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5 Unitizations of generalized pseudo effect

algebras and their ideals

David J. Foulis,∗ Sylvia Pulmannová and Elena Vinceková†

Abstract

A generalized pseudo effect algebra (GPEA) is a partially ordered par-
tial algebraic structure with a smallest element 0, but not necessarily
with a unit (i.e, a largest element). If a GPEA admits a so-called uni-
tizing automorphism, then it can be embedded as an order ideal in its
so-called unitization, which does have a unit. We study unitizations
of GPEAs with respect to a unitizing automorphism, paying special
attention to the behavior of congruences and ideals in this setting.

1 Introduction

An effect algebra (EA) is a bounded partially ordered structure equipped
with a partially defined commutative and associative binary operation called
the orthosummation, often denoted by ⊕ [13]. The smallest element in an
EA, called the zero or neutral element, is usually denoted by 0, and the
largest element, called the unit, is often denoted by 1. For each element a in
an EA, there is a unique element a⊥, called the orthosupplement of a, such
that a⊕ a⊥ = 1.
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Effect algebras were originally introduced to represent possibly fuzzy or
unsharp propositions arising either classically [17] or in quantum measure-
ment theory [1].

The class of EAs includes the class of orthoalgebras [14] and the class of
orthomodular posets [19, p. 27]. The subclass consisting of lattice-ordered
EAs includes the class of MV-algebras [2], the class of orthomodular lattices
[19], and the class of boolean algebras.

In spite of their considerable generality, EAs have been further general-
ized in two ways: (1) By dropping the assumption that the orthosumma-
tion is commutative. (2) By dropping the assumption that there is a unit.
Noncommutative versions of EAs called pseudo effect algebras (PEAs), were
introduced by A. Dvurečenskij and T. Vetterlein in [4, 5] and further studied
in [6, 7, 9, 10, 11, 12, 18, 26]. The investigation of generalized effect algebras

(GEAs), i.e., versions of EAs having no unit, was pioneered by Z. Riečanová
in [21, 22, 23] and further studied in [15, 20]. Finally, by dropping both the
assumption of commutativity and the existence of a unit, one arrives at the
notion of a generalized pseudo effect algebra (GPEA) [7, 8, 16, 25, 26].

It is well known that every GEA E can be embedded as a maximal proper
ideal in an EA Ê called its unitization in such a way that (1) E and Ê \ E

are order-anti-isomorphic under the restrictions of the partial order on Ê;
(2) for all a ∈ Ê, either a ∈ E or else its orthosupplement a⊥ ∈ E; and

(3) for x, y ∈ Ê \ E the orthosum of x and y is not defined [3, Theorem
1.2.6]. This construction of a unitization was extended to so-called weakly
commutative GPEAs in [25]. Recently, in [16], it was shown that a GPEA
P can be embedded as a maximal proper PEA-ideal in a PEA U if and
only if P admits a so-called unitizing GPEA-automorphism. Indeed, the
unitization of a weakly commutative GPEA is a special case in which the
unitizing GPEA-automorphism is the identity mapping.

In this article, which is a continuation of [16], we focus on properties of
congruences and ideals in the setting of a GPEA P and its unitization U with
respect to a unitizing automorphism γ (a so-called γ-unitization). We find
conditions under which a congruence on P can be extended to a congruence
on its γ-unitization U such that the quotient of U is the unitization of the
quotient of P with a unitizing automorphism induced by γ. In particular,
we extend the results obtained in [20] and [25] for unitizations of GEAs and
weakly commutative GPEAs to the more general unitizations of GPEAs with
respect to a unitizing automorphism.

2



We briefly investigate several versions, RDP, RDP0, RDP1, RDP2 of the
Riesz decomposition property in GPEAs and in their γ-unitizations and show
that if P is a total GPEA, i.e., if the orthosum in P is defined for all pairs of
its elements, then P has one of these properties if and only if its γ-unitization
U has the corresponding property.

We also study relations between the existence of a smallest nontrivial
Riesz ideal in a GPEA and the existence of a smallest nontrivial Riesz ideal
in its γ-unitization.

For the reader’s convenience, we devote Sections 2 and 3 below to a brief
review of some basic definitions and facts needed in this article.

We provide several illustrating examples. In [11] it was shown how to
construct a large class of PEAs by starting with the positive cone G+ of
a po-group G, a nonempty indexing set I, and two bijections λ, ρ : I → I.
In [12], this construction was extended by replacing G+ by a more general
GPEA E. At the end of Section 3, we review this construction and relate it
to our work in this article.

2 Generalized pseudo effect algebras

We begin this section by recalling the definition of a GPEA [16, Definition
2.6] and we observe that PEAs, GEAs, and EAs are special kinds of GPEAs.
Axiomatic characterizations of PEAs, GEAs, and EAs can be found in [16,
§2]. Also we review some of the basic properties of these partially ordered,
partial algebraic structures. We abbreviate ‘if and only if’ by ‘iff’ and the
symbol := means ‘equals by definition.’

2.1 Definition. A generalized pseudo effect algebra (GPEA) [7, 8] is a partial
algebraic structure (P ;⊕, 0), where ⊕ is a partial binary operation on P
called the orthosummation, 0 is a constant in P called the zero element, and
the following conditions hold for all a, b, c ∈ P :

(GPEA1) a⊕ b and (a⊕ b)⊕ c exist iff b⊕ c and a⊕ (b⊕ c) exist and in this
case (a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity).

(GPEA2) If a⊕ b exists, then there are elements c, d ∈ P such that a⊕ b =
c⊕ a = b⊕ d (conjugation).

(GPEA3) If a⊕ c = b⊕ c, or c⊕ a = c⊕ b, then a = b (cancellation).

(GPEA4) a⊕ 0 = 0⊕ a = a (neutral element).

3



(GPEA5) If a⊕ b = 0, then a = 0 = b (positivity).

If no confusion threatens, we often denote the GPEA (P ;⊕, 0) simply by
P . If we write an equation involving an orthosum of elements of P without
explicitly assuming the existence thereof, we understand that its existence is
implicitly assumed.

Let P be a GPEA and let a, b, c ∈ P . By (GPEA3), the elements c, d
in (GPEA2) are uniquely determined. A partial order ≤ is defined on the
GPEA P (the induced partial order) by stipulating that a ≤ b iff there is
(a necessarily unique) c ∈ P with a ⊕ c = b, or equivalently, iff there is (a
necessarily unique) d ∈ P with d ⊕ a = b. For all a ∈ P , we have 0 ≤ a.
Moreover, the cancellation laws (GPEA3) can be extended to ≤ as follows:
If a⊕ c ≤ b⊕ c or c⊕ a ≤ c⊕ b, then a ≤ b.

Partial binary operations left subtraction � and right subtraction � are
defined on P as follows: For a, b ∈ P , a�b and b�a are defined iff a ≤ b,
in which case (1) a�b := c, where c is the unique element of P such that
a ⊕ c = b and (2) b�a := d, where d is the unique element of P such that
d⊕ a = b.

2.2 Definition. Let P be a GPEA and let I and S be nonempty subsets of
P . Then:

(1) I is an order ideal iff a ∈ I, b ∈ P , and b ≤ a implies that b ∈ I.

(2) I is an ideal iff I is an order ideal and whenever a, b ∈ I and a ⊕ b is
defined, it follows that a⊕ b ∈ I.

(3) An ideal I in P is said to be normal iff whenever a, b, c ∈ P and
a⊕ c = c⊕ b, then a ∈ I ⇔ b ∈ I.

(4) S is a sub-GPEA of P iff, whenever two of the elements a, b, c ∈ P
belong to S and a⊕ b = c, then the third element also belongs to S.

Every ideal I in P is a sub-GPEA, and every sub-GPEA S in P is a
GPEA in its own right under the restriction to S of the orthosummation on
P .

2.3 Lemma. Let P be a GPEA, let I be a normal ideal in P , let a, b ∈ P ,
and suppose that a ⊕ b is defined. Then b ∈ I iff (a ⊕ b)�a ∈ I; likewise,
a ∈ I iff b�(a⊕ b) ∈ I.
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Proof. Observe that ((a⊕ b)�a)⊕a = a⊕ b and b⊕ (b�(a⊕ b)) = a⊕ b.

A GPEA P is said to be total iff a⊕ b is defined for all a, b ∈ P .

2.4 Example. Let G be an additively-written, not necessarily Abelian par-

tially ordered group (po-group). Then the positive cone G+ := {a ∈ G : 0 ≤
a} is a total GPEA with orthosummation ⊕ given by the restriction to G+

of the group operation + on G. In this case, the induced partial order on the

GPEA G+ is the restriction to G+ of the partial order on G.

If P and Q are GPEAs, then a mapping φ : P → Q is a GPEA-morphism

iff, for all a, b ∈ P , if a ⊕ b exists in P , then φa ⊕ φb exists in Q, and
φ(a ⊕ b) = φa ⊕ φb. A bijective GPEA-morphism φ : P → Q is a GPEA-

isomorphism of P onto Q iff φ−1 : Q → P is also a GPEA-morphism. A
GPEA-automorphism of P is GPEA-isomorphism φ : P → P .

It is not difficult to show that a bijective GPEA-morphism φ : P → Q is
a GPEA-isomorphism iff, whenever a, b ∈ P and φa ⊕ φb exists in Q, then
a⊕ b exists in P .

A pseudo effect algebra (PEA) is a GPEA with a largest element, called
the unit and often denoted by 1 ([16, Definition 2.3]). Let P be a PEA with
unit 1. Clearly, the only element z ∈ P such that z ⊕ 1 (or 1 ⊕ z) exists
is z = 0. Also, for a ∈ P , we have a ≤ 1 whence we define a∼ := a�1
and a− := 1�a. Thus, a∼ and a−, called the right supplement and the
left supplement of a, respectively, are the unique elements in P such that
a⊕ a∼ = a− ⊕ a = 1. If it happens that a∼ = a−, then the common element
is called the orthosupplement of a and is written as a⊥. The PEA P is said
to be symmetric iff a⊥ = a∼ = a− for all a ∈ P [10].

2.5 Example. Let G be any (additively written and not necessarily Abelian)
po-group and choose an element 0 ≤ u ∈ G. Let G[0, u] := {a ∈ G : 0 ≤ a ≤
u}, and define a⊕b for a, b ∈ G[0, u] iff a+b ≤ u, in which case a⊕b := a+b.
Then (G[0, u];⊕, 0, u) is a PEA and the induced partial order coincides with

the partial order on G restricted to G[0, u]. We note that, if a, b ∈ G[0, u]
and a ≤ b, then a∼ = −a + 1, a− = 1− a, a�b = −a + b, and b�a = b− a.

Some important basic properties of PEAs are collected in the following
theorem (see [16, Theorem 2.4]).

2.6 Theorem. Let P be a PEA and let a, b, c ∈ P . Then: (i) 0∼ = 0− = 1
and 1∼ = 1− = 0. (iv) a∼− = a−∼ = a. (ii) a ⊕ b = c iff b− = c− ⊕ a. (vii)
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a ⊕ b∼ = c∼ iff c ⊕ a = b. (iii) a∼ ⊕ b = c∼ iff b− = c ⊕ a∼ iff b−− ⊕ c = a.
(iv) a ≤ b iff b∼ ≤ a∼ iff b− ≤ a−. (v) Both a 7→ a∼ and a 7→ a− are
order-reversing bijections on P . (vi) a⊕ b exists iff b ≤ a∼ iff a ≤ b−.

In a straightforward way, one can derive formulas for left and right sub-
traction as illustrated by the following lemma, the proof of which we omit.

2.7 Lemma. Let P be a PEA and let a, b ∈ P . Then: (i) a ≤ b ⇒ b�a =
(a ⊕ b∼)− and a�b = (b− ⊕ a)∼. (ii) b−− ≤ a ⇒ b−−�a = (a∼ ⊕ b)−. (iii)
b ≤ a∼ ⇒ a ≤ b−, a∼�b = (b−− ⊕ a)∼, b−�a = (a ⊕ b)−, and a∼�b =
(b−− ⊕ a)∼.

2.8 Lemma. Let P be a PEA, let I be a normal ideal in P , and let a, b ∈ P .
Then: (i) a ∈ I iff a−− ∈ I iff a∼∼ ∈ I. (ii) a− ∈ I iff a∼ ∈ I.

Proof. Part (i) follows from the facts that a−− ⊕ a− = 1 = a− ⊕ a and
a⊕a∼ = 1 = a∼⊕a∼∼. Part (ii) is a consequence of a⊕a∼ = 1 = a−⊕a.

A state on a PEA P is a mapping s : P → [0, 1] ⊆ R such that (S1)
s(1) = 1 and (S2) s(a⊕ b) = s(a) + s(b) whenever a⊕ b exists in P . If P is
a PEA and s is a state on P , then the kernel of s, i.e., s−1(0) = {a ∈ P :
s(a) = 0}, is a normal ideal in P .

If P and Q are PEAs, then a mapping φ : P → Q is a PEA-morphism

iff it is a GPEA-morphism and φ1 = 1. The latter property is automatically
satisfied if φ is surjective. If φ : P → Q is a bijective PEA-morphism and
φ−1 is also a PEA-morphism, then φ is a PEA-isomorphism of P onto Q. A
PEA-automorphism of P is a PEA-isomorphism φ : P → P .

A GPEA (and in particular, a PEA) P is said to be weakly commutative

iff, for all a, b ∈ P , if a⊕ b is defined, then b⊕ a is defined [26]. It turns out
that a PEA is symmetric iff it is weakly commutative [10, 25].

Naturally, a GPEA P is said to be commutative iff, for all a, b ∈ P , if
a⊕ b is defined, then b⊕a is defined, and then a⊕ b = b⊕a. A commutative
GPEA is the same thing as a generalized effect algebra (GEA) [16, Definition
2.2] and a commutative PEA is the same thing as an effect algebra (EA) [13],
[16, Definition 2.1].

It can be shown that a GEA is total iff it can be realized, as per Example
2.4 as the positive cone in a directed Abelian po-group.

A prototype for EAs is the system of all self-adjoint operators between
zero and identity on a Hilbert space H (the system of so-called effect operators

on H).
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In many important examples, an effect algebra is an interval G[0, u] =
{a ∈ G : 0 ≤ a ≤ u}, as per Example 2.5, in the positive cone of an Abelian
po-group G. For instance, the set of all effect operators on a Hilbert space H
is the interval G(H)[0, I] in the po-group G(H) (with the usual partial order)
of all self-adjoint operators on H. For more details about EAs and GEAs,
see [3].

3 Unitization of a GPEA

In this section we review the notion of a binary unitization of a GPEA and
some of its properties [16].

3.1 Definition. [16, Definition 3.1] If (P ;⊕, 0) is a GPEA, then a PEA
(U ; +, 0, 1) is called a binary unitization of P iff the following conditions are
satisfied:

(U1) P ⊆ U and if a, b ∈ P , then a⊕ b exists in P iff a+ b exists in U ,
and then a⊕ b = a+ b.

(U2) 1 /∈ P .

(U3) If x, y ∈ U \ P , then x+ y is undefined.

In this paper, as in [16], we shall be considering only binary unitizations ;
hence, for simplicity, we usually omit the adjective ‘binary’ in what follows.
See [16, Theorem 3.3] for some of the basic properties of a unitization U of a
GPEA P ; in particular, for the fact that P is a normal maximal proper ideal

of U . By [16, Theorem 5.3], a PEA U is a unitization of some GPEA P iff

U admits a two-valued state s, and in this case, P is the kernel of s.

3.2 Definition. If P is a GPEA, then a GPEA-automorphism γ : P → P is
said to be unitizing iff, for all a, b ∈ P , γa⊕ b is defined iff b⊕ a is defined.

Obviously, if P is a total GPEA, then every GPEA-automorphism of P
is unitizing. Also, P is weakly commutative iff the identity mapping on P is
a unitizing GPEA-automorphism. By [16, Lemma 2.5, Lemma 2.7], a PEA
admits one and only one unitizing GPEA-automorphism, namely a 7→ a−−.

The next theorem describes the construction of a unitization of a GPEA
P having a unitizing automorphism γ.
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3.3 Theorem. [16, Theorem 4.2] Let (P ;⊕, 0) be a GPEA, let γ : P → P be

a unitizing GPEA-automorphism, let P η be a set disjoint from P and with the

same cardinality as P , and let η : P → P η be a bijection. Define U := P ∪P η

and let + be the partial binary operation on U defined as follows:

(1) If a, b ∈ P , then a + b is defined iff a ⊕ b is defined, in which case

a+ b := a⊕ b.

(2) If a ∈ P and x ∈ U \ P with b := η−1x, then a+ x is defined iff a ≤ b,
in which case a+ x := ηc ∈ P η = U \P , where c is the unique element

of P such that c⊕a = b. Thus, for a, b ∈ P , a+ ηb is defined iff a ≤ b,
in which case a + ηb = η(b�a) ∈ U \ P .

(3) If b ∈ P and y ∈ U \P with a := η−1y, then y+ b is defined iff γb ≤ a,
in which case y + b := ηc ∈ P η = U \ P where c is the unique element

of P such that γb ⊕ c = a. Thus, for a, b ∈ P , ηa + b is defined iff

γb ≤ a, in which case ηa+ b = η(γb�a) ∈ U \ P .

(4) If x, y ∈ P η = U \ P , then x⊕ y is undefined.

Then, with 1 := η0, (U ; +, 0, 1) is a PEA and it is a unitization of the GPEA

(P ;⊕, 0). Moreover, for a ∈ P , we have ηa = a∼ ∈ U \P and γa = a−− ∈ P .

We shall refer to the unitization U of P as constructed in Theorem 3.3
by using the unitizing automorphism γ as the γ-unitization of P .

Suppose that V is a unitization of the GPEA P and that γ : P → P is the
restriction to P of the mapping x 7→ x−− on V . Then by [16, Theorem 3.3
(viii)], γ is a unitizing GPEA-automorphism of P called the unitizing GPEA-

automorphism of P corresponding to V . Therefore, a GPEA P admits a

unitization iff it admits a unitizing GPEA-automorphism.

The proof of the following theorem, using the results of [16, Theorem 3.3],
is fairly straightforward, and we omit it here.

3.4 Theorem. Let V be a unitization of the GPEA P , let γ : P → P be the

corresponding unitizing GPEA-automorphism, and let U be the γ-unitization
of P . Then there exists a unique PEA-isomorphism of U onto V that reduces

to the identity on P , namely the mapping φ : U → V defined by φa = a for

a ∈ P and φx := (x−U )∼V for x ∈ U \ P .
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3.5 Example. [10, Examples 2.13 and 3.2] Let G be a directed po-group with

center C(G), let c ∈ G, let Z
→

×G be the lexicographic product of the ordered

group of integers Z with G, and let 0 < n ∈ Z. Define the interval PEA

U := (Z
→

× G)[(0, 0), (n, c)]. Then U is symmetric (weakly commutative) iff

c ∈ C(G).
Now we consider the case n = 1 and c /∈ C(G). Then the PEA U =

(Z
→

×G)[(0, 0), (1, c)] is not symmetric. Define a two-valued state s on U by

(1) s(0, g) = 0 if 0 ≤ g ∈ G, and (2) s(1, g) = 1 if c ≥ g ∈ G.

Then by [16, Theorem 5.3], the set P := s−1(0) = {(0, g) : 0 ≤ g} forms a

normal maximal proper ideal in U , P is a GPEA isomorphic to the GPEA

G+ (Example 2.4), and U is a unitization of P . Note that P is a total GPEA,

hence P is weakly commutative. To find the unitizing GPEA-automorphism

γ, we observe that

(0, g)− + (0, g) = (1, c) ⇒ (0, g)− = (1, c− g), and

(0, g)−− + (1, c− g) = (1, c) ⇒ (0, g)−− = (0, c− (c− g)).

Thus for the element (0, g) ∈ P , γ(0, g) = (0, c− (c− g)).

We conclude this section with a presentation of an important class of
PEAs, called kite algebras, constructed by A. Dvurečenskij in [12]. As we
shall see, every kite algebra is a unitization of a GPEA. In our presentation,
we shall find it convenient to make some small changes in the notation of
[12]. First, for consistency with our notation above, we use P , rather than
E, for the base GPEA from which a kite algebra is constructed. Second, for
the bijections λ and ρ in [12], we change notation to reduce the number of
occurrences of λ−1 and ρ−1. Third, for ease of comparison with Theorem 3.3
we replace a by ηa. Fourth, we use K rather than Kλ,ρ

I for a kite algebra.
Thus, for the remainder of this section we assume that (P ;⊕, 0) is a

GPEA, I is a nonempty indexing set, and λ, ρ : I → I are bijections. We

organize P I into a GPEA (P I ;⊕P I , 0I) where ⊕P I is the obvious coordinate-

wise orthosummation and 0I is the family in P I all the elements of which are

0. Let P η be a set disjoint from P and with the same cardinality as P and

let η : P → P η be a bijection.

Evidently, P is total (respectively, weakly commutative) iff P I is total
(respectively, weakly commutative).
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The following conditions on the bijections λ, ρ : I → I were introduced in
[12] (but with λ and ρ replaced by λ−1 and ρ−1): For all (ai)i∈I , (bi)i∈I ∈ P I

and for all i ∈ I,

(KCI) aρi ⊕ bi exists in P iff bi ⊕ aλi exists in P , and

(KCII) aλi ⊕ bi exists in P iff bi ⊕ aρi exists in P .

Obviously, if λ = ρ, then conditions (KCI) and (KCII) are identical, and in
this case it can be shown that they both hold iff P is a total GPEA. On the
other hand, if P is a total GPEA, then (KCI) and(KCII) are automatically
satisfied. In [12], it is assumed that the bijections λ, ρ : I → I satisfy both
conditions (KCI) and (KCII). Later in Lemma 3.8 and Theorem 3.9, we shall
assume (KCI), but not necessarily (KCII).

3.6 Definition. Noting that P I and (P η)I are disjoint, we define

K := P I ∪ (P η)I

and we define 0K ∈ P I and 1K ∈ (P η)I by

0K := 0I and 1K = (ηci)i∈I , where ci := 0 for all i ∈ I.

We organizeK into a partial algebra (K; +, 0K , 1K), where the partial binary
operation + on K is defined as follows: If (ai)i∈I , (bi)i∈I ∈ P I , then

(K1) (ai)i∈I + (bi)i∈I := (ai ⊕ bi)i∈I iff ai ⊕ bi exists in P for all i ∈ I.

(K2) (ai)i∈I + (ηbi)i∈I := (η(bi�aλi))i∈I iff aλi ≤ bi for all i ∈ I.

(K3) (ηai)i∈I + (bi)i∈I := (η(bρi�ai))i∈I iff bρi ≤ ai for all i ∈ I.

(K4) (ηai)i∈I + (ηbi)i∈I is undefined.

If K is a PEA, it is called the kite algebra determined by P , I, λ, and ρ.

By (K1), the restriction of + to the GPEA P I coincides with⊕P I , whence,
for all (ai)i∈I , we have (ai)i∈I + 0K = 0K + (ai)i∈I . Also, by (K2) and (K3),
0K + (ηai)i∈I = (ηai)i∈I + 0K = (ηai)i∈I . Furthermore, by (K2) and (K3),
(ai)i∈I + 1K is defined iff 1K + (ai)i∈I is defined iff (ai)i∈I = 0K , whereas by
(K4), (ηai)i∈I + 1K and 1K + (ηai)i∈I are undefined. If K is a kite algebra,
it is obviously a (binary) unitization of P I .

3.7 Definition. Define γ : P I → P I by

γ((ai)i∈I) = (aρλ−1i)i∈I for all (ai)i∈I ∈ P I .

10



3.8 Lemma. (KCI) holds iff γ is a unitizing GPEA-automorphism on P I.

Proof. Clearly, γ is a GPEA-automorphism on P I . Assume that (KCI) holds.
Replacing i by λ−1i in (KCI), we find that, for all (ai)i∈I , (bi)i∈I ∈ P I and
for all i ∈ I,

aρλ−1i ⊕ bλ−1i exists in P iff bλ−1i ⊕ ai exists in P. (1)

Now, given any (ci)i∈I ∈ P I , we let bi := cλi in (1), so that bλ−1i = ci, and
we have, for all (ai)i∈I , (ci)i∈I ∈ P I and for all i ∈ I,

aρλ−1i ⊕ ci exists in P iff ci ⊕ ai exists in P. (2)

Therefore, γ is a unitizing GPEA-automorphism on P I . Conversely, if (2)
holds, then by first replacing i by λi, then putting bi := cλi, we arrive back
at (KCI).

Suppose that (KCI) holds, so that, by Lemma 3.8, γ is a unitizing GPEA-
automorphism on P I . Therefore, we can construct the γ-unitization U of P I

as per Theorem 3.3. To do this, we begin by putting (P I)η := (P η)I and we
choose for the bijection from P I to (P I)η the mapping—also denoted by η—
defined by η(ai)i∈I := (ηai)i∈I for all (ai)i∈I ∈ P I . (This dual use of η should
not cause any confusion.) Then, as a set, the γ-unification U = P I ∪ (P I)η

of P I is the same as K. However, as per Theorem 3.3 and the definition of
γ, U is organized into a PEA (U ; +U , 0U , 1U) as follows: 0U := 0K , 1U := 1K ,
and for (ai)i∈I , (bi)i∈I in P I :

(U1) (ai)i∈I +U (bi)i∈I := (ai ⊕ bi)i∈I iff ai ⊕ bi is defined in P for all i ∈ I.

(U2) (ai)i∈I +U (ηbi)i∈I := (η(bi�ai))i∈I iff ai ≤ bi for all i ∈ I.

(U3) (ηai)i∈I +U (bi)i∈I := (η(bρλ−1i�ai))i∈I iff bρλ−1i ≤ ai for all i ∈ I.

(U4) (ηai)i∈I +U (ηbi)i∈I is undefined.

According to (U1), the restriction of +U to P I coincides with ⊕P I , whence
it also coincides with the restriction of + to P I .

3.9 Theorem. Suppose that (KCI) holds. Then the mapping φ : U → K
defined for all (ai)i∈I ∈ P I by

φ(ai)i∈I := (ai)i∈I and φ((ηai)i∈I) = (ηaλi)i∈I
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is an isomorphism of the PEA (U ; +U , 0U , 1U) onto the partial algebra (K;
+, 0K, 1K) such that the restriction of φ to P I is the identity mapping. There-

fore, (K; +, 0K , 1K) is a PEA, K is a kite algebra, and φ : U → K is a PEA-

isomorphism. Furthermore, if ψ : U → K is any PEA-morphism such that

the restriction of ψ to P I is the identity mapping, then ψ = φ.

Proof. Obviously, the restriction of φ to P I is the identity mapping, φ0U =
0K , φ1U = 1K , and φ : U → K is a bijection. In fact, for all (ai)i∈I ∈ P I ,
φ−1(ai)i∈I := (ai)i∈I and φ−1((ηai)i∈I) = (ηaλ−1i)i∈I . To complete the proof
that φ : U → K is a PEA-isomorphism, we have to prove that

(i) If p, q ∈ U and p+U q is defined in U , then φp+φq is defined in K and
φ(p+U q) = φp+ φq and

(ii) If s, t ∈ K and s+ t is defined in K, then φ−1s+U φ
−1t is defined in U

and φ−1(s+ t) = φ−1s+U φ
−1t.

To prove condition (i), assume that p, q ∈ U . There are only two non-
trivial cases to consider.
Case 1 : p = (ai)i∈I ∈ P I and q = (ηbi)i∈I ∈ (P η)I .
Case 2 : p = (ηai)i∈I ∈ (P η)I and q = (bi)i∈I ∈ P I .

In Case 1, suppose that p +U q is defined in U . Then by (U2), ai ≤ bi,
whence aλi ≤ bλi for all i ∈ I, and

p +U q = (η(bi�ai))i∈I for all i ∈ I, so

φp = (ai)i∈I , φq = (ηbλi)i∈I , φ(p+U q) = (η(bλi�aλi))i∈I ,

and by (K2),

φp+ φq = (ai)i∈I + (ηbλi)i∈I := (η(bλi�aλi)i∈I = φ(p+U q).

In Case 2, suppose that p+U q is defined in U . Then by (U3), bρλ−1i ≤ ai,
whence aρi ≤ bλi for all i ∈ I, and

p +U q = (η(bρλ−1i�ai)i∈I for all i ∈ I, so

φp = (ηaλi)i∈I , φq = (bi)i∈I , φ(p+U q) = (η(bρi�aλi))i∈I ,

and by (K3),

φp+ φq = (ηaλi)i∈I + (bi)i∈I = (η(bρi�aλi)i∈I = φ(p+U q),

12



completing the proof of (i).
The proof of (ii) is a straightforward computation similar to the proof of

(i), and is therefore omitted. Thus, we may conclude that φ is an isomorphism
of U onto K that reduces to the identity on P I ; hence K is a PEA.

Finally, suppose that ψ : U → K is any PEA-morphism such that the
restriction of ψ to P I is the identity mapping. According to (U4) with
bi = ai for all i ∈ I, for all (ai)i∈I ∈ P I ,

(ai)i∈I +U (ηai)i∈I = 1U , whence (ai)i∈I + ψ(ηai)i∈I = 1K .

But by (K2), we also have (ai)i∈I + (ηaλi)i∈I = 1K , and it follows from
cancellation that

ψ(ηai)i∈I = (ηaλi)i∈I = φ(ηai)i∈I .

Therefore, ψ = φ.

The proof of the following corollary is now straightforward.

3.10 Corollary. Suppose that (KCI) holds. Then, for all (ai)i∈I , the left and
right negations on the kite algebra K are as follows:

(LN) ((ai)i∈I)
− = (ηaρi)i∈I and ((ηai)i∈I)

− = (aλ−1i)i∈I ,

(RN) ((ai)i∈I)
∼ = (ηaλi)i∈I and ((ηai)i∈I)

∼ = (aρ−1i)i∈I ,

and from (LN), we have

((ai)i∈I)
−− = (aρλ−1i)i∈I = γ(ai)i∈I .

Therefore, (K; +, 0K, 1K) is a (binary) unitization of P I with γ as its unitiz-

ing PEA-automorphism.

If G is an additively written po-group and if we put P := G+ (Example
2.4), then P is total and the PEA K is what A. Dvurečenskij originally called
a kite PEA in [11].

4 Congruences and ideals in GPEAs and in

their unitizations

In what follows, we will need some facts about congruences and ideals in
GPEAs.
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4.1 Definition. [25, Definition 2.1] A binary relation ∼ on a GPEA P is
called a weak congruence iff it satisfies the following conditions:

(C1) ∼ is an equivalence relation.

(C2) If a⊕ b and a1⊕ b1 both exist, a ∼ a1, and b ∼ b1, then a⊕ b ∼ a1⊕ b1.

A weak congruence is a congruence iff it satisfies the following condition:

(C3) If a ⊕ b exists, then for any a1 ∼ a there is a b1 ∼ b such that a1 ⊕ b1
exists, and for any b2 ∼ b there is an a2 ∼ a such that a2 ⊕ b2 exists.

A congruence ∼ is called a c-congruence iff it satisfies the following condition:

(C4) If a ∼ b and either a⊕ a1 ∼ b⊕ b1 or a1 ⊕ a ∼ b1 ⊕ b, then a1 ∼ b1.

A congruence ∼ is called a p-congruence iff it satisfies the following condition:

(C5) a⊕ b ∼ 0 implies a ∼ b ∼ 0.

Let ∼ be a weak congruence. Denote by [a] the congruence class con-
taining a ∈ P , and let P/∼ denote the set of all congruence classes (the
quotient of P with respect to ∼). We shall say that [a] ⊕ [b] exists iff there
are a1, b1 ∈ P with a1 ∼ a, b1 ∼ b, such that a1 ⊕ b1 exists, in which case,
[a]⊕ [b] := [a1 ⊕ b1].

4.2 Theorem. [25, Corollary 2.1] For a congruence ∼ on a GPEA P , the
quotient (P/∼;⊕, [0]) is a GPEA iff ∼ is both a c-congruence and a p-

congruence.

If P is a PEA, then every congruence on P is a c-congruence and p-
congruence, as can be seen from the following theorem.

4.3 Theorem. [18] A weak congruence ∼ on a PEA P is a congruence iff

the following conditions hold:

(C4′) If a ∼ b, then a∼ ∼ b∼ and a− ∼ b−.

(C5′) a ∼ b ⊕ c implies that there are a1, a2 ∈ P , such that a1 ∼ b, a2 ∼ c
and a = a1 ⊕ a2.

Moreover, (C4′) is equivalent to (C4), and (C5′) implies (C5).
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Of course, if P is a PEA and ∼ is a congruence on P , then P/ ∼ is also
a PEA.

4.4 Definition. An ideal I in a GPEA P is called an R1-ideal iff the fol-
lowing condition holds:

(R1) If i ∈ I, a, b ∈ P , a ⊕ b exists, and i ≤ a ⊕ b, then there are j, k ∈ I
such that j ≤ a, k ≤ b and i ≤ j ⊕ k.

An R1-ideal I is called a Riesz ideal iff the following condition holds:

(R2) If i ∈ I, a, b ∈ P , and i ≤ a, then (i) if (a�i) ⊕ b exists, then there is
j ∈ I such that j ≤ b and a⊕ (j�b) exists, and (ii) if b⊕ (i�a) exists,
then there is k ∈ I such that k ≤ b and (b�k)⊕ a exists.

4.5 Definition. For an ideal I in a GPEA P , we define a ∼I b (a, b ∈ P ) iff
there exist i, j ∈ I, i ≤ a, j ≤ b such that a�i = b�j.

Notice that if I is a normal ideal in the GPEA P , then the condition in
Definition 4.5 that a�i = b�j with i, j ∈ I is equivalent to the condition
that i�a = j�b (see [25, Remark 2.4]). Also, if i ∈ I and i ≤ a ∈ P , then
(a�i)�0 = a�i, so a�i ∼I a.

4.6 Theorem. [25, Theorem 2.3] If I is a normal R1-ideal in a GPEA P ,
then ∼I satisfies (C1), (C2) and (C5′). Moreover, a ∼I 0 iff a ∈ I.

4.7 Theorem. [25, Corollary 2.2] If I is a normal Riesz ideal in a GPEA

P , then ∼I is a c-congruence and p-congruence, hence P/∼I is a GPEA.

Recall that a poset V is upward directed iff for any a, b ∈ V there is c ∈ V
with a, b ≤ c. Similarly V is downward directed iff for any a, b ∈ V there is
d ∈ V with d ≤ a, b.

4.8 Theorem. [25, Proposition 2.2] In an upward directed GPEA P , an

ideal I is a Riesz ideal iff I is an R1-ideal.

4.9 Definition. We say that a congruence ∼ on a GPEA P is a Riesz

congruence iff it satisfies (C4), (C5′) and the following condition:

(CR) If a ∼ b, then there are c, d ∈ P , such that c ≤ a ≤ d, c ≤ b ≤ d,
a�c ∼ b�c ∼ 0, and d�a ∼ d�b ∼ 0.
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4.10 Theorem. [25, Lemma 2.4] If I is a normal Riesz ideal in an upward

directed GPEA P , then ∼I is a Riesz congruence.

4.11 Theorem. Let P be a GPEA. Then:
(i) A congruence ∼ on P satisfying (C4), (C5′) is a Riesz congruence iff

every equivalence class is both downward and upward directed.

(ii) If ∼ is a Riesz congruence on P , then I := {i ∈ P : i ∼ 0} is a

normal Riesz ideal in P . Moreover, ∼=∼I .

Proof. (i) If ∼ is a Riesz congruence, then every equivalence class is upward
and downward directed by [25, Proposition 2.8 (1)]. Conversely, assume that
∼ is a congruence such that every equivalence class is downward and upward
directed and suppose that a ∼ b. Then there exist c, d such that c ≤ a ≤ d,
c ≤ b ≤ d, and c ∼ a ∼ b ∼ d. By (C4) we then obtain a�c ∼ b�c ∼ 0, and
d�a ∼ d�b ∼ 0. Hence ∼ satisfies (CR).

(ii) If x ∈ I and y ≤ x, then (x�y)⊕ y ∼ 0. Since ∼ is a p-congruence,
y ∼ 0 and y ∈ I. If i ∼ 0, j ∼ 0 and i⊕ j exists, then i⊕ j ∼ 0. Thus I is an
ideal. Assume i ∈ I, a, j ∈ P and a⊕ i = j ⊕ a. Then 0⊕ a ∼ a⊕ i = j ⊕ a,
and by (C4) we have 0 ∼ j, whence j ∈ I. Thus I is a normal ideal.

The proof of the R1 property is the same as in the proof of [25, Lemma
2.3].

To prove R2, assume that a, b ∈ P, i ∈ I, and (a�i) ⊕ b exists. Thus
a�i ∼ a and by (C3), there is b1 ∼ b such that a ⊕ b1 exists. Then there
is b2 ≤ b, b1 with b2 ∼ b. From this we get b2 = j�b and a ⊕ b2 exists.
Finally, from b2 = j�b ∼ b we get by (C4) that j ∼ 0. To prove the
remaining statement, assume first that a�i = b�j with i, j ∈ I. Then by
(C4), a�i ⊕ i ∼ b�j ⊕ j, hence a ∼I b implies a ∼ b. Conversely, assume
that a ∼ b. Then by (CR), there is c ∈ P with a�c ∼ b�c ∼ 0, and with
i = a�c ∈ I, j = b�c ∈ I we have i�a = c = j�b, whence a ∼I b.

From here on in this paper, we shall be considering the situation in which

P is a GPEA, γ : P → P is a unitizing GPEA-automorphism on P , and the

PEA U is the γ-unitization of P as per Theorem 3.3. Thus, P η is disjoint

from P , U = P ∪P η, and η : P → P η is a bijection. Moreover, for all a ∈ P ,
ηa = a∼, γa = a−−, and γ−1a = a∼∼. In what follows, we use a, b, c, d, and
e, with or without subscripts, to denote elements of P .

4.12 Theorem. Let P be a GPEA, and let U be its γ-unitization. Then P
is a normal Riesz ideal in U iff P is upward directed.
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Proof. As mentioned earlier, by Theorem [16, Theorem 3.3 (vii)] P is a max-
imal proper normal ideal in U . Let P be a Riesz ideal in U and let a, b ∈ P .
Then b ≤ 1U = a+ηa implies that there are j, k ∈ P such that j ≤ a, k ≤ ηa
and b ≤ j ⊕ k. But then a ⊕ k is an upper bound of both a and b, hence P
is upward directed.

Conversely, assume that P is upward directed. By Theorem 4.8, it suffices
to check condition R1. If i, a, b ∈ P , i ≤ a ⊕ b, this is obvious. Let i ≤
a+ηb = η(b�a). Then (b�a)⊕ i exists in P , and we choose d ∈ P such that
(b�a)⊕ i ≤ d, b ≤ d. Then i ≤ (b�a)�d = a⊕ (b�d), where b�d ≤ ηb.

Now let i ≤ ηa + b. We have ηa + b = b + ηa1 for some a1 ∈ P . From
the previous part of this proof we have that i ≤ b ⊕ c where c ≤ ηa1. Let
c + u = ηa1. Then ηa + b = b + ηa1 = b+ c + u = c1 + b+ u = u1 + c1 + b.
From this, u1 + c1 = ηa, hence c1 ≤ ηa, and i ≤ b⊕ c = c1 ⊕ b.

4.13 Definition. Let P be a GPEA with a unitizing automorphism γ. An
ideal I in P is called γ-closed (or simply a γ-ideal) iff for all a ∈ P , a ∈ I
⇔ γa ∈ I, or equivalently iff I = γI = {γi : i ∈ I}. A congruence ∼ on P is
called a γ-congruence iff a ∼ b⇔ γa ∼ γb.

4.14 Theorem. Let P be a GPEA, γ a unitizing automorphism of P , and U
the γ-unitization of P . If I is a normal Riesz ideal in U , then its restriction

I ∩ P to P is a γ-closed normal Riesz ideal in P .

Proof. Taking into account Lemma 2.8 (i) and the fact that for any a ∈ P ,
γa = a−− ∈ P , the proof is straightforward.

Now we shall consider the question of extending a congruence on the
GPEA P to a congruence on its γ-unitization U .

4.15 Definition. Let U be the γ-unitization of a GPEA P and let ∼ be a
weak congruence on P . Since U = P ∪ P η, P η = U \ P , and η : P → P η is a
bijection, we can, and do, define a binary relation ∼∗ on U by

a ∼∗ b iff a ∼ b and ηa ∼∗ ηb iff a ∼ b for all a, b ∈ P.

If a ∈ P and x ∈ P η = U \ P , we understand that a 6∼∗ x.

4.16 Lemma. Let U be the γ-unitization of the GPEA P , let ∼ be a γ-
congruence on P , and let a, b ∈ P . Then: (i) a− ∼∗ b− iff a ∼ b. (ii)
a ∼ b−− iff a∼∼ ∼ b iff a∼ ∼∗ b−.
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Proof. Assume the hypotheses of the lemma. (i) a− ∼∗ b− iff a−−∼ ∼∗ b−−∼

iff (γa)∼ ∼∗ (γb)∼ iff (γa) ∼ (γb) iff a ∼ b.
(ii) a ∼ b−− iff a∼∼−− ∼ b−− iff γ(a∼∼) ∼ γb iff a∼∼ ∼ b. Also, by (i),

a∼∼ ∼ b iff a∼ = a∼∼− ∼∗ b−.

4.17 Theorem. Let U be the γ-unitization of the GPEA P and let ∼ be a

congruence on P . Then ∼∗ is a congruence on U iff ∼ is a γ-congruence
that satisfies (C4) and (C5′).

Proof. Assume that ∼ is a γ-congruence on P that satisfies (C4) and (C5′).
Evidently, the restriction of∼∗ to P as well as to P η is an equivalence relation;
hence ∼∗ is an equivalence relation on U = P ∪ P η, and we have (C1).

To prove (C2), we concentrate only on the two nontrivial cases corre-
sponding to parts (2) and (3) of Theorem 3.3. Thus let a ∼∗ a1, b

∼ ∼∗ b∼1
and suppose that a + b∼ and a1 + b∼1 exist. Then a ≤ b and a1 ≤ b1, so we
have (b�a)⊕ a = b ∼ b1 = (b1�a1)⊕ a1. Therefore, by (C4), b�a ∼ b1�a1,
whence a + b∼ = (b�a)∼ ∼∗ (b1�a1)

∼ = a1 + b∼1 by Theorem 3.3 (2).
For the remaining case, let a∼ ∼∗ a∼1 , b ∼

∗ b1 and suppose that a∼ + b
and a∼1 + b1 exist. Then γb = b−− ≤ a, so we have γb ⊕ (γb�a) = a ∼
a1 = γb1 ⊕ (γb1�a1). Since b ∼ b1, it follows that γb ∼ γb1 and (C4) implies
that γb�a ∼ γb1�a1. But then, (γb�a)

∼ ∼∗ (γb1�a1)
∼, and we infer from

Theorem 3.3 (3) that a∼ + b ∼∗ a∼1 ⊕ b1. Thus ∼
∗ satisfies (C2).

To prove (C3), we again concentrate only on the nontrivial cases corre-
sponding to parts (2) and (3) of Theorem 3.3. Thus, on the one hand, assume
that a+b∼ exists and let a1 ∈ P with a1 ∼ a. Then a ≤ b and b = (b�a)⊕a.
Therefore by (C3) (in P ) there exists c ∈ P such that c ∼ b�a and c ⊕ a1
exists. By (C2) (in P ), b1 := c⊕ a1 ∼ b, whence b∼1 ∼∗ b∼ and, since a1 ≤ b1,
it follows that a1 + b∼1 exists.

Continuing to assume that a + b∼ exists, we let b2 ∈ P with b∼2 ∼∗ b∼,
whence b2 ∼ b = (b�a) ⊕ a. But then, by (C5′), there exist c, a2 ∈ P such
that b2 = c ⊕ a2 where c ∼ b�a and a2 ∼ a. Since a2 ≤ b2, it follows that
a2 + b∼2 exists.

On the other hand, assume that a∼ + b exists and let a1 ∈ P with a∼1 ∼∗

a∼. Then γb ≤ a and a1 ∼ a = γb⊕ (γb�a). But then, by (C5′), there exist
c, d ∈ P such that a1 = c⊕ d where c ∼ γb = b−− and d ∼ γb�a. But then,
by Lemma 4.16 (ii), b1 := c∼∼ ∼ b; moreover, since c ≤ a1, we have a

∼
1 ≤ c∼,

so a∼1 + c∼∼ = a∼1 + b1 exists.
Continuing to assume that a∼ + b exists, we let b2 ∈ P with b2 ∼

∗ b, i.e.,
b2 ∼ b. Then γb2 ∼ γb, and since γb⊕ (γb�a) = a exists, (C3) implies that
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there exists c ∈ P such that c ∼ γb�a and γb2⊕ c exists. But then, by (C2),
a2 := γb2 ⊕ c ∼ γb ⊕ (γb�a) = a, so a∼2 ∼∗ a∼. Since b−−

2 = γb2 ≤ a2, we
have a∼2 ≤ b−−∼

2 = b−2 , whence γb2 = b−−

2 ≤ a∼−

2 = a, and it follows that
a∼2 + b2 exists. Thus ∼∗ satisfies (C3), so it is a congruence on U .

Conversely, if ∼∗ is a congruence on the PEA U , then by Theorem 4.3,
∼∗ satisfies (C4′), (C4), and (C5′), and thus, of course, ∼ satisfies (C4) and
(C5′) on P . Also, since ∼∗ satisfies (C4′), it follows that ∼ is a γ-congruence
on P .

4.18 Proposition. Let I be a normal (R1)-γ-ideal in the GPEA P , put

∼:=∼I , and let U be the γ-unitization of P . Then the following conditions

are mutually equivalent: (i) ∼∗ satisfies (C3) on U . (ii) I is a normal Riesz

γ-ideal in P . (iii) ∼ is a γ-congruence on P that satisfies (C4) and (C5′).
(iv) ∼∗ is a congruence on U that satisfies (C4), (C4′), (C5′), and (C5).

Proof. By Theorem 4.6, ∼=∼I is a weak congruence on P satisfying (C5′).

(i) ⇒ (ii). Suppose that ∼∗ satisfies (C3) on U . Then also ∼ satisfies (C3)
on P and so it is a congruence on P . Assume that i ∈ I with i ≤ a ∈ P and
that (a�i)⊕ b exists for some b ∈ P . Then we have a�i ∼ a and so by (C3)
there is b1 ∈ P such that a⊕ b1 exists, whence b1 ≤ a∼, and b ∼ b1. Since I
is normal and b ∼ b1, there exist j, k ∈ I with j�b = k�b1. Thus we have
j�b = k�b1 ≤ k ⊕ (k�b1) = b1 ≤ a∼, and it follows that a ⊕ j�b exists.
This proves part (i) of condition (R2) in Definition 4.4, a similar argument
proves part (ii), whence I is also an (R2)-ideal, and we have (ii).

(ii)⇒ (iii). Suppose that I is a normal Riesz γ-ideal in P . Then by Theorems
4.6 and 4.7, ∼=∼I is a γ-congruence on P satisfying (C4) and (C5′).

(iii) ⇒ (iv). If ∼ is a γ-congruence on P satisfying (C4) and (C5′), then by
Theorem 4.17, ∼∗ is a congruence on U . By Theorem 4.3, ∼∗ satisfies (C4′),
(C4), (C5′), and (C5).

(iv) ⇒ (i). A congruence ∼∗ on U satisfies (C3) on U .

4.19 Theorem. Let I be a normal Riesz γ-ideal in the GPEA P , put ∼:=∼I ,

and let U be the γ-unitization of P . Then ∼∗ is a Riesz congruence on U iff

∼ satisfies the following condition on P :

(GCR) a ∼ b ⇒ ∃ i, j ∈ I : i ⊕ a = j ⊕ b, or equivalently ∃ k, ℓ ∈ I :
a⊕ k = b⊕ ℓ.
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Proof. Assume the hypotheses of the theorem. By Proposition 4.18, ∼ is
a γ-congruence on P , ∼∗ is a congruence on U , and both satisfy (C4) and
(C5′). Also, by Theorem 4.6, I = {a ∈ P : a ∼ 0}. Thus, if a ∈ P , i ∈ I, and
i⊕ a exists, then by (C2), a = 0⊕ a ∼ i⊕ a, and therefore a∼ ∼∗ (i⊕ a)∼.

Assume that ∼ satisfies condition (GCR). Consider the following condi-
tion on ∼∗: For all u, v ∈ U ,

(CR′) u ∼∗ v ⇒ ∃ s, t ∈ U : u+s ∼∗ v+s ∼∗ 1, and t+u ∼∗ t+v ∼∗ 1.

According to [25, Proposition 3.1], on the PEA U , condition (CR′) is
equivalent to condition (CR). We shall show that∼∗ satisfies condition (CR′).

Let a, b ∈ P . On the one hand, suppose that a ∼∗ b. Then a ∼ b, whence
by (GCR), there exist i, j, k, ℓ ∈ I with i ⊕ a = j ⊕ b and a ⊕ k = b ⊕ ℓ.
Put s := (i ⊕ a)∼ = (j ⊕ b)∼ and t := (a ⊕ k)− = (b ⊕ ℓ)−. Thus, t =
(γ(a ⊕ k))∼ = (γ(b ⊕ ℓ))∼. Since i ⊕ a ∼ a, we have s ∼∗ a∼ ∼∗ b∼ and
similarly, t ∼∗ a− ∼∗ b−. Also, a ≤ i⊕ a, and it follows that a+ s exists and
a+ s ∼∗ a+ a∼ = 1. Similar computations show that b+ s ∼∗ 1, t+ a ∼∗ 1,
and t + b ∼∗ 1.

On the other hand, suppose that a∼ ∼∗ b∼. Then a ∼I b, whence there
exist i, j ∈ I with a�i = b�j. Put s := (a�i)∼∼ = (b�j)∼∼ and t := a�i =
b�j. We have t = a�i ∼ a, whence s ∼ a∼∼. Also γs = γ((a�i)∼∼) =
a�i ≤ a, and it follows that a∼ + s exists and a∼ + s ∼∗ a∼ + a∼∼ = 1.
Similar computations show that b∼ + s ∼∗ 1, t + a∼ ∼∗ 1, and t + b∼ ∼∗ 1.
Thus, ∼∗ satisfies (CR′), whence it satisfies (CR), and consequently it is a
Riesz congruence on U .

Conversely, let ∼∗ be a Riesz congruence on U and suppose that a, b ∈ P
with a ∼ b. Then by (CR), there exists d ∈ U with d�a ∼∗ d�b ∼∗ 0. Thus
(d�a) + a = d, and since 0 + a = a with 0 ∼∗ d�a and a ∼∗ a, it follows
that d ∼∗ a ∈ P ; hence d ∈ P , d ∼ a ∼ b, and d�a ∼I d�b in P . Therefore,
there exist i, j ∈ I such that d�(i⊕a) = (d�a)�i = (d�b)�j = d�(j⊕ b).
Consequently, i⊕ a = j ⊕ b and (GCR) holds.

4.20 Theorem. If I is a normal Riesz γ-ideal in the GPEA P , then I is

a normal Riesz ideal in the γ-unitization U of P iff ∼I satisfies the (GCR)
condition on P .

Proof. If I is a normal Riesz γ-ideal in P and ∼I satisfies the (GCR) condi-
tion, then by Theorem 4.19 ∼∗

I is a Riesz congruence on U . Since I is the
zero class of this congruence, it is a normal Riesz ideal in U (Theorem 4.11
(ii)).
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Conversely, suppose that I is a normal Riesz ideal in U and let ∼U,I be
the relation induced on U by I as per Definition 4.5. Clearly, the restriction
of ∼U,I to P coincides with ∼I . Also, since U is upward directed, ∼U,I is
a Riesz congruence on U by Theorem 4.10. Thus, by Theorem 4.3, ∼U,I

satisfies (C4) and (C5′) on U , whence by Theorem 4.11 (i), all equivalence
classes in U modulo ∼U,I are upward directed. To prove that ∼I satisfies
GCR, assume that a, b ∈ P with a ∼I b. Then a ∼U,I b, so there exists
r ∈ U such that a, b ≤ r and a ∼U,I b ∼U,I r. As a, b ≤ r, there exist
p, q ∈ U with a + p = b + q = r. Moreover, as a ∼U,I r, there exist i, j ∈ I
such that i ≤ a, j ≤ r = a + p, and a�i = r�j = (a + p)�j. Therefore,
(a�i)+ j = a+ p = (a�i)+ i+ p, whence j = i+ p. But then, p ≤ j ∈ I, so
p ∈ I. A similar argument shows that q ∈ I, and therefore GCR holds.

We remark that, in the proof of Theorem 4.20, ∼U,I=∼∗
I . To prove this,

it will be sufficient to show that, for all a, b ∈ P , a ∼I b ⇔ a∼ ∼U,I b
∼ and

that a ∼U,I b
∼ cannot hold. But by Theorem 4.3, a ∼I b ⇒ a ∼U,I b ⇒

a∼ ∼U,I b
∼. Conversely, by the same theorem, a∼ ∼U,I b

∼ ⇒ a = a∼− ∼U,I

b∼− = b ⇒ a ∼I b. Moreover, if a ∼U,I b
∼, then there exist i, j ∈ I such that

a�i = b∼�j, which yields (a�i)⊕ j = a�i+ j = b∼ 6∈ P , contradicting the
definition of U .

4.21 Corollary. In an upward directed GPEA P , a normal Riesz γ-ideal I
in P is also a normal Riesz ideal in the γ-unitization U of P .

Proof. By the previous theorem, it is sufficient to show that ∼I satisfies
(GCR). So assume that a ∼I b. Since P is upward directed, there exists
c ∈ P with a, b ≤ c, and by (C4), c�a ∼I c�b. Thus there are i, j ∈ I such
that c�(i⊕ a) = (c�a)�i = (c�b)�j = c�(j ⊕ b); hence i⊕ a = j ⊕ b.

4.22 Theorem. Let ∼ be a γ-congruence on a GPEA P which satisfies con-

ditions (C4) and (C5′). Let ∼∗ be the extension of ∼ in the γ-unitization U
of P . Define γ̃ : P/∼ → P/∼ by γ̃[a] = [γa]. Then γ̃ is a unitizing auto-

morphism in P/∼, and U/ ∼∗ is the γ̃-unitization of P/ ∼. In particular,

if I is a normal Riesz γ-ideal on P such that ∼I satisfies (GCR), then the

γ̃-unitization of P/I is U/I.

Proof. By Theorem 4.17, ∼∗ is a congruence on U and so U/ ∼∗ is a PEA.
Clearly, if s, t ∈ U and s ∈ [t] (i.e. s ∼∗ t), then either s, t ∈ P or else
s, t ∈ U \ P =: ηP ; hence [a] ∩ [ηb] = ∅ for all a, b ∈ P . Consequently,
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U/ ∼∗= P/ ∼∗ ∪ ηP/ ∼∗, where the sets on the right are disjoint and
obviously of the same cardinality. Thus we may put η[a] := [ηa].

We have [a] ⊕ [b] ∈ P/∼ for all a, b ∈ P and for a, b ∈ ηP , [a] ⊕ [b] does
not exist. Also [1] = [a]−⊕ [a] = [a]⊕ [a]∼ for any a ∈ P and thus [1] 6∈ P/ ∼.
Therefore U/ ∼∗ satisfies (U1)-(U3) and it is a unitization of P/ ∼ according
to Definition 3.1.

As ∼ is a γ-congruence, γ̃[a] = [γa], a ∈ P , is well defined. If [a] ⊕ [b]
is defined, there are a1 ∼ a, b1 ∼ b such that [a] ⊕ [b] = [a1 ⊕ b1]. Then
γ̃([a] ⊕ [b]) = [γ(a1 ⊕ b1)] = [γa1] ⊕ [γb1] = γ̃[a] ⊕ γ̃[b], hence γ̃ is additive.
Moreover, γ̃[a] = γ̃[b] implies γa ∼ γb, which in turn implies a ∼ b, so that
[a] = [b]. This shows that γ̃ is injective. To prove that γ̃ is surjective, observe
that for all a ∈ P , a = γ(γ−1a), hence [a] = γ̃[γ−1a]. This proves that γ̃
is an automorphism of P/∼. In addition, if [a] ⊕ [b] exists, then there are
a1 ∼ a and b1 ∼ b such that a1 ⊕ b1 is defined in P . Now a1 ⊕ b1 is defined
iff γb1 ⊕ a1 is defined in P , whence [a] ⊕ [b] exists iff γ̃[b] ⊕ [a] exists. This
proves that γ̃ is a unitizing automorphism of P/∼.

In U/∼∗ we have [a] + η[b] is defined iff there are a1, b1, a1 ∼ a, b1 ∼ b
such that a1 + ηb1 = η(b1�a1) is defined and then [a] + η[b] = η[b1�a1] =
η([b]�[a]). Similarly, η[a] + [b] is defined iff there are a1 ∼ a, b1 ∼ b such
that ηa1 + b1 = η(γb1�a1) is defined, and then η[a] + [b] = η[γb1�a1] =
η(γ̃[b]�[a]). This shows that U/∼∗ is a γ̃-unitization of P/∼.

4.23 Example. [10, Example 2.3] Let Z be the group of integers and G =
Z× Z× Z. For any two elements of G we define:

(a, b, c) + (x, y, z) =

{
(a+ x, b+ y, c+ z) : x is even

(a+ x, c+ y, b+ z) : x is odd

and define (a, b, c) ≤ (x, y, z) iff a < x or a = x, b ≤ y, c ≤ z. Then

(G,+,≤) is a lattice-ordered group with strong unit u = (1, 0, 0) and the

interval E := G[(0, 0, 0), (1, 0, 0)] is a PEA.

The elements between (0, 0, 0) and (1, 0, 0) are of two kinds—(0, a, b) and
(1, c, d)—where a, b ≥ 0 and c, d ≤ 0. The two sets are of the same cardinality

and P := {(0, a, b) ∈ G : a, b ≥ 0} is a normal Riesz ideal of E. We also

have (0, b, c)∼ = (1,−c,−b) and (0, b, c)− = (1,−b,−c), thus γ(0, a, b) =
(0, a, b)−− = (0, b, a). With this γ on P , which is a weakly commutative

GPEA, we have a GPEA with a unitizing automorphism and its γ-unitization
is exactly the G[(0, 0, 0), (1, 0, 0)] that we started with.

22



We may also consider the identity as a unitizing automorphism on P and

then we obtain a unitization G[(0, 0, 0), (1, 0, 0)] but with the + operation on

G defined by

(a, b, c) + (x, y, z) = (a+ x, b+ y, c+ z)

for all a, b, c, x, y, z ∈ Z.

5 The Riesz decomposition property

5.1 Definition. We say, that a GPEA P satisfies

(i) the Riesz decomposition property (RDP for short), iff for all a, b, c, d ∈
P such that a⊕ b = c⊕ d, there are four elements e11, e12, e21, e22 ∈ P
such that a = e11 ⊕ e12, b = e21 ⊕ e22, c = e11 ⊕ e21 and d = e12 ⊕ e22.
We shall denote these four decompositions by the following table:

c d
a e11 e12
b e21 e22

(ii) RDP1, if for the decomposition in (i) it moreover holds: if f, g ∈ P are
such that f ≤ e12, g ≤ e21, then f and g commute (f ⊕ g = g ⊕ f).

(iii) RDP2, if for the decomposition in (i) it moreover holds that e12∧e21 = 0.

(iv) RDP0, if for a, b, c ∈ P such that a ≤ b⊕ c, there exists b1, c1 ∈ P such
that b1 ≤ b, c1 ≤ c and a = b1 ⊕ c1.

From the next example we see that, even in the commutative case, if P
has RDP, its unitization U need not have it.

5.2 Example. [22, Example 4.1] Consider the GEA P = {0, a, b, c, a ⊕ c,
b⊕ c} (see Fig. 1 below) and let the unitizing automorphism γ be the identity

(thus the unitization U of P is the “classical” unitization P̂ ). Then P has

RDP, but U does not. Indeed, for example, in U , (b⊕ c)⊥ = b⊥⊖ c cannot be
decomposed except for b⊥⊖c = (b⊥⊖c)⊕0. But (b⊥⊖c)⊕b = c⊥ = (a⊥⊖c)⊕a
and therefore, for these elements, there is no decomposition in the sense of

RDP.
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❈
❈
❈
❈

t b⊕ c

✁
✁
✁
✁

❆
❆

❆
❆

Fig. 1

In the following theorem, we show that if a GPEA P has a total operation
⊕, then P has any of the RDP properties iff its γ-unitization (with respect
to any unitizing automorphism γ) has the corresponding RDP property. We
do not know whether the above condition is also necessary.

5.3 Theorem. Let P be a total GPEA and let U be the unitization of P by a

unitizing GPEA-automorphism γ. Then P has RDP (RDP0, RDP1, RDP2,

respectively) iff U has RDP (RDP0, RDP1, RDP2, respectively).

Proof. Notice first, that, since a⊕ b exists for all a, b ∈ P , then of course, P
is upward directed. Also, since a+ b = a⊕ b exists, then b ≤ a∼ = ηa for all
a, b ∈ P .

It is clear, that if U has RDP (RDP1, RDP2), then P has RDP (RDP1,
RDP2), because if the decomposition of a⊕ b = c⊕ d is:

c d
a e11 e12
b e21 e22

then e11, e12 ≤ a and e21, e22 ≤ b and so if a, b, c, d ∈ P , then e11, e12, e21,
e22 ∈ P , because P is an ideal in U . Similarly, if U has RDP0, so does P .

Now assume that RDP holds in P . Then we have to consider three cases:

(a) ηa + b = ηc + d (where a, b, c, d ∈ P ). Then η(γb�a) = η(γd�c), so
γb�a = γd�c. Since P is upward directed, there exists e ∈ P with
e ≥ a, c and therefore

e�(γb�a) = e�(γd�c), i.e., (e�a)⊕ γb = (e�c)⊕ γd

where all these elements are in P , so by RDP we have a decomposition:

24



e�c γd
e�a e11 e12
γb e21 e22

Also, as (e�a) + a exists, e�a ≤ a−, whence γ−1(e�a) ≤ ηa, and
likewise γ−1(e�c) ≤ ηc. Therefore

∃x, y ∈ U, x+ γ−1(e�a) = ηa and y + γ−1(e�c) = ηc.

But by assumption ηa+ b = ηc+ d, and therefore

x+ γ−1(e�a) + b = ηa+ b = ηc+ d = y + γ−1(e�c) + d.

Moreover, from (e�a)⊕ γb = (e�c)⊕ γd, we deduce that

γ−1(e�a) + b = γ−1(e�a)⊕ b = γ−1(e�c)⊕ d = γ−1(e�c) + d

and it follows that x = y. Thus, ηa = x+γ−1(e�a), ηc = x+γ−1(e�c),
and we have

ηc d
ηa x+ γ−1e11 γ−1e12
b γ−1e21 γ−1e22

(b) a+ ηb = c+ ηd. Then η(b�a) = η(d�c), so b�a = d�c. Again, there
exists e ∈ P with e ≥ b, d, so that

(b�a)�e = (d�c)�e, i.e., a⊕ (b�e) = c⊕ (d�e).

Thus, since RDP holds in P , we get

c d�e
a e11 e12
b�e e21 e22

As b⊕ (b�e) exists, we have b�e ≤ b∼ = ηb and thus ηb = (b�e) + x
for some x ∈ U . Similarly, ηd = (d�e) + y for some y ∈ U . Then

a + (b�e) + x = a+ ηb = c + ηd = c+ (d�e) + y

and, since a+ (b�e) = c+ (d�e), it follows that x = y. Consequently,
we obtain the decomposition:
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c (d�e) + x
a e11 e12

(b�e) + x e21 e22 + x

where (b�e) + x = ηb and (d�e) + x = ηd.

(c) a ⊕ ηb = ηc ⊕ d. As d ≤ b∼ = ηb there exists x ∈ U with x + d = ηb.
Then we have a + x+ d = a + ηb = ηc + d, and therefore a + x = ηc.
Thus the required decomposition is:

ηc d
a a 0
ηb x d

From the decompositions obtained in (a), (b), and (c), it is clear that, if
P satisfies RDP1 or RDP2, then so does U .

Finally we prove that P has RDP0 iff U has RDP0. Clearly, if U has
RDP0, then P has RDP0.

Assume that P has RDP0. Then there are four cases to check:
(i) If a ≤ ηb⊕ c, then as a ≤ b∼ = ηb, it follows that a = a⊕ 0 provides the
desired decomposition.
(ii) If a ≤ b⊕ηc, then similarly, a = 0⊕a provides the desired decomposition.
(iii) If ηa ≤ ηb ⊕ c, then we have c ≤ ηa and so ηa = x ⊕ c ≤ ηb ⊕ c for
some x ∈ U and that implies x ≤ ηb. So ηa = x + c provides the desired
decomposition.
(iv) If ηa ≤ b⊕ηc, then we make use of b ≤ ηa and so there is again an x ∈ U
such that ηa = b + x ≤ b ⊕ ηc, which implies x ≤ ηc, whence ηa = b + x
provides the desired decomposition.

We note that only in cases (c) and (iv) do we use the hypothesis that P
is total.

We recall that a pseudo effect algebra E is a subdirect product of a system
of pseudo effect algebras (Et : t ∈ T ) if there is an injective homomorphism
h : E →

∏
t∈T Et such that πt(h(E)) = Et for each t ∈ T , where πt is the

t-th projection of
∏

t∈T Et onto Et. In addition, E is subdirectly irreducible if
whenever E is a subdirect product of (Et : t ∈ T ), there is t0 ∈ T such that
πt0 ◦ h is an isomorphism of pseudo effect algebras.

In the theory of total algebras, it is well known that an algebra is sub-
directly irreducible iff it has a smallest nontrivial ideal. As pseudo effect
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algebras are only partial algebraic structures, some results of universal alge-
bra need not hold for arbitrary pseudo effect algebras. For example, while for
total algebras, there is one-to-one correspondence between congruences and
ideals, in pseudo effect algebras the relations between ideals and congruences
are more complicated. Therefore, in what follows, instead of studying irre-
ducibility, we study relations between the smallest nontrivial (i.e. different
from {0}) normal Riesz ideals in GPEAs and in their unitizations.

5.4 Theorem. Let P be an upward directed GPEA and let U be a γ-unitiza-
tion of P . Then there is a smallest nontrivial normal Riesz ideal in U iff

there is a smallest normal Riesz γ-ideal in P .

Proof. Let I be a smallest nontrivial normal Riesz ideal in U . Then I ∩P is
a nontrivial normal Riesz γ-ideal in P (Theorem 4.14). Let {0} 6= I0 ⊂ I ∩P
be a normal Riesz γ-ideal in P . By Corollary 4.21, I0 is also normal Riesz
ideal in U , therefore we must have I0 = I = I ∩ P . It follows that I is also
the smallest nontrivial Riesz γ-ideal in P .

Conversely, let I be a smallest nontrivial normal Riesz γ-ideal in P . By
Corollary 4.21, I is also a normal Riesz ideal in U . If there is a normal Riesz
ideal {0} 6= J in U such that J ⊆ I, then {0} 6= J ∩ P is a normal Riesz
γ-ideal in P , and hence J ∩ P = I. It follows that I ⊆ J , hence I is the
smallest nontrivial Riesz ideal in U .

Notice that in an upward directed GPEA P with RDP, every ideal is
Riesz ideal. Similarly as for GEAs [9, Lemma 3.2] (see also [12, Lemma
4.3]), it can be proved that a (nontrivial) upward directed GPEA P with
RDP1 is subdirectly irreducible iff P possesses a smallest non-trivial normal
ideal. This yields the following corollary.

5.5 Corollary. Let P be a GPEA with total operation ⊕ satisfying RDP1

and let U be its γ-unitization. Then U is subdirectly irreducible iff P has a

smallest nontrivial normal γ-ideal. If γ is the identity, then U is subdirectly

irreducible iff P is subdirectly irreducible.

5.6 Remark. Assume that (P ;⊕, 0) is an upward directed GPEA, I is a
nonempty indexing set, λ, ρ : I → I are bijections, condition (KCI) holds,
and (K; +, 0K, 1K) is the resulting kite algebra (Theorem 3.9). By Corollary
3.10, K is the γ-unitization of P I with the unitizing automorphism γ(ai)i∈I =
(aρ◦λ−1(i))i∈I . We shall say that i, j ∈ I are connected iff (ρ◦λ−1)m(i) = j, or
(ρ ◦λ−1)m(j) = i for some integer m ≥ 0, otherwise i and j are disconnected.
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Let i0, j0 ∈ I be disconnected, and let I0 and I1 be maximal subsets of
mutually connected elements in I containing i0 and j0, respectively. Then
clearly, every element in I0 is disconnected with every element in I1. Let
H0 := {(fi)i∈I : fi = 0 ∀i /∈ I0}, H1 := {(fj)j∈I : fj = 0 ∀j /∈ I1}. It is
easy to see that H0 and H1 are normal γ-ideals in P I . Assume that K has
RDP1. Then also P I has RDP1, and H0 and H1 are normal Riesz γ-ideals
in P I . By Corollary 4.21, they are also normal Riesz ideals in K. Clearly,
H0 ∩ H1 = {0}. We can deduce that, under the above suppositions, if K
has a smallest nontrivial normal Riesz ideal, then the set I is connected.
(Compare with [12, Theorem 4.6].)
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