THE ASYMPTOTIC NUMBER OF PLANAR, SLIM, SEMIMODULAR LATTICE DIAGRAMS

GÁBOR CZÉDLI

ABSTRACT. A lattice L is slim if it is finite and the set of its join-irreducible elements contains no three-element antichain. We prove that there exists a positive constant C such that, up to similarity, the number of planar diagrams of slim semimodular lattices of size n is asymptotically $C \cdot 2^n$.

1. Introduction and the result

A finite lattice L is slim if Ji L, the set of join-irreducible elements of L, contains no three-element antichain. Equivalently, L is slim if Ji L is the union of two chains. Slim, semimodular lattices were heavily used while proving a recent generalization of the classical Jordan-Hölder theorem for groups in [4]. These lattices are planar, that is, they have planar diagrams, see [4]. Hence it is reasonable to study their planar diagrams, which are called slim, semimodular (lattice) diagrams for short. The size of a diagram is the number of elements of the lattice it represents. Let D_1 and D_2 be two planar lattice diagrams. A bijection $\phi \colon D_1 \to D_2$ is a similarity map if it is a lattice isomorphism preserving the left-right order of (upper) covers and that of lower covers of each element of D_1 . If there is a similarity map $D_1 \to D_2$, then these two diagrams are similar, and we will treat them as equal. Let $N_{\rm ssd}(n)$ denote the number of slim, semimodular diagrams of size n, counting them up to similarity. Our target is to prove the following result.

Theorem 1.1. There exists a positive constant C < 1 such that $N_{ssd}(n)$ is asymptotically $C \cdot 2^n$, that is, $\lim_{n \to \infty} (N_{ssd}(n)/2^n) = C$.

Given two composition series in a finite group, the intersections of their members form a slim semimodular lattice with respect to " \supseteq ". This follows from Wielandt [13]; see also the proof of Nation [11, Theorem 9.8]. Conversely, [6] proves that every slim semimodular lattice can be represented in this way. Therefore, in a reasonable, order theoretic sense, Theorem 1.1 tells us how many ways the members of two composition series in a group can intersect each other, provided that there are exactly n intersections and that we make a distinction between the first composition series and the second one.

Note that there are two different methods to deal with $N_{\text{ssd}}(n)$. The present one yields the asymptotic statement above, while the method of [1] gives the exact

Date: June 23, 2015.

 $Key\ words\ and\ phrases.$ Counting lattices, semimodularity, planar lattice diagram, slim semimodular lattice.

 $^{2010\} Mathematics\ Subject\ Classification.\ 06C10.$

This research was supported by the NFSR of Hungary (OTKA), grant numbers K77432 and K83219, and by $T\acute{A}MOP-4.2.1/B-09/1/KONV-2010-0005$.

2 G. CZÉDLI

FIGURE 1. Left and right ranks

values of $N_{\rm ssd}(n)$ up to n=50 (with the help of a usual personal computer). Also, [1] determines the number $N_{\rm ssl}(n)$ of slim, semimodular *lattices* of size n up to n=50 while we do not even know $\lim_{n\to\infty} \left(N_{\rm ssl}(n)/N_{\rm ssl}(n-1)\right)$, and it is only a conjecture that this limit exists.

Note also that, besides [1] and [2], there are several papers on counting lattices; see, for example, M. Erné, J. Heitzig, and J. Reinhold [7], M. M. Pawar and B. N. Waphare [12], and J. Heitzig and J. Reinhold [9].

2. Lattice theoretic lemmas

A minimal non-chain region of a planar lattice diagram D is called a *cell*. A four-element cell is a 4-*cell*; it is also a *covering square*, that is, a cover-preserving four-element Boolean sublattice. We say that D is a 4-*cell diagram* if all of its cells are 4-cells. We shall heavily rely on the following result of G. Grätzer and E. Knapp [8, Lemmas 4 and 5].

Lemma 2.1. Let D be a finite planar lattice diagram.

- (i) If D is semimodular, then it is a 4-cell diagram. If A and B are 4-cells of D with the same bottom, then these 4-cells have the same top.
- (ii) If D is a 4-cell diagram in which no two 4-cells with the same bottom have distinct tops, then D is semimodular.

In what follows, we always assume that $4 \leq n \in \mathbb{N} = \{1, 2, \ldots\}$, and that D is a slim, semimodular diagram of size n. Let w_D^ℓ be the smallest doubly irreducible element of the left boundary chain $\mathrm{BC}_\ell(D)$ of D, and let $\mathrm{rank}_\ell(D)$ be the height of w_D^ℓ . The left-right duals of these concepts are denoted by w_D^r and $\mathrm{rank}_r(D)$. See Figure 1 for an illustration, where w_D^ℓ and w_D^r are the black-filled elements. By D. Kelly and I. Rival [10, Proposition 2.2], each planar lattice diagram with at least three elements contains a doubly irreducible element $\neq 0, 1$ on its left boundary. This implies the following statement, on which we will rely implicitly.

Lemma 2.2. Either $\operatorname{rank}_{\ell}(D) = \operatorname{rank}_{r}(D) = 0$ and $w_{D}^{\ell} = w_{D}^{r} = 0$, or $\operatorname{rank}_{\ell}(D) > 0$ and $\operatorname{rank}_{r}(D) > 0$.

For $a \in D$, the ideal $\{x \in D : x \leq a\}$ is denoted by $\downarrow a$.

Lemma 2.3. $BC_{\ell}(D) \cap \downarrow w_D^{\ell} \subseteq Ji D.$

Proof. Suppose, for a contradiction, that the lemma fails, and let u be the smallest join-reducible element belonging to $\mathrm{BC}_\ell(D) \cap \downarrow w_D^\ell$. By D. Kelly and I. Rival [10,

Proposition 2.2], there is a doubly irreducible element v of the ideal $\downarrow u = \{x \in D : x \leq u\}$ such that $v \in \mathrm{BC}_\ell(\downarrow u)$; notice that v also belongs to $\mathrm{BC}_\ell(D)$. Clearly, v < u and v is join-irreducible in D. Therefore, since $v < u \leq w_D^\ell$ and w_D^ℓ is the least doubly irreducible element of $\mathrm{BC}_\ell(D)$, v is meet-reducible in D. Hence there exist a $p \in D$ such that $v \prec p$ and $p \notin \downarrow u$. Denote by u_0 the unique lower cover of u in $\mathrm{BC}_\ell(D)$. Since v < u, we have that $v \leq u_0$. By semimodularity and $p \not\leq u_0$, we obtain that $u_0 = u_0 \lor v \prec u_0 \lor p \neq u$. Hence u_0 has two covers, u and $u_0 \lor p$. Thus $u_0, u \in \mathrm{BC}_\ell(D)$, $u_0 \prec u$, u is join-reducible, and u_0 is meet-reducible. This contradicts [5, Lemma 4].

Next, we prove the following lemma.

Lemma 2.4. For $4 \le n \in \mathbb{N}$, we have that

$$(2.1) N_{\rm ssd}(n-1) + N_{\rm ssd}(n-3) \le N_{\rm ssd}(n),$$

$$(2.2) N_{\text{ssd}}(n) \le 2 \cdot N_{\text{ssd}}(n-1).$$

Proof. The set of slim, semimodular diagrams of size n is denoted by SSD(n). Let

$$SSD_{00}(n) = \{D \in SSD(n) : rank_{\ell}(D) = rank_{r}(D) = 0\},$$

 $SSD_{11}(n) = \{D \in SSD(n) : rank_{\ell}(D) = rank_{r}(D) = 1\}, \text{ and }$
 $SSD_{++}(n) = SSD(n) - SSD_{00}(n).$

Since we can omit the least element and the least three elements, respectively, and the remaining diagram is still slim and semimodular by Lemma 2.1, we conclude that $|SSD_{00}(n)| = N_{ssd}(n-1)$ and $|SSD_{11}(n)| = N_{ssd}(n-3)$. This implies (2.1). For $D \in SSD_{++}(n)$, we define

$$D^* = D - \{w_D^\ell\}.$$

We know from By D. Kelly and I. Rival [10, Proposition 2.2], mentioned earlier, that

(2.3)
$$w_D^{\ell} \notin \{0,1\}, \text{ provided } D \in SSD_{++}(n).$$

This, together with the fact that $D \in SSD_{++}(n)$ is not a chain, yields that

(2.4)
$$\operatorname{length} D^* = \operatorname{length} D.$$

Let w_D^{ℓ} denote the unique lower cover of w_D^{ℓ} in D. Since each meet-reducible element has exactly two covers by [5, Lemma 2], we conclude from Lemma 2.3 that

$$(2.5) w_{D^*}^{\ell} = w_D^{\ell}.$$

It follows from Lemma 2.1 that $D^* \in SSD(n-1)$. From (2.5) we obtain that

(2.6)
$$D^* \in SSD(n-1)$$
 determines D .

Hence $|SSD_{++}(n)| \leq |SSD(n-1)| = N_{ssd}(n-1)$. Combining this with $|SSD_{00}(n)| = N_{ssd}(n-1)$ and $SSD(n) = SSD_{00}(n) \cup SSD_{++}(n)$, where \cup stands for disjoint union, we obtain (2.2).

Next, let

$$(2.7) W(n) = SSD(n-1) - \{D^* : D \in SSD_{++}(n)\}.$$

Fortunately, this set is relatively small by the following lemma. The upper integer part of a real number r is denoted by $\lceil x \rceil$; for example, $\lceil \sqrt{3} \rceil = 2$.

G. CZÉDLI

Lemma 2.5. If
$$4 \le n$$
, then $|W(n)| \le \sum_{j=2}^{n+1-\lceil \sqrt{n-1} \rceil} N_{\text{ssd}}(j)$.

Proof. First we show that

4

$$(2.8) W(n) = \{ E \in SSD(n-1) : w_E^{\ell} \text{ is a coatom of } E \}.$$

The \supseteq inclusion is clear from (2.3), (2.4), and (2.5). These facts together with Lemma 2.1 also imply the reverse inclusion since by adding a new cover to w_E^{ℓ} , to be positioned to the left of $\mathrm{BC}_{\ell}(E)$, we obtain a slim semimodular diagram D such that $D^* = E$.

It follows from Lemma 2.3 that no down-going chain starting at w_E^ℓ can branch out. Thus

(2.9)
$$\downarrow w_E^{\ell} \subseteq \mathrm{BC}_{\ell}(E) \text{ and } \downarrow w_E^{\ell} \text{ is a chain.}$$

Since w_E^{ℓ} is a coatom, we have that

(2.10) with the notation
$$E^{\blacktriangleleft} = E \setminus \downarrow w_E^{\ell}, \quad |E^{\blacktriangleleft}| = |E| - \operatorname{length} E.$$

Clearly, E^{\blacktriangleleft} is a join-subsemilattice of E since it is an order-filter. To prove that

(2.11)
$$E^{\blacktriangleleft}$$
 is a slim, semimodular diagram,

assume that $x,y\in E^{\blacktriangleleft}-\{1\}$. We want to show that $x\wedge y$, taken in E, belongs to E^{\blacktriangleleft} . Let x_0 and y_0 be the smallest element of $\mathrm{BC}_{\ell}(E)\cap \downarrow x$ and $\mathrm{BC}_{\ell}(E)\cap \downarrow y$, respectively. Since $x_0,y_0\in \mathrm{BC}_{\ell}(E)\cap (\downarrow w_E^{\ell}-\{w_E^{\ell}\})$, the definition of w_E^{ℓ} implies that x_0 and y_0 are meet-reducible. Hence they have exactly two covers by [5, Lemma 2]. Let x_1 and y_1 denote the cover of x_0 and y_0 , respectively, that do not belong to $\mathrm{BC}_{\ell}(E)$, and let x^+ and y^+ be the respective covers belonging to $\mathrm{BC}_{\ell}(E)$. By the choice of x_0 , we have that $x^+\not\leq x$, whence $x_1\leq x$. Similarly, $y_1\leq y$. Since $\mathrm{BC}_{\ell}(E)$ is a chain and the case $x_0=y_0$ will turn out to be trivial, we can assume that $x_0< y_0$. We know that $x_1\not\leq y_0$ since otherwise x_1 would belong to $\mathrm{BC}_{\ell}(E)$ by (2.9). Using semimodularity, we obtain that $x_1\vee y_0\succ y_0$. Since y_0 has only two covers by [5, Lemma 2] and $x_1\leq y^+$ would imply $x_1\in \mathrm{BC}_{\ell}(E)$ by (2.9), it follows that $x_1\vee y_0=y_1$. Hence $x_1\leq y$, $x_1\leq x$, and $x_1\in E^{\blacktriangleleft}$ imply that $x\wedge y$ belongs to (the order filter) E^{\blacktriangleleft} . Thus E^{\blacktriangleleft} is (to be more precise, determines) a sublattice of (the lattice determined by) E. The semimodularity of E^{\blacktriangleleft} follows from Lemma 2.1. This proves (2.11).

By (2.10) and (2.11), a trivial argument gives that

(2.12)
$$E^{\blacktriangleleft} \in SSD(n - \text{length } E) \text{ and } E^{\blacktriangleleft} \text{ determines } E.$$

Next, we have to determine what values h = length E can take. Clearly, $h \le |E|-1 = n-2$. There are various ways to check that $|E| \le (1+\text{length } E)^2 = (1+h)^2$; this follows from the main theorem of [6], and follows also from the proof of [3, Corollary 2]. Since now |E| = n-1, we obtain that $\lceil \sqrt{n-1} \rceil - 1 \le h$. Therefore, combining (2.11) and (2.12), we obtain that

$$W(n) \le \sum_{h=\lceil \sqrt{n-1} \rceil - 1}^{n-2} N_{\text{ssd}}(n-h).$$

Substituting j for n-h, we obtain our statement.

We conclude this section by the following lemma.

Lemma 2.6.
$$2 \cdot N_{\text{ssd}}(n-1) - \sum_{j=2}^{n+1-\lceil \sqrt{n-1} \rceil} N_{\text{ssd}}(j) \le N_{\text{ssd}}(n) \le 2 \cdot N_{\text{ssd}}(n-1).$$

Proof. By (2.6) and the definition of W(n), we have that

$$\begin{aligned} N_{\rm ssd}(n) &= |{\rm SSD}_{00}(n)| + |{\rm SSD}_{++}(n)| = N_{\rm ssd}(n-1) + |{\rm SSD}(n-1) - W(n)| \\ &= N_{\rm ssd}(n-1) + N_{\rm ssd}(n-1) - |W(n)|, \end{aligned}$$

and the statement follows from Lemma 2.5 and (2.2).

3. Tools from Analysis at work

For $k \geq 2$, define $\kappa_k = N_{\rm ssd}(k)/N_{\rm ssd}(k-1)$. Since $N_{\rm ssd}(n-3)/N_{\rm ssd}(n-1) = 1/(\kappa_{n-1}\kappa_{n-2})$, dividing the inequalities of Lemma 2.4 by $N_{\rm ssd}(n-1)$ we obtain that $1+1/(\kappa_{n-1}\kappa_{n-2}) \leq \kappa_n \leq 2$, for $n \geq 4$. Furthermore, in view of the sentence following (2.7), (2.8) implies easily that $\kappa_n < 2$ if $n \geq 7$. Therefore, since $\kappa_k \leq 2$ also holds for $k \in \{2,3\}$ and $1+1/(2\cdot 2)=5/4$, we conclude that

(3.1)
$$5/4 \le \kappa_n \le 2$$
, for $n \ge 4$, and $\kappa_n < 2$, for $n \ge 7$.

Clearly, $N_{\rm ssd}(k-1) = N_{\rm ssd}(k)/\kappa_k \leq \frac{4}{5} \cdot N_{\rm ssd}(k)$ if $k \geq 4$. Thus, by iteration, we obtain that

$$(3.2) N_{\text{ssd}}(k-j) \le (4/5)^j \cdot N_{\text{ssd}}(k), \text{for } j \in \mathbb{N}_0 \text{ and } k \ge j+4.$$

If $k \geq 5$, then using $N_{\rm ssd}(k) \geq N_{\rm ssd}(5) \geq 3$ (actually, $N_{\rm ssd}(5) = 3$), we obtain that

$$(3.3) N_{\text{ssd}}(1) + \dots + N_{\text{ssd}}(k) = 1 + 1 + 1 + N_{\text{ssd}}(4) + \dots + N_{\text{ssd}}(k)$$

$$\leq 3 + N_{\text{ssd}}(k) \cdot \left((4/5)^{k-4} + (4/5)^{k-5} + \dots + (4/5)^{0} \right)$$

$$\leq N_{\text{ssd}}(k) + N_{\text{ssd}}(k) \cdot 1/(1 - 4/5) = 6N_{\text{ssd}}(k).$$

Combining Lemma 2.6 with (3.3) and (3.2), we obtain that

$$2N_{\rm ssd}(n-1) - 6 \cdot (4/5)^{\lceil \sqrt{n-1} \rceil - 2} \cdot N_{\rm ssd}(n-1) \le 2N_{\rm ssd}(n-1) - 6N_{\rm ssd}(n+1-\lceil \sqrt{n-1} \rceil) \le N_{\rm ssd}(n) \le 2N_{\rm ssd}(n-1).$$

Dividing the formula above by $2N_{\rm ssd}(n-1)$ and (3.1) by 2, we obtain that

(3.4)
$$\max(5/8, 1-3\cdot(4/5)^{\lceil\sqrt{n-1}\rceil-2}) \le \kappa_n/2 \le 1, \text{ for } n \ge 5.$$

Next, let us choose an integer $m \geq 5$, and define

$$z_0 = z_0(m) = \min(3/8, 3 \cdot (4/5)^{\lceil \sqrt{m-1} \rceil - 2}).$$

Lemma 3.1. For $0 \le z < 1$, we have $-\ln(1-z) \le z/(1-z)$. If, in addition, $0 \le z \le z_0$, then $z/(1-z) \le z/(1-z_0)$.

Proof. The second inequality is obvious. The first inequality holds for z = 0 and, for $0 \le z < 1$, the derivative 1/(1-z) of the left side is less than $1/(1-z)^2$, that of the right side. This implies the first inequality.

With the auxiliary steps made so far, we are ready to start the final argument.

6 G. CZÉDLI

Proof of Theorem 1.1. For n > m, let

$$p_n = \prod_{j=m+1}^n (\kappa_j/2).$$

We obtain from (3.4) that $\{p_n\}$, that is, $\{p_n\}_{n=m+1}^{\infty}$, is a decreasing sequence of positive numbers. Clearly,

(3.5)
$$N_{\text{ssd}}(n)/2^n = p_n \cdot N_{\text{ssd}}(m)/2^m$$
.

Hence it suffices to prove that the sequence $\{p_n\}$ converges to a positive number, because then its limit is smaller than 1 by (3.1). Let $s_n = -\ln p_n$, $\mu = 3(1-z_0)^{-1}$, $\alpha = 4/5$, and $\nu = 5\mu/4 = \mu/\alpha$. Note that $\{s_n\}$ is an increasing sequence.

Using (3.4) together with Lemma 3.1 at the inequality marked with \leq' below and (3.4) at the one marked with \leq^* , and using that the function $f(x) = \alpha^{\sqrt{x}}$ is decreasing, we obtain that

$$0 < s_n = \sum_{j=m+1}^n \left(-\ln(\kappa_j/2) \right) \le' \sum_{j=m+1}^n (1 - \kappa_j/2) / (1 - z_0)$$

$$\le^* \mu \cdot \sum_{j=m+1}^n \alpha^{\lceil \sqrt{j-1} \rceil - 2} \le \mu \cdot \sum_{j=m+1}^n \alpha^{\sqrt{j-1} - 1} = \mu \cdot \sum_{k=m}^{n-1} \alpha^{\sqrt{k} - 1}$$

$$= \nu \cdot \sum_{k=m}^{n-1} \alpha^{\sqrt{k}} \le \nu \cdot \int_{x=m-1}^{n-1} \alpha^{\sqrt{x}} dx \le \nu \cdot \left(F(\infty) - F(m-1) \right),$$

where F(x) is a function whose derivative is f(x). Let $\delta = -\ln \alpha = \ln (5/4)$. It is routine to check (by hand or by computer algebra) that, up to a constant summand,

$$F(x) = -2 \cdot \delta^{-2} \cdot (1 + \delta \sqrt{x}) \cdot \alpha^{\sqrt{x}}.$$

Clearly, $F(\infty) = \lim_{x \to \infty} F(x) = 0$. This proves that the sequence $\{s_n\}$ converges; so does $\{p_n\} = \{e^{-s_n}\}$ by the continuity of the exponential function. Therefore, since $N_{\text{ssd}}(m)/2^m$ in (3.5) does not depend on n, we conclude Theorem 1.1. \square

Remark 3.2. We can approximate the constant in Theorem 1.1 as follows. Since $e^{-\nu \cdot (F(\infty) - F(m))} \le e^{-s_n} = p_n \le 1$ and, by (3.5), $C = \lim_{n \to \infty} (p_n N_{\text{ssd}}(m)/2^m)$, we obtain that

$$(3.6) \ e^{\nu F(m)} \cdot N_{\text{ssd}}(m)/2^m = e^{-\nu \cdot (F(\infty) - F(m))} \cdot N_{\text{ssd}}(m)/2^m \le C \le N_{\text{ssd}}(m)/2^m.$$

Unfortunately, our computing power yields only a very rough estimation. The largest m such that $N_{\rm ssd}(50)$ is known is m=50, see [1]. With m=50 and $N_{\rm ssd}(m)=N_{\rm ssd}(50)=81\,287\,566\,224\,125$, it is a routine task to turn (3.6) into

$$0.42 \cdot 10^{-57} \le C \le 0.073$$
.

We have reasons (but no proof) to believe that $0.023 \le C \le 0.073$, see the Maple worksheet (version V) available from the authors's home page.

Acknowledgment. The author is indebted to Vilmos Totik for helpful discussions.

References

- [1] Czédli, G, Dékány, T., Ozsvárt, L., Szakács, N., Udvari, B.: On the number of slim, semi-modular lattices, Mathematica Slovaca, to appear
- [2] Czédli, G., Ozsvárt, L., Udvari, B.: How many ways can two composition series intersect? Discrete Mathematics 312, 3523-3536 (2012)
- [3] Czédli, G., Schmidt, E. T.: How to derive finite semimodular lattices from distributive lattices?, Acta Mathematica Hungarica, 121, 277–282 (2008)
- [4] Czédli, G., Schmidt, E. T.: The Jordan-Hölder theorem with uniqueness for groups and semimodular lattices, Algebra Universalis 66, 69–79 (2011)
- [5] Czédli, G., Schmidt, E. T.: Slim semimodular lattices. I. A visual approach, Order 29, 481–497 (2012)
- [6] Czédli, G., Schmidt, E. T.: Composition series in groups and the structure of slim semimodular lattices, Acta Sci Math. (Szeged) 79, 369–390 (2013)
- [7] Erné, M., Heitzig, J. Reinhold, J.: On the number of distributive lattices, Electron. J. Combin. 9 (2002), no. 1, Research Paper 24, 23 pp.
- [8] Grätzer, G., Knapp, E.: Notes on planar semimodular lattices I. Construction, Acta Sci. Math. (Szeged). 73, 445–462 (2007)
- [9] Heitzig, J., Reinhold, J.: Counting finite lattices, Algebra Universalis 48, 43–53 (2002)
- [10] Kelly, D., Rival, I.: Planar lattices. Canad. J. Math. 27, 636–665 (1975)
- [11] Nation, J. B.: Notes on Lattice Theory, http://www.math.hawaii.edu/~jb/books.html
- [12] Pawar, M. M., Waphare, B. N.: Enumeration of nonisomorphic lattices with equal number of elements and edges, Indian J. Math. 45, 315–323 (2003)
- [13] Wielandt, H: Eine Verallgemeinerung der invarianten Untergruppen, Math. Zeit. 45, 209–244 (1939)

 $E\text{-}mail\ address$: czedli@math.u-szeged.hu URL: http://www.math.u-szeged.hu/ \sim czedli/

University of Szeged, Bolyai Institute, Szeged, Aradi vértanúk tere 1, HUNGARY $6720\,$