# THE ASYMPTOTIC NUMBER OF PLANAR, SLIM, SEMIMODULAR LATTICE DIAGRAMS 

GÁBOR CZÉDLI


#### Abstract

A lattice $L$ is slim if it is finite and the set of its join-irreducible elements contains no three-element antichain. We prove that there exists a positive constant $C$ such that, up to similarity, the number of planar diagrams of slim semimodular lattices of size $n$ is asymptotically $C \cdot 2^{n}$.


## 1. Introduction and the result

A finite lattice $L$ is slim if $J i L$, the set of join-irreducible elements of $L$, contains no three-element antichain. Equivalently, $L$ is $\operatorname{sim}$ if $\mathrm{Ji} L$ is the union of two chains. Slim, semimodular lattices were heavily used while proving a recent generalization of the classical Jordan-Hölder theorem for groups in [4]. These lattices are planar, that is, they have planar diagrams, see [4]. Hence it is reasonable to study their planar diagrams, which are called slim, semimodular (lattice) diagrams for short. The size of a diagram is the number of elements of the lattice it represents. Let $D_{1}$ and $D_{2}$ be two planar lattice diagrams. A bijection $\phi: D_{1} \rightarrow D_{2}$ is a similarity map if it is a lattice isomorphism preserving the left-right order of (upper) covers and that of lower covers of each element of $D_{1}$. If there is a similarity map $D_{1} \rightarrow D_{2}$, then these two diagrams are similar, and we will treat them as equal. Let $N_{\text {ssd }}(n)$ denote the number of slim, semimodular diagrams of size $n$, counting them up to similarity. Our target is to prove the following result.

Theorem 1.1. There exists a positive constant $C<1$ such that $N_{\mathrm{ssd}}(n)$ is asymptotically $C \cdot 2^{n}$, that is, $\lim _{n \rightarrow \infty}\left(N_{\mathrm{ssd}}(n) / 2^{n}\right)=C$.

Given two composition series in a finite group, the intersections of their members form a slim semimodular lattice with respect to "?". This follows from Wielandt [13]; see also the proof of Nation [11, Theorem 9.8]. Conversely, [6] proves that every slim semimodular lattice can be represented in this way. Therefore, in a reasonable, order theoretic sense, Theorem 1.1 tells us how many ways the members of two composition series in a group can intersect each other, provided that there are exactly $n$ intersections and that we make a distinction between the first composition series and the second one.

Note that there are two different methods to deal with $N_{\text {ssd }}(n)$. The present one yields the asymptotic statement above, while the method of [1] gives the exact

[^0]
$$
\operatorname{rank}_{\ell}(D)=3
$$
$$
\operatorname{rank}_{r}(D)=2
$$


Figure 1. Left and right ranks
values of $N_{\mathrm{ssd}}(n)$ up to $n=50$ (with the help of a usual personal computer). Also, [1] determines the number $N_{\text {ssl }}(n)$ of slim, semimodular lattices of size $n$ up to $n=50$ while we do not even know $\lim _{n \rightarrow \infty}\left(N_{\text {ssl }}(n) / N_{\text {ssl }}(n-1)\right)$, and it is only a conjecture that this limit exists.

Note also that, besides [1] and [2], there are several papers on counting lattices; see, for example, M. Erné, J. Heitzig, and J. Reinhold [7], M. M. Pawar and B. N. Waphare [12], and J. Heitzig and J. Reinhold [9].

## 2. Lattice theoretic lemmas

A minimal non-chain region of a planar lattice diagram $D$ is called a cell. A four-element cell is a 4 -cell; it is also a covering square, that is, a cover-preserving four-element Boolean sublattice. We say that $D$ is a 4 -cell diagram if all of its cells are 4 -cells. We shall heavily rely on the following result of G. Grätzer and E. Knapp [8, Lemmas 4 and 5].

Lemma 2.1. Let $D$ be a finite planar lattice diagram.
(i) If $D$ is semimodular, then it is a 4-cell diagram. If $A$ and $B$ are 4-cells of $D$ with the same bottom, then these 4 -cells have the same top.
(ii) If $D$ is a 4-cell diagram in which no two 4-cells with the same bottom have distinct tops, then $D$ is semimodular.

In what follows, we always assume that $4 \leq n \in \mathbb{N}=\{1,2, \ldots\}$, and that $D$ is a slim, semimodular diagram of size $n$. Let $w_{D}^{\bar{\ell}}$ be the smallest doubly irreducible element of the left boundary chain $\mathrm{BC}_{\ell}(D)$ of $D$, and let $\operatorname{rank}_{\ell}(D)$ be the height of $w_{D}^{\ell}$. The left-right duals of these concepts are denoted by $w_{D}^{r}$ and $\operatorname{rank}_{r}(D)$. See Figure 1 for an illustration, where $w_{D}^{\ell}$ and $w_{D}^{r}$ are the black-filled elements. By D. Kelly and I. Rival [10, Proposition 2.2], each planar lattice diagram with at least three elements contains a doubly irreducible element $\neq 0,1$ on its left boundary. This implies the following statement, on which we will rely implicitly.

Lemma 2.2. Either $\operatorname{rank}_{\ell}(D)=\operatorname{rank}_{r}(D)=0$ and $w_{D}^{\ell}=w_{D}^{r}=0$, or $\operatorname{rank}_{\ell}(D)>$ 0 and $\operatorname{rank}_{r}(D)>0$.

For $a \in D$, the ideal $\{x \in D: x \leq a\}$ is denoted by $\downarrow a$.
Lemma 2.3. $\mathrm{BC}_{\ell}(D) \cap \downarrow w_{D}^{\ell} \subseteq \mathrm{Ji} D$.
Proof. Suppose, for a contradiction, that the lemma fails, and let $u$ be the smallest join-reducible element belonging to $\mathrm{BC}_{\ell}(D) \cap \downarrow w_{D}^{\ell}$. By D. Kelly and I. Rival [10,

Proposition 2.2], there is a doubly irreducible element $v$ of the ideal $\downarrow u=\{x \in$ $D: x \leq u\}$ such that $v \in \mathrm{BC}_{\ell}(\downarrow u)$; notice that $v$ also belongs to $\mathrm{BC}_{\ell}(D)$. Clearly, $v<u$ and $v$ is join-irreducible in $D$. Therefore, since $v<u \leq w_{D}^{\ell}$ and $w_{D}^{\ell}$ is the least doubly irreducible element of $\mathrm{BC}_{\ell}(D), v$ is meet-reducible in $D$. Hence there exist a $p \in D$ such that $v \prec p$ and $p \notin \downarrow u$. Denote by $u_{0}$ the unique lower cover of $u$ in $\mathrm{BC}_{\ell}(D)$. Since $v<u$, we have that $v \leq u_{0}$. By semimodularity and $p \not \leq u_{0}$, we obtain that $u_{0}=u_{0} \vee v \prec u_{0} \vee p \neq u$. Hence $u_{0}$ has two covers, $u$ and $u_{0} \vee p$. Thus $u_{0}, u \in \mathrm{BC}_{\ell}(D), u_{0} \prec u, u$ is join-reducible, and $u_{0}$ is meet-reducible. This contradicts [5, Lemma 4].

Next, we prove the following lemma.
Lemma 2.4. For $4 \leq n \in \mathbb{N}$, we have that

$$
\begin{align*}
N_{\mathrm{ssd}}(n-1)+N_{\mathrm{ssd}}(n-3) & \leq N_{\mathrm{ssd}}(n)  \tag{2.1}\\
N_{\mathrm{ssd}}(n) & \leq 2 \cdot N_{\mathrm{ssd}}(n-1) \tag{2.2}
\end{align*}
$$

Proof. The set of slim, semimodular diagrams of size $n$ is denoted by $\operatorname{SSD}(n)$. Let

$$
\begin{aligned}
\operatorname{SSD}_{00}(n) & =\left\{D \in \operatorname{SSD}(n): \operatorname{rank}_{\ell}(D)=\operatorname{rank}_{r}(D)=0\right\} \\
\operatorname{SSD}_{11}(n) & =\left\{D \in \mathrm{SSD}(n): \operatorname{rank}_{\ell}(D)=\operatorname{rank}_{r}(D)=1\right\}, \text { and } \\
\operatorname{SSD}_{++}(n) & =\operatorname{SSD}(n)-\operatorname{SSD}_{00}(n)
\end{aligned}
$$

Since we can omit the least element and the least three elements, respectively, and the remaining diagram is still slim and semimodular by Lemma 2.1, we conclude that $\left|\operatorname{SSD}_{00}(n)\right|=N_{\text {ssd }}(n-1)$ and $\left|\operatorname{SSD}_{11}(n)\right|=N_{\text {ssd }}(n-3)$. This implies (2.1). For $D \in \operatorname{SSD}_{++}(n)$, we define

$$
D^{*}=D-\left\{w_{D}^{\ell}\right\} .
$$

We know from By D. Kelly and I. Rival [10, Proposition 2.2], mentioned earlier, that

$$
\begin{equation*}
w_{D}^{\ell} \notin\{0,1\}, \text { provided } D \in \operatorname{SSD}_{++}(n) \tag{2.3}
\end{equation*}
$$

This, together with the fact that $D \in \operatorname{SSD}_{++}(n)$ is not a chain, yields that

$$
\begin{equation*}
\text { length } D^{*}=\text { length } D \tag{2.4}
\end{equation*}
$$

Let $w_{D}^{\ell-}$ denote the unique lower cover of $w_{D}^{\ell}$ in $D$. Since each meet-reducible element has exactly two covers by [5, Lemma 2], we conclude from Lemma 2.3 that

$$
\begin{equation*}
w_{D^{*}}^{\ell}=w_{D}^{\ell-} \tag{2.5}
\end{equation*}
$$

It follows from Lemma 2.1 that $D^{*} \in \operatorname{SSD}(n-1)$. From (2.5) we obtain that

$$
\begin{equation*}
D^{*} \in \operatorname{SSD}(n-1) \text { determines } D \text {. } \tag{2.6}
\end{equation*}
$$

Hence $\left|\operatorname{SSD}_{++}(n)\right| \leq|\operatorname{SSD}(n-1)|=N_{\text {ssd }}(n-1)$. Combining this with $\left|\operatorname{SSD}_{00}(n)\right|=$ $N_{\mathrm{ssd}}(n-1)$ and $\operatorname{SSD}(n)=\operatorname{SSD}_{00}(n) \dot{\cup} \operatorname{SSD}_{++}(n)$, where $\dot{U}$ stands for disjoint union, we obtain (2.2).

Next, let

$$
\begin{equation*}
W(n)=\operatorname{SSD}(n-1)-\left\{D^{*}: D \in \operatorname{SSD}_{++}(n)\right\} . \tag{2.7}
\end{equation*}
$$

Fortunately, this set is relatively small by the following lemma. The upper integer part of a real number $r$ is denoted by $\lceil x\rceil$; for example, $\lceil\sqrt{3}\rceil=2$.

Lemma 2.5. If $4 \leq n$, then $|W(n)| \leq \sum_{j=2}^{n+1-\lceil\sqrt{n-1}\rceil} N_{\mathrm{ssd}}(j)$.
Proof. First we show that

$$
\begin{equation*}
W(n)=\left\{E \in \operatorname{SSD}(n-1): w_{E}^{\ell} \text { is a coatom of } E\right\} \tag{2.8}
\end{equation*}
$$

The $\supseteq$ inclusion is clear from (2.3), (2.4), and (2.5). These facts together with Lemma 2.1 also imply the reverse inclusion since by adding a new cover to $w_{E}^{\ell}$, to be positioned to the left of $\mathrm{BC}_{\ell}(E)$, we obtain a slim semimodular diagram $D$ such that $D^{*}=E$.

It follows from Lemma 2.3 that no down-going chain starting at $w_{E}^{\ell}$ can branch out. Thus

$$
\begin{equation*}
\downarrow w_{E}^{\ell} \subseteq \mathrm{BC}_{\ell}(E) \text { and } \downarrow w_{E}^{\ell} \text { is a chain. } \tag{2.9}
\end{equation*}
$$

Since $w_{E}^{\ell}$ is a coatom, we have that

$$
\begin{equation*}
\text { with the notation } E^{\boldsymbol{4}}=E \backslash \downarrow w_{E}^{\ell}, \quad\left|E^{\boldsymbol{4}}\right|=|E| \text { l length } E \text {. } \tag{2.10}
\end{equation*}
$$

Clearly, $E^{\boldsymbol{\triangleleft}}$ is a join-subsemilattice of $E$ since it is an order-filter. To prove that

$$
\begin{equation*}
E^{\boldsymbol{4}} \text { is a slim, semimodular diagram, } \tag{2.11}
\end{equation*}
$$

assume that $x, y \in E^{\hookrightarrow}-\{1\}$. We want to show that $x \wedge y$, taken in $E$, belongs to $E \longleftarrow$. Let $x_{0}$ and $y_{0}$ be the smallest element of $\mathrm{BC}_{\ell}(E) \cap \downarrow x$ and $\mathrm{BC}_{\ell}(E) \cap \downarrow y$, respectively. Since $x_{0}, y_{0} \in \mathrm{BC}_{\ell}(E) \cap\left(\downarrow w_{E}^{\ell}-\left\{w_{E}^{\ell}\right\}\right)$, the definition of $w_{E}^{\ell}$ implies that $x_{0}$ and $y_{0}$ are meet-reducible. Hence they have exactly two covers by [5, Lemma 2]. Let $x_{1}$ and $y_{1}$ denote the cover of $x_{0}$ and $y_{0}$, respectively, that do not belong to $\mathrm{BC}_{\ell}(E)$, and let $x^{+}$and $y^{+}$be the respective covers belonging to $\mathrm{BC}_{\ell}(E)$. By the choice of $x_{0}$, we have that $x^{+} \not \leq x$, whence $x_{1} \leq x$. Similarly, $y_{1} \leq y$. Since $\mathrm{BC}_{\ell}(E)$ is a chain and the case $x_{0}=y_{0}$ will turn out to be trivial, we can assume that $x_{0}<y_{0}$. We know that $x_{1} \not \leq y_{0}$ since otherwise $x_{1}$ would belong to $\mathrm{BC}_{\ell}(E)$ by (2.9). Using semimodularity, we obtain that $x_{1} \vee y_{0} \succ y_{0}$. Since $y_{0}$ has only two covers by [5, Lemma 2] and $x_{1} \leq y^{+}$would imply $x_{1} \in \mathrm{BC}_{\ell}(E)$ by (2.9), it follows that $x_{1} \vee y_{0}=y_{1}$. Hence $x_{1} \leq y, x_{1} \leq x$, and $x_{1} \in E^{\boldsymbol{\triangleleft}}$ imply that $x \wedge y$ belongs to (the order filter) $E^{\boldsymbol{⿶}}$. Thus $E^{\boldsymbol{⿶}}$ is (to be more precise, determines) a sublattice of (the lattice determined by) $E$. The semimodularity of $E$ follows from Lemma 2.1. This proves (2.11).

By (2.10) and (2.11), a trivial argument gives that

$$
\begin{equation*}
E^{\boldsymbol{\triangleleft}} \in \operatorname{SSD}(n-\text { length } E) \text { and } E^{\boldsymbol{\triangleleft}} \text { determines } E . \tag{2.12}
\end{equation*}
$$

Next, we have to determine what values $h=$ length $E$ can take. Clearly, $h \leq$ $|E|-1=n-2$. There are various ways to check that $|E| \leq(1+\text { length } E)^{2}=(1+h)^{2} ;$ this follows from the main theorem of [6], and follows also from the proof of [3, Corollary 2]. Since now $|E|=n-1$, we obtain that $\lceil\sqrt{n-1}\rceil-1 \leq h$. Therefore, combining (2.11) and (2.12), we obtain that

$$
W(n) \leq \sum_{h=\lceil\sqrt{n-1}\rceil-1}^{n-2} N_{\mathrm{ssd}}(n-h)
$$

Substituting $j$ for $n-h$, we obtain our statement.
We conclude this section by the following lemma.

Lemma 2.6. $2 \cdot N_{\mathrm{ssd}}(n-1)-\sum_{j=2}^{n+1-\lceil\sqrt{n-1}\rceil} N_{\mathrm{ssd}}(j) \leq N_{\mathrm{ssd}}(n) \leq 2 \cdot N_{\mathrm{Ssd}}(n-1)$.
Proof. By (2.6) and the definition of $W(n)$, we have that

$$
\begin{aligned}
N_{\mathrm{ssd}}(n) & =\left|\mathrm{SSD}_{00}(n)\right|+\left|\mathrm{SSD}_{++}(n)\right|=N_{\mathrm{ssd}}(n-1)+|\mathrm{SSD}(n-1)-W(n)| \\
& =N_{\mathrm{ssd}}(n-1)+N_{\mathrm{ssd}}(n-1)-|W(n)|,
\end{aligned}
$$

and the statement follows from Lemma 2.5 and (2.2).

## 3. Tools from Analysis at work

For $k \geq 2$, define $\kappa_{k}=N_{\text {ssd }}(k) / N_{\text {ssd }}(k-1)$. Since $N_{\text {ssd }}(n-3) / N_{\text {ssd }}(n-1)=$ $1 /\left(\kappa_{n-1} \kappa_{n-2}\right)$, dividing the inequalities of Lemma 2.4 by $N_{\text {ssd }}(n-1)$ we obtain that $1+1 /\left(\kappa_{n-1} \kappa_{n-2}\right) \leq \kappa_{n} \leq 2$, for $n \geq 4$. Furthermore, in view of the sentence following (2.7), (2.8) implies easily that $\kappa_{n}<2$ if $n \geq 7$. Therefore, since $\kappa_{k} \leq 2$ also holds for $k \in\{2,3\}$ and $1+1 /(2 \cdot 2)=5 / 4$, we conclude that

$$
\begin{equation*}
5 / 4 \leq \kappa_{n} \leq 2, \quad \text { for } \quad n \geq 4, \quad \text { and } \quad \kappa_{n}<2, \quad \text { for } \quad n \geq 7 \tag{3.1}
\end{equation*}
$$

Clearly, $N_{\text {ssd }}(k-1)=N_{\text {ssd }}(k) / \kappa_{k} \leq \frac{4}{5} \cdot N_{\text {ssd }}(k)$ if $k \geq 4$. Thus, by iteration, we obtain that

$$
\begin{equation*}
N_{\mathrm{ssd}}(k-j) \leq(4 / 5)^{j} \cdot N_{\mathrm{ssd}}(k), \quad \text { for } j \in \mathbb{N}_{0} \text { and } k \geq j+4 \tag{3.2}
\end{equation*}
$$

If $k \geq 5$, then using $N_{\mathrm{ssd}}(k) \geq N_{\mathrm{ssd}}(5) \geq 3$ (actually, $N_{\mathrm{ssd}}(5)=3$ ), we obtain that

$$
\begin{align*}
N_{\mathrm{ssd}}(1) & +\cdots+N_{\mathrm{ssd}}(k)=1+1+1+N_{\mathrm{ssd}}(4)+\cdots+N_{\mathrm{ssd}}(k) \\
& \leq 3+N_{\mathrm{ssd}}(k) \cdot\left((4 / 5)^{k-4}+(4 / 5)^{k-5}+\cdots+(4 / 5)^{0}\right)  \tag{3.3}\\
& \leq N_{\mathrm{ssd}}(k)+N_{\mathrm{ssd}}(k) \cdot 1 /(1-4 / 5)=6 N_{\mathrm{ssd}}(k) .
\end{align*}
$$

Combining Lemma 2.6 with (3.3) and (3.2), we obtain that

$$
\begin{gathered}
2 N_{\mathrm{ssd}}(n-1)-6 \cdot(4 / 5)^{\lceil\sqrt{n-1}\rceil-2} \cdot N_{\mathrm{ssd}}(n-1) \leq \\
2 N_{\mathrm{ssd}}(n-1)-6 N_{\mathrm{ssd}}(n+1-\lceil\sqrt{n-1}\rceil) \\
\leq N_{\mathrm{ssd}}(n) \leq 2 N_{\mathrm{ssd}}(n-1)
\end{gathered}
$$

Dividing the formula above by $2 N_{\mathrm{ssd}}(n-1)$ and (3.1) by 2 , we obtain that

$$
\begin{equation*}
\max \left(5 / 8,1-3 \cdot(4 / 5)^{\lceil\sqrt{n-1}\rceil-2}\right) \leq \kappa_{n} / 2 \leq 1, \quad \text { for } n \geq 5 \tag{3.4}
\end{equation*}
$$

Next, let us choose an integer $m \geq 5$, and define

$$
z_{0}=z_{0}(m)=\min \left(3 / 8,3 \cdot(4 / 5)^{\lceil\sqrt{m-1}\rceil-2}\right)
$$

Lemma 3.1. For $0 \leq z<1$, we have $-\ln (1-z) \leq z /(1-z)$. If, in addition, $0 \leq z \leq z_{0}$, then $z /(1-z) \leq z /\left(1-z_{0}\right)$.

Proof. The second inequality is obvious. The first inequality holds for $z=0$ and, for $0 \leq z<1$, the derivative $1 /(1-z)$ of the left side is less than $1 /(1-z)^{2}$, that of the right side. This implies the first inequality.

With the auxiliary steps made so far, we are ready to start the final argument.

Proof of Theorem 1.1. For $n>m$, let

$$
p_{n}=\prod_{j=m+1}^{n}\left(\kappa_{j} / 2\right)
$$

We obtain from (3.4) that $\left\{p_{n}\right\}$, that is, $\left\{p_{n}\right\}_{n=m+1}^{\infty}$, is a decreasing sequence of positive numbers. Clearly,

$$
\begin{equation*}
N_{\mathrm{ssd}}(n) / 2^{n}=p_{n} \cdot N_{\mathrm{ssd}}(m) / 2^{m} \tag{3.5}
\end{equation*}
$$

Hence it suffices to prove that the sequence $\left\{p_{n}\right\}$ converges to a positive number, because then its limit is smaller than 1 by (3.1). Let $s_{n}=-\ln p_{n}, \mu=3\left(1-z_{0}\right)^{-1}$, $\alpha=4 / 5$, and $\nu=5 \mu / 4=\mu / \alpha$. Note that $\left\{s_{n}\right\}$ is an increasing sequence.

Using (3.4) together with Lemma 3.1 at the inequality marked with $\leq^{\prime}$ below and (3.4) at the one marked with $\leq^{*}$, and using that the function $f(x)=\alpha^{\sqrt{x}}$ is decreasing, we obtain that

$$
\begin{aligned}
0 & <s_{n}=\sum_{j=m+1}^{n}\left(-\ln \left(\kappa_{j} / 2\right)\right) \leq^{\prime} \sum_{j=m+1}^{n}\left(1-\kappa_{j} / 2\right) /\left(1-z_{0}\right) \\
& \leq^{*} \mu \cdot \sum_{j=m+1}^{n} \alpha^{\lceil\sqrt{j-1}\rceil-2} \leq \mu \cdot \sum_{j=m+1}^{n} \alpha^{\sqrt{j-1}-1}=\mu \cdot \sum_{k=m}^{n-1} \alpha^{\sqrt{k}-1} \\
& =\nu \cdot \sum_{k=m}^{n-1} \alpha^{\sqrt{k}} \leq \nu \cdot \int_{x=m-1}^{n-1} \alpha^{\sqrt{x}} d x \leq \nu \cdot(F(\infty)-F(m-1)),
\end{aligned}
$$

where $F(x)$ is a function whose derivative is $f(x)$. Let $\delta=-\ln \alpha=\ln (5 / 4)$. It is routine to check (by hand or by computer algebra) that, up to a constant summand,

$$
F(x)=-2 \cdot \delta^{-2} \cdot(1+\delta \sqrt{x}) \cdot \alpha^{\sqrt{x}}
$$

Clearly, $F(\infty)=\lim _{x \rightarrow \infty} F(x)=0$. This proves that the sequence $\left\{s_{n}\right\}$ converges; so does $\left\{p_{n}\right\}=\left\{e^{-s_{n}}\right\}$ by the continuity of the exponential function. Therefore, since $N_{\text {ssd }}(m) / 2^{m}$ in (3.5) does not depend on $n$, we conclude Theorem 1.1.

Remark 3.2. We can approximate the constant in Theorem 1.1 as follows. Since $e^{-\nu \cdot(F(\infty)-F(m))} \leq e^{-s_{n}}=p_{n} \leq 1$ and, by (3.5), $C=\lim _{n \rightarrow \infty}\left(p_{n} N_{\text {ssd }}(m) / 2^{m}\right)$, we obtain that

$$
\begin{equation*}
e^{\nu F(m)} \cdot N_{\mathrm{ssd}}(m) / 2^{m}=e^{-\nu \cdot(F(\infty)-F(m))} \cdot N_{\mathrm{ssd}}(m) / 2^{m} \leq C \leq N_{\mathrm{ssd}}(m) / 2^{m} \tag{3.6}
\end{equation*}
$$

Unfortunately, our computing power yields only a very rough estimation. The largest $m$ such that $N_{\text {ssd }}(50)$ is known is $m=50$, see [1]. With $m=50$ and $N_{\text {ssd }}(m)=N_{\text {ssd }}(50)=81287566224125$, it is a routine task to turn (3.6) into

$$
0.42 \cdot 10^{-57} \leq C \leq 0.073
$$

We have reasons (but no proof) to believe that $0.023 \leq C \leq 0.073$, see the Maple worksheet (version V) available from the authors's home page.

Acknowledgment. The author is indebted to Vilmos Totik for helpful discussions.

## References

[1] Czédli, G, Dékány, T., Ozsvárt, L., Szakács, N., Udvari, B.: On the number of slim, semimodular lattices, Mathematica Slovaca, to appear
[2] Czédli, G., Ozsvárt, L., Udvari, B.: How many ways can two composition series intersect? Discrete Mathematics 312, 3523-3536 (2012)
[3] Czédli, G., Schmidt, E. T.: How to derive finite semimodular lattices from distributive lattices?, Acta Mathematica Hungarica, 121, 277-282 (2008)
[4] Czédli, G., Schmidt, E. T.: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices, Algebra Universalis 66, 69-79 (2011)
[5] Czédli, G., Schmidt, E. T.: Slim semimodular lattices. I. A visual approach, Order 29, 481497 (2012)
[6] Czédli, G., Schmidt, E. T.: Composition series in groups and the structure of slim semimodular lattices, Acta Sci Math. (Szeged) 79, 369-390 (2013)
[7] Erné, M., Heitzig, J. Reinhold, J.: On the number of distributive lattices, Electron. J. Combin. 9 (2002), no. 1, Research Paper 24, 23 pp.
[8] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices I. Construction, Acta Sci. Math. (Szeged). 73, 445-462 (2007)
[9] Heitzig, J., Reinhold, J.: Counting finite lattices, Algebra Universalis 48, 43-53 (2002)
[10] Kelly, D., Rival, I.: Planar lattices. Canad. J. Math. 27, 636-665 (1975)
[11] Nation, J. B.: Notes on Lattice Theory, http://www.math.hawaii.edu/~jb/books.html
[12] Pawar, M. M., Waphare, B. N.: Enumeration of nonisomorphic lattices with equal number of elements and edges, Indian J. Math. 45, 315-323 (2003)
[13] Wielandt, H: Eine Verallgemeinerung der invarianten Untergruppen, Math. Zeit. 45, 209-244 (1939)

E-mail address: czedli@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/~czedli/
University of Szeged, Bolyai Institute, Szeged, Aradi vértanúk tere 1, HUNGARY 6720


[^0]:    Date: June 23, 2015.
    Key words and phrases. Counting lattices, semimodularity, planar lattice diagram, slim semimodular lattice.

    2010 Mathematics Subject Classification. 06C10.
    This research was supported by the NFSR of Hungary (OTKA), grant numbers K77432 and K83219, and by TÁMOP-4.2.1/B-09/1/KONV-2010-0005.

