσ(2) Aσ(3)

Bσ(1) Bσ(3)

Figure 3. Perfect rectangle packing for I(P ). The solid edges are the incompa-
rabilities of I(P ). The dashed edge is an incomparability of P that disappeared
in I(P ).

We now study closely the structure of the graph G(I(P )). The connected components of
G(I(P )) can actually be inferred directly from the canonical representation of I(P ): because
the intervals for elements of chain A are consecutive and span the interval (0, 1) and similarly
for chain B, every two consecutive connected components are separated by a breakpoint, that
is a value β ∈ [0, 1] such that every interval (y∗v−, y

∗
v+) has β 6 y∗v− or y∗v+ 6 β, that is, each

interval is entirely to the left of or entirely to the right of β. In particular, β =
∑

j6i

|Cσ(j)|
n

is a

breakpoint for i = 0, . . . , k. Hence I(P ) admits at least two breakpoints, 0 and 1, they will be
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called the trivial breakpoints. Let 0 = β0 6 · · · 6 βℓ = 1 denote the breakpoints of I(P ) with
ℓ > k+1. For i = 1, . . . , ℓ, we define the epoch Ei to be the set of elements of P represented by
the intervals located between βi−1 and βi. Note that in general Ei contains elements from both

chains A and B. Moreover, since
∑

j6i

|Cσ(j)|
n

is a breakpoint for all i, each epoch is contained

in Cq for some q ∈ {1, . . . , k}.
From now on, we will use the notation Ψi := Ei ∩A and Ωi := Ei ∩B for i ∈ {1, . . . , ℓ}. For

the cardinalities, we use ψi = |Ψi| and ωi = |Ωi|.

Lemma 14. The connected components of G(I(P )) are exactly the subgraphs induced on the
epochs Ei. Moreover, each of these subgraphs is bipartite with bipartition Ψi ∪ Ωi. Finally, we
have gcd(ψi, ωi) = 1.

Proof. By definition of a breakpoint, Ei is disconnected from Ej for i 6= j. Hence it suffices
to show that every epoch Ei induces a connected subgraph of G(I(P )). If |Ei| = 1 then
this is obvious. Assume that |Ei| > 2. Then ψi > 1 and ωi > 1. In the canonical interval
representation of I(P ), the intervals for the elements of Ψi (respectively Ωi) are consecutive
and span (βi−1, βi). Moreover, there is no breakpoint β in the open interval (βi−1, βi). From
this, we conclude that Ei induces a connected component of G(I(P )).

The graph G(I(P )) being itself bipartite with bipartition A ∪ B, the second assertion is
obvious.

For the last assertion, suppose that Ei is contained in Cj = Aj ∪Bj . Then we know that the
intervals for elements of Ei in the canonical interval representation are:

• ψi consecutive intervals of length
|Cj |
n

· 1
|Aj | and

• ωi consecutive intervals of length
|Cj |
n

· 1
|Bj |

within the interval (βi−1, βi). If gcd(ψi, ωi) = t > 1, then observe that the ψi

t
th interval for an

element in Ψi and the ωi

t
th interval for an element of Ωi have the same right endpoint, which

implies the existence of a breakpoint β ∈ (βi−1, βi), a contradiction. �

6. Phantom edges

We use the same notations as in the previous section. Our goal here is to restore the connec-
tivity of G(I(P )) by adding artificial edges between consecutive epochs —the ‘phantom edges’—
so that the incomparability graph of the resulting width-2 interval order Q is connected. These
edges are chosen among the edges of G(P ) that disappeared in G(I(P )), which explains the
name ‘phantom edge’. This implies that H(P ) = H(Q) (see Lemma 16), which will later allow
us to work with Q rather than with P . Since we assume G(P ) connected, there is always at
least one edge uv between epochs Ei and Ei+1. Moreover:

Lemma 15. Let Ei = Ψi ∪ Ωi and Ei+1 = Ψi+1 ∪ Ωi+1 be two consecutive epochs of G(I(P )).
Then there is an edge uv either between either Ψi and Ωi+1 or between Ωi and Ψi+1. Moreover,
we may assume either that u is the last element of Ψi and v is the first element of Ωi+1, or u
is the last element of Ωi and v is the first element of Ψi+1.

Proof. The edge uv between the two epochs exist since we assume that G(P ) is connected. Since
G(P ) is bipartite with bipartition A∪B, we have either u ∈ Ψi = Ei∩A and v ∈ Ωi+1 = Ei+1∩B
or u ∈ Ωi = Ei ∩ B and v ∈ Ψi+1 = Ei+1 ∩A.

Suppose u ∈ Ψi and v ∈ Ωi+1, the argument is similar in case u ∈ Ωi and v ∈ Ψi+1. We will
show that we can assume that v is the first element of Ωi+1.

Since the epoch Ei is a connected component of G(I(P )), we know that either Ei = {u} or
u is adjacent to a vertex v′ in Ωi. In the second case, u is adjacent to v′ in G(P ) also and so u
is adjacent to every vertex of the interval [v′, v] of the chain B. The first element of Ψi+1 being
in this interval, we are done.
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Suppose then that Ei = {u}. Let Cj := Aj ∪ Bj be the pair given by the KM algorithm
and containing Ei. By definition of the epochs and the structure of (Aj , Bj), this implies that
Aj = {u} and Bj = ∅. But this is a contradiction since we assumed G(P ) connected.

Hence we have an edge uv between u ∈ Ψi and v the first element of Ωi+1. Applying the same
argument to the element u, we can assume that u is the last element of Ψi+1. This concludes
the proof. �

Notice that in general (that is, unless we both have ψi = ωi and ψi+1 = ωi+1, which implies
ψi = ωi = ψi+1 = ωi+1 = 1 because gcd(ψi, ωi) = gcd(ψi+1, ωi+1) = 1, see Lemma 14), the cases

(1) u is the last element of Ψi and v is the first element of Ωi+1,
(2) u is the last element of Ωi and v is the first element of Ψi+1,

are mutually exclusive. Indeed, since z∗ ∈ STAB(G(P )) we always have z∗u + z∗v 6 1. To
obtain Q from I(P ), we add one such edge uv to the incomparability graph of I(P ) for each
i ∈ {1, . . . , ℓ− 1}. We call these extra edges phantom edges.

Example 2. Consider the poset P of Example 1. Then the phantom edges are exactly db and
ec. Hence in this example we have Q = P . This is not always the case: the reader can check
this if P is the disjoint union of two chains of size 2. In that case, G(P ) is a complete bipartite
graph on 2 + 2 vertices, G(I(P )) is a perfect matching on 4 vertices and G(Q) is a path with 4
vertices.

Lemma 16. The poset Q satisfies the following conditions:

(i) G(Q) is connected;
(ii) Q is a width-2 interval order;
(iii) H(Q) = H(P );
(iv) e(Q) 6 e(P ).

Proof. (i) This follows from Lemma 14 and the construction of Q.
(ii) The fact that the width of Q is 2 follows from the assumption that the width of P is 2

and from the fact that Q is an extension of P .
Now we explain how to modify the canonical representation of I(P ) in order to obtain an

interval representation of Q. As before, let ℓ denote the number of epochs Ei. Thus q = ℓ− 1
gives the number of breakpoints in (0, 1). For each breakpoint β ∈ (0, 1) we introduce a gap of
1/q between the intervals on each side of β, so that all intervals in the representation now fit
in the interval (0, 2), and cover half of its area.

Consider some breakpoint β that has a corresponding phantom edge uv with the interval
for u touching the left of the newly created gap and the interval for v touching the right of
that gap. Then by adding 1/q to the right endpoint of the interval for u and subtracting 1/q
to the left endpoint of the interval for v, we make sure that these intervals intersect. After
having treated in such a way all breakpoints that have a phantom edge, we obtain an interval
representation for the poset Q. This is illustrated in Figure 4.

0 1intervals of I(P )

intervals of Q0 2

Figure 4. The interval representation of I(P ) and Q for P the disjoint union
of a chain of length 4 and a chain of lentgh 2.

(iii) The poset I(P ) is an extension of Q which is in turn an extension of P . Hence H(P ) 6
H(Q) 6 H(I(P )). But we know H(I(P )) = H(P ), so we have equality throughout.
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(iv) Obviously, e(Q) 6 e(P ) since Q extends P . �

Now assume that (1) holds for Q. Then, by Lemma 16, we get

|P | ·H(P ) = |Q| ·H(Q) (because H(P ) = H(Q))

6 (2− ε) log e(Q) (because (1) holds for Q and κ2(Q) = 0)

6 (2− ε) log e(P ) (because e(Q) 6 e(P )).

Therefore, to prove Theorem 3, we can assume that P = Q, that is, P is a width-2 interval
order that coincides with I(P ) except perhaps for a few incomparabilities.

7. Removing an incomparability with a small overlap

As discussed in Section 4, to conclude the proof of Theorem 3, we should now prove the
existence of an edge uv in G(P ) such that its removal yields a new poset P ′ satisfying the
conditions (C1), (C2) and (C3). Recall also that we may assume the following facts on the
width-2 poset P :

• it has n > 3 elements,
• its incomparability graph is connected (hence κ2(P ) = 0),
• finally, P coincides with I(P ) except for a few pairs of elements: the phantom edges.

In particular, G(P ) has no isolated vertex and thus we have ψi > 1 and ωi > 1 for all i.

7.1. Removing a phantom edge. It turns out that, except in a few particular cases, if G(P )
admits phantom edges, then the conditions here above are easily satisfied. Indeed, if the edge
uv is a phantom edge, we have ∆h = 0. In particular, (C1) holds. Moreover, (C2) also holds
because the removal of the incomparability uv disconnects G(P ) into exactly two connected
components. Thus the only condition that remains to be checked is (C3). This condition always
holds unless uv links the first pair of epochs E1, E2 and |E1| = 2 or uv links the last pair of
epochs Eℓ−1, Eℓ and |Eℓ| = 2. Hence a good choice of uv is possible whenever ℓ > 4. In case
2 6 ℓ 6 3, there exists a good phantom edge unless (|E1|, . . . , |Eℓ|) is equal to (2, m) or (m, 2)
or (2, m, 2) for some integer m > 2. In the case ℓ = 1 and in these cases, taking uv to be a
phantom edge will not work and we have to choose uv differently.

7.2. Removing an edge within an epoch. Fix an index i ∈ {1, . . . , ℓ}. Now, we inspect
more closely the structure of the subposet of P induced on Ei = Ψi ∪ Ωi. We denote this
subposet by Pi. Without loss of generality, we assume that ψi > ωi > 1. Since we assumed that
P coincides with I(P ) (except for the phantom edges), the subposet Pi agrees with the subposet
of I(P ) induced on Ei, and is thus an interval order that admits an interval representation in
(0, 1) obtained as follows:

• starting from 0, put side by side ψi intervals of length
1
ψi
;

• starting again from 0, put side by side ωi intervals of length
1
ωi
.

Recall that in the canonical interval representation of I(P ), the corresponding intervals have

length
|Cj |
n

· 1
|Aj | ∝ 1

|Ψi| and
|Cj |
n

· 1
|Bj | ∝ 1

|Ωi| respectively, where j ∈ {1, . . . , k} is such that

Ei ⊆ Cj and the proportionality constants are identical. In the above representation, we delete
all intervals for elements not in Pi and then rescale (and translate) so that the intervals again
span (0, 1).

By Lemma 14, we know that gcd(ψi, ωi) = 1.

Lemma 17. If ψi > 2 and ωi > 2, there exist two elements u, v ∈ Pi such that the corresponding
intervals overlap in an interval of length exactly 1

ψiωi
.

Proof. It suffices to show that there are two integers m and p with 0 < m < ψi, 0 < p < ωi

and
∣
∣
∣
m
ψi

− p

ωi

∣
∣
∣ = 1

ψiωi
, that is, |mωi − pψi| = 1. Since gcd(ψi, ωi) = 1 there exist integers m, p

with |mωi − pψi| = 1. It remains to prove that we can assume 0 < m < ψi and 0 < p < ωi.



12 SAMUEL FIORINI AND SELIM REXHEP

Note that |mωi − pψi| = 1 implies |(m− tψi)ωi − (p− tωi)ψi| = 1 for every t ∈ Z. Hence one
may suppose 0 < m 6 ψi and this implies 0 < p 6 ωi. But m = ψi implies ψi = 1, and p = ωi
implies ωi = 1. This concludes the proof. �

In fact we can always suppose that there exist m and p with

(5)
m

ψi
−

p

ωi
=

1

ψiωi
.

Indeed, if m
ψi

− p

ωi
= − 1

ψiωi
we just remplace m by ψi−m and p by ωi− p. Hence we know that

the corresponding intervals are the m-th of length 1/ψi and the (p + 1)-th of length 1/ωi. In
this case, an interval of length 1/ψi immediately to the right of the interval for u must exist
(the associated element of Pi is written u

′), as well as an interval of length 1/ωi immediately
to the left of the interval for v (the associated element of Pi is written v

′), see Figure 5. In the
figure and henceforth, we denote I(u) the interval for u, and similarly for the other elements.

I(v)I(v′)

I(u) I(u′)

1/ψiωi

Figure 5. The intervals I(u) and I(v) of Lemma 17 and the neighboring intervals.

Lemma 18. Let Pi be the subposet of P induced by some epoch Ei with ψi > ωi > 2 and u, v be
two elements of Pi whose intervals in the interval representation of Pi are such that I(u)∩ I(v)
is of length 1/ψiωi. Then the suppression of uv from G(P ) yields a poset P ′ with

∆h := nH(P )− nH(P ′) 6 2 log

(

1

1− 1
(ψi+ωi)2

)

and P ′ is an ordinal sum of two smaller posets P ′
1 and P ′

2. Moreover, unless ψi = ωi + 1, both
P ′
1 and P ′

2 have at least three elements that are also in Pi.

Proof. Let n := |P | := |X| with X the ground set of poset P . As noticed above, we can assume
I(u) and I(v) are such that the left endpoint of I(u) is to the left of I(v), as in Figure 5. As
before, u′ is the element of P such that I(u′) follows I(u) and v′ is the element of P such
that I(v) follows I(v′), see Figure 5. By this local modification we get a new poset P ′ with
G(P ′) = G(P )− uv.

The idea is to move the right endpoint of I(u), which is also the left endpoint of I(u′), by
1

ψi(ψi+ωi)
= ωi

(ψiωi)(ψi+ωi)
to the left and the left endpoint of I(v), which is also the right endpoint

of I(v′), by 1
ωi(ψi+ωi)

to the right, see Figure 6.

We denote as before xw the length of the interval I(w) for w ∈ X in I(P ), and x̃w the length
of that interval after modification. Since I(u) and I(u′) have length 1/ψi and I(v), I(v

′) have
length 1/ωi we have:

x̃u =
1

ψi

(

1−
1

ψi + ωi

)

and x̃u′ =
1

ψi

(

1 +
1

ψi + ωi

)

and also, for the elements in the other chain,

x̃v =
1

ωi

(

1−
1

ψi + ωi

)

and x̃v′ =
1

ωi

(

1 +
1

ψi + ωi

)

.
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I(v)I(v′)

I(u) I(u′)

β

Figure 6. After the modification of the intervals I(u), I(v), I(u′) and I(v′).

By (4), this shows

n ·H(P ′) 6 −
∑

w∈X
log x̃w = −

∑

w∈X
log xw + 2 log

(
1

ψi

)

+ 2 log

(
1

ωi

)

− log
1

ψi

(

1−
1

ψi + ωi

)

− log
1

ωi

(

1−
1

ψi + ωi

)

− log
1

ψi

(

1 +
1

ψi + ωi

)

− log
1

ωi

(

1 +
1

ψi + ωi

)

= −
∑

w∈X
log xw + 2 log

(

1

1− 1
(ψi+ωi)2

)

︸ ︷︷ ︸

=:f(ψi,ωi)

.

So n ·H(P ′) 6 n ·H(P ) + f(ψi, ωi), which by theorem 7 implies ∆h 6 f(ψi, ωi).
Now by the structure of the intervals in I(P ) (Lemma 13) it is clear that P ′ = P ′

1 ⊕ P ′
2 for

two smaller posets P ′
1 and P ′

2: the elements of P ′
1 are those whose new interval is to the left of

the breakpoint β created by the local modification (see Figure 6), and similarly the elements
of P ′

2 are those whose new interval is to the right of β. It is clear that both P ′
1 and P ′

2 each
contain at least two elements of Pi, namely, u and v′ for P ′

1 and v and u′ for P ′
2.

If P ′
1 has less than 3 elements of Pi, then I(u) is the first interval of Pi having length 1/ψi

and I(v) the second interval of Pi having length 1/ωi. This implies ℓ = 1 and m+ 1 = 2 in (5)
that is ωi = ψi + 1, and this is a contradiction since we supposed ψi > ωi. Similarly if P ′

2 has
less than 3 elements of Pi then ℓ = ψi − 1 and m+ 1 = ωi and this implies ψi = ωi + 1. �

Now, we analyze how the number of linear extensions of P changes after the deletion of the
incomparability uv.

Lemma 19. Let Pi be the subposet of P induced by some Ei and u, v be two elements of Pi
whose intervals in the interval representation of Pi are such that I(u)∩I(v) is of length 1/ψiωi.
Let P ′ = P ′

1 ⊕ P ′
2 be the poset obtained by deleting the edge uv from G(P ). Then

∆e := log e(P )− log e(P ′) > log

(

1 +
1

2ψi

ωi
+ 4

)

.

Proof. The inequality we have to prove can be rewritten

e(P ) > e(P ′
1 ⊕ P ′

2) ·

(

1 +
1

2ψi

ωi
+ 4

)

.

Since the linear extensions of P ′
1 ⊕ P ′

2 correspond to the linear extensions of P with u ≺ v, we
have to establish that a big enough fraction of the linear extensions ≺ of P have v ≺ u.

We call a linear extension ≺ of P backward if v ≺ u, and forward if u ≺ v. The forward
extensions correspond to those of P ′ = P ′

1⊕P
′
2. Clearly, for a backward extension of P we have

in particular:
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(*) v ≺ w for every element w 6= u incomparable to v, and z ≺ u for every
element z 6= v incomparable to u.

Indeed, for such a w, the interval I(w) is located to the right of I(u) hence u 6 w in Pi and
by transitivity v ≺ u ≺ w. The second part of the statement is proved similarly.

v′ v

u u′ u(s−1) u(s)
. . .

P ′
1 P ′

2

Figure 7. The local structure of the graph G(Pi).

We call a forward extension good if it satisfies property (*). Note that any good forward
extension gives one backward extension, simply by interchanging u and v (which are consecutive
in any good forward extension).

Every linear extension ≺ of P induces an orientation of the incomparability graph G(P ): we
orient each edge wz from w to z if w ≺ z in the extension. We define an equivalence relation
∼ on the set E(P ) of linear extensions of P by letting ≺1∼≺2 if and only if ≺1 and ≺2 induce
the same orientation of the edges G(P ) incident to neither u nor v.

Each class of this equivalence relation ∼ contains precisely:

• one good forward extension,
• one good backward extension,
• possibly some more forward extensions that are not good.

Hence the number of backward extensions is exactly the number of good forward extensions,
and this is the number of classes of ∼, this quantity being at least

e(P ′
1 ⊕ P ′

2)

M

where M is the maximum cardinality of one class of ∼. Hence, summing the total number of
forward extension and the minimum number of backward extension we have

e(P ) > e(P ′
1 ⊕ P ′

2) +
e(P ′

1 ⊕ P ′
2)

M
= e(P ′

1 ⊕ P ′
2) ·

(

1 +
1

M

)

and it remains to prove

(6) M 6 2
ψi
ωi

+ 4.

To do so we upper bound, for any given forward extension ≺, the number of possible orientations
for the edges of G(P ) that are incident to u or v.

Let

u = u(0) < u′ = u(1) < . . . < u(s)

denote the neighbors of v in G(P ) and v′ < v denote the neighbor of u in this graph, see
Figure 7. Note that v and v′ are the only neighbors of u in G(P ) because the interval I(u) has
length 1

ψi
, the intervals I(v) and I(v′) have length 1

ωi
and ψi > ωi by assumption.

Looking at the interval representation of Pi, we see that the intervals I(u
′), . . . , I(u(s−1)) are

all included in I(v) and cover an area that is at most the area of I(v). In other words, we have

s− 1

ψi
6

1

ωi
⇐⇒ s 6

ψi
ωi

+ 1.
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We have exaclty s + 1 different possibilities for inserting v in the opposite chain, and hence a
forward extension can orient the edges of G(P ) incident to u in exactly s+ 1 ways (recall that
u ≺ v because the extension is forward). Because the edge uv′, which is the last edge we have
to consider, can be oriented in at most two ways, we get M 6 2(s + 1) 6 2(ψi

ωi
+ 2) and (6)

follows. �

And finally:

Lemma 20. For all x > y > 2, we have

2 log

(

1

1− 1
(x+y)2

)

6
3

2
log

(

1 +
1

2x
y
+ 4

)

.

Proof. First, note that

2 log

(

1

1− 1
(x+y)2

)

= 2 log

(
x
y
+ y

x
+ 2

x
y
+ y

x
+ 2− 1

xy

)

and since x, y > 2, we have 2− 1
xy

> 7
4
. Hence letting u := x

y
we have

2 log

(

1

1− 1
(x+y)2

)

6 2 log

(
u+ 1

u
+ 2

u+ 1
u
+ 7

4

)

6 log

(
u+ 2

u+ 7
4

)

and

log

(

1 +
1

2x
y
+ 4

)

= log

(
u+ 5/2

u+ 2

)

.

The target inequality is thus implied by

(u+ 2)7 6 (u+ 7/4)4(u+ 5/2)3

which can be rewritten (after performing a straighforward computation) as

0 6
1

2
u6 +

45

8
u5 +

209

8
u4 +

16401

256
u3 +

44751

512
u2 +

64323

1024
u+

37981

2048
.

The result follows. �

8. The final discussion

Proof of Theorem 3. Let now P be any width-2 poset. The proof is by induction on n. Clearly,
we may assume n > 3 since the theorem holds for n 6 2. We have established in Section 6
that we may without loss of generality assume P is an interval order that coincides with I(P )
except perhaps for a few incomparabilities: the phantom edges.

Let E1 = Ψ1 ∪ Ω1, . . . , El = Ψℓ ∪ Ωℓ be the epochs of P . In Section 7 we proved that we
may assume the following:

• for each i we have gcd(ψi, ωi) = 1 where ψi := |Ψi| and ωi := |Ωi|;
• either ℓ = 1, or ℓ = 2 and (|E1|, |E2|) is equal to (2, m) or (m, 2) for an integer m > 2,
or ℓ = 3 and (|E1|, |E2|, |E3|) is equal (2, m, 2) for an integer m > 2.

Let i ∈ {1, 2, 3} be such that |Ψi| is maximum and assume without loss of generality that
ψi > ωi. Then, combining Lemmas 17, 18, 19 and 20, we are able to find a good edge to remove
from G(P ) in case ψi, ωi > 2 and ψi > ωi + 1. With this good edge in hand, we can complete
the proof as explained in Section 4. Hence the only cases left to consider are the following ones:

(1) ℓ = 1, ψ1 = ω1 + 1;
(2) ℓ = 1, ω1 = 1 and ψ1 > 3;
(3) ℓ = 2, ωi = 1 and ψi > 2;
(4) ℓ = 3, ωi = 1 and ψi > 2;
(5) ℓ = 2, ψi = ωi + 1.
(6) ℓ = 3, ψi = ωi + 1.
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Note that for the second case, we assume ψ1 > 3 because the first one encompass the
possibility ψ1 = 2 and ω1 = 1. Each of these cases follows from the results of Section 9 below.
In particular, we prove that ℓ = 1 and ψ1 = ω1 + 1 implies that G(P1) is a path and that the
theorem holds in this case. This concludes the proof. �

9. Special cases

In this section we consider the particular cases that we need to complete the proof of our
main result, starting with the first case of the list here above.

Lemma 21. Let P be the width-2 interval order obtained by putting side by side x intervals of
length 1/x starting at 0 and then y intervals of length 1/y starting at 0, where x > y > 2. If
x = y + 1 then G(P ) is a path with an odd number of vertices.

Proof. Note first that the number of vertices of G(P ) is equal to x + y = 2y + 1 and hence it
is odd.

Since gcd(x, y) = 1, we know that G(P ) is connected. Moreover, the graph has at least one
degree-1 vertex, namely the vertex whose interval starts at 0 and is of length 1/x. Thus, it
suffices to show that the degree of each vertex is at most 2. But this is clear because if a vertex
of G(P ) has degree d > 3, then the corresponding interval contains the intervals of at least
d−2 of its neighbors. In particular, the interval is necessarily of length 1/y and we have d 6 3.
Furthermore, the endpoints of all intervals are located at integer multiples of 1/xy. Thus if an
interval of length 1/y = x·(1/xy) contains one interval of length 1/x = y·(1/xy) = (x−1)·(1/xy)
then it intersects exactly one other interval (and moreover both intervals either start at 0 or
end at 1). This implies that d 6 2. The result follows. �

Lemma 22. Let P be a poset whose incomparability graph is a path with n > 3 vertices, with
n odd. Then

|P | ·H(P ) 6 (2− ε) log e(P )

Proof. It is known that, if G(P ) is an n-vertex path, then e(P ) = Fn+1 with n = |P | and
Fn+1 the (n + 1)-th Fibonacci number, see for example Atkinson and Chang [1]. To compute
H(P ) we use the KM algorithm, see Theorem 8. Assume without loss of generality that the
bipartition A,B of G(P ) satisfies |A| > |B|.

Because n = 2q + 1 is odd, we find k = 1 and |A1| = |A| = q + 1, |B1| = |B| = q (we leave it
to the reader the task of verifying this). Hence we have

|P | ·H(P ) = (2q + 1) · h

(
q

2q + 1

)

= (q + 1) log

(
2q + 1

q + 1

)

+ q log

(
2q + 1

q

)

.

By a direct computation, we see that the inequality holds for q ∈ {1, 2, 3}. Notice in passing
that the inequality is tight for q = 1. For q = 2 the ratio is equal to

3 log(5/3) + 2 log(5/2)

log(8)
≃ 1.62

From now on, we assume q > 3. From the easy lower bound Fn > φn−2, where n > 3 and

φ := 1+
√
5

2
is the golden ratio, we obtain

|P | ·H(G(P ))

log(e(P ))
6

(q + 1) log
(

2q+1
q+1

)

+ q log
(

2q+1
q

)

log(φ2q)
=

q+1
q

log
(

2q+1
q+1

)

+ log
(

2q+1
q

)

2 log(φ)
︸ ︷︷ ︸

=:f(q)

.

Since f ′(x) < 0 for every x > 0 we get f(q) 6 f(3) ≃ 1.65 6 2− ε for every q > 3. �

This concludes the proof of case (1) in the proof of Theorem 3. The following lemma settles
case (2).
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. . .

Figure 8. G(P ) in the particular case (2) ℓ = 1, ω1 = 1, ψ1 > 3.

Lemma 23. Let P be a poset whose incomparability graph is a star with n > 3 vertices. Then

|P | ·H(P ) 6 (2− ε) log e(P )

Proof. Let ψ1 = n− 1 denote the number of leaves of the star and ω1 := 1 (see Figure 9). We
have log e(P ) = log(ψ1 + 1) and

|P | ·H(P ) = ψ1 log

(
ψ1 + 1

ψ1

)

+ log(ψ1 + 1).

Now we are done since for u > 2:

f(u) :=
u log

(
u+1
u

)
+ log(u+ 1)

log(u+ 1)
6 2− ε

Indeed, f(2) = 2− ε and for u > 2, the function (1+ 1
u
)u is increasing and tends to the number

e for u→ ∞. Hence for u > 3 we have (1 + 1
u
)u 6 e and so

f(u) = 1 +
u log

(
u+1
u

)

log(u+ 1)
6 1 +

log(e)

log(4)
6 1.73 6 2− ε.

�

Cases (3)–(6) in the proof of Theorem 3 can be treated similarly as in Lemmas 22 and 23.
We only summarize the main differences in Table 1 below. It is a straightforward task to turn
the information in the table into a complete proof. We leave this to the reader.
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Case 3: ℓ = 2, ωi = 1 and ψi > 2

log e(P ) = log(2ψi + 3) |P | ·H(P ) = 2 + ψi log

(
ψi + 1

ψi

)

+ log(ψi + 1)

|P | ·H(P )

log e(P )
6

3 log(3)

log(7)
6 1.7 . . .G(P )

We have i = 2 in case (|E1|, |E2|) is equal to (2, m),
and i = 1 in case (|E1|, |E2|) is equal to (m, 2).

Case 4: ℓ = 3, ωi = 1 and ψi > 2

log e(P ) = log(4ψi + 8) |P | ·H(P ) = 4 + ψi log

(
ψi + 1

ψi

)

+ log(ψi + 1)

|P | ·H(P )

log e(P )
6

2 + 3 log(3)

4
6 1.7 . . .G(P )

Here we must have i = 2.

Case 5: ℓ = 2, ωi = ψi + 1

log e(P ) = log(F2ωi+4) |P | ·H(P ) = 2 + (ωi + 1) log

(
2ωi + 1

ωi + 1

)

+ ωi log

(
2ωi + 1

ωi

)

|P | ·H(P )

log e(P )
6

3 log(3)

4 log(φ)
6 1.72 G(P ) ...

We have i = 2 in case (|E1|, |E2|) is equal to (2, m),
and i = 1 in case (|E1|, |E2|) is equal to (m, 2).

Case 6: ℓ = 3, ωi = ψi + 1

log e(P ) = log(F2ωi+6) |P | ·H(P ) = 4 + (ωi + 1) log

(
2ωi + 1

ωi + 1

)

+ ωi log

(
2ωi + 1

ωi

)

|P | ·H(P )

log e(P )
6

2 + 3 log(3)

6 log(φ)
6 1.7 G(P ) ...

Here we must have i = 2.

Table 1. For each one of cases (3)–(6) in the proof of Theorem 3, the table
gives the expressions of both log e(P ) and |P | · H(P ), an upper bound on the
ratio and a drawing of the incomparability graph G(P ).


	1. Introduction
	2. Graph Entropy
	3. Poset Entropy
	4. Structure of the proof of Theorem 3
	5. The structure of G(P) and G(I(P))
	6. Phantom edges
	7. Removing an incomparability with a small overlap
	7.1. Removing a phantom edge
	7.2. Removing an edge within an epoch

	8. The final discussion
	9. Special cases
	10. Acknowledgments
	References

