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MAJORS OF FUNCTIONS

MIGUEL COUCEIRO AND ERKKO LEHTONEN

Abstract. We investigate the minor order of functions, focusing on upper
covers and common upper bounds of pairs of functions. We show that two
functions of arities m and n have a common upper bound if and only if they
have a common lower bound, and if a common upper bound exists, then there

is one of arity m+n− 1. Moreover, we determine the possible essential arities
of upper covers of functions.
Keywords: Function of several arguments, Boolean function, Essential arity,
Minor order, Upper cover.

1. Introduction

This paper is a contribution to the understanding of the minor relation on the
set FAB of functions of several arguments from A to B: a function f : An → B is
a minor of g : Am → B, or g is a major of f , denoted f ≤ g, if f can be obtained
from g by identification of arguments, permutation of arguments, or introduction
or deletion of inessential arguments. The minor relation constitutes a quasi-order
on the set FAB , and, as usual, it induces an equivalence relation given by f ≡ g if
and only if f ≤ g and g ≤ f , as well as a partial order on the quotient FAB/≡.

The structure of the minor partial order has been investigated in several studies,
e.g., it was observed that the minor relation induces a partition of FAB into blocks
with no comparabilities in between (see Couceiro, Pouzet [5]). Each block comprises
the functions sharing the same diagonal. By the diagonal of f : An → B we mean
the function ∆f : A → B given by ∆f(x) = f(x, . . . , x).

The minor poset FAB/≡ has other nice properties. For example, all its principal
down-sets are finite, and it is countable if A and B are finite. Moreover, if A and B
are finite sets such that |B| ≥ min(3, |A|), then the minor poset FAB/≡ is universal
in the class of countable posets whose principal down-sets are finite (see Couceiro,
Pouzet [5, Theorem 3], Lehtonen, Szendrei [6, Theorem 3.1]). Consequently, the
descending chains are all finite, and this induces another partition of the minor
poset into levels, each one of which is finite if A and B are finite.

Another interesting property is that in the case when |A| = 2, the lower covers
of f : An → B all have the same essential arity (see Bouaziz, Couceiro, Pouzet [2,
Theorem 8]). This property is very particular to the case when |A| = 2. Namely,
Couceiro, Lehtonen, Waldhauser [4, Example 3.2] provided examples of functions
with lower covers of different essential arities when |A| ≥ 5. In the current paper,
we provide further examples for all |A| ≥ 3.

The very definition of minor provides a natural way of going downwards in the
minor order, and it is perhaps due to this fact why most of the above-mentioned
studies focused on the down-sets of the minor order. In contrast, the current paper
is mainly concerned with going upwards in the minor order and the associated
covering relation, in other words, with majors of functions.
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Our main goal is to describe the set of upper covers of a function f : An → B.
A full description still eludes us, but we take some steps towards it.

After setting up the necessary preliminaries, notation, and tools in Section 2, we
will focus on three questions on majors of functions. Each one of the three sub-
sequent sections begins with a question, which is then followed by theorems that
provide an answer to it. More precisely, in Section 3, we study the following prob-
lem: given a function f : An → B and a positive integer p, what is the maximum
number ℓ such that from every major of f with n+ ℓ essential arguments, we can
get back to f , or to a minor of f , with p identifications of arguments. It turns out
that this maximum number is equal to p for any function f .

In Section 4, we consider the question whether a common upper bound of two
functions f : An → B and g : Am → B exists. In fact, a common upper bound exists
if and only if the two functions have the same diagonal. Furthermore, we show that
if one exists, then there is one of essential arity n +m − 1. The usefulness of this
result is illustrated in Section 5 in a construction that shows that only Boolean
functions have the property that their lower covers are of the same essential arity.

In Section 5, we describe the possible essential arities of the upper covers of a
function f : An → B. We conclude the paper with Section 6, in which we discuss
briefly the problem of enumerating the set of upper covers of a function.

2. Preliminaries

Let N be the set of nonnegative integers, and N+ = N \ {0}. For any n ∈ N,
we denote by [n] the set {1, . . . , n} of the first n positive integers. The set of all
2-element subsets of [n] is denoted by

(
n
2

)
.

This paper is a study of functions of several arguments, that is, mappings
f : An → B, where A and B are nonempty sets and n ∈ N+ is called the arity
of f . We will find it convenient to consider this notion in a slightly more general
way, and we follow and adapt the formalism of Willard [7]. Namely, we will consider
functions f : AV → B, where A, B, and V are nonempty sets and V is finite. The
elements of AV are indexed families (ai)i∈V of elements of A. If a linear order is
specified, say V = {1, . . . , n} and 1 < · · · < n, then the usual notations (a1, . . . , an)
and f(a1, . . . , an) are used to denote tuples and values of f . We usually use bold
letters to denote tuples and corresponding italic letters with subscripts to denote
their components, e.g., a = (a1, . . . , an).

In what follows, the index set V is often equal to [n] for some n ∈ N, and in
this case we simply write An for A[n], as usual, and the set [n] is considered to
be endowed with the natural linear order. In particular, our main results in the
subsequent sections will be stated in this way. At the same time, in order to make
our proofs more readable, we often take the set V to be equal to a partition Π of
[n], and in this case the Π-blocks are linearly ordered by their minimum elements.

Since a tuple a ∈ AT is nothing but a map a : T → A, the composition of a with
any map σ : S → T is a well-defined tuple a ◦ σ ∈ AS . We also write simply aσ
instead of a ◦ σ. For any map σ : S → T , we define the map σ : AT → AS by the
rule σ(a) = a ◦ σ for all a ∈ AT , in other words, σ((at)t∈T ) = (aσ(s))s∈S , for every

(at)t∈T ∈ AT .

Fact 1. Let σ : S → T and τ : T → U . Then σ ◦ τ = τ ◦ σ. If σ is a bijection, then
σ−1 = (σ)−1.
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Recall that a partition of a set S is a set Π of pairwise disjoint nonempty subsets
of S, the union of which equals S. The elements of a partition Π are called blocks,
or Π-blocks if we want to emphasize the partition that we are talking about. We
refer to a partition with ℓ blocks as an ℓ-partition. The Π-block containing the
element x ∈ S is denoted by x/Π. If Π and Γ are partitions of S and every block
of Π is included in a block of Γ, then Π is said to be a refinement of Γ, or Γ is said
to be a coarsening of Π, and we write Π ⊑ Γ to denote this fact. The set of all
partitions of S with the refinement relation ⊑ is a lattice, and we denote by Π ∨ Γ
and Π ∧ Γ the finest common coarsening and the coarsest common refinement of
Π and Γ, respectively. We order of the blocks of a partition Π by their minimum
elements: for C,C ′ ∈ Π, we have C ≤Π C ′ if and only if minC ≤ minC ′.

Assume now that V = [n] for some n ∈ N+. Let Π be an ℓ-partition of [n].
Let natΠ : [n] → Π be the natural surjection mapping each element x of [n] to the
Π-block containing x. Let ηΠ : [ℓ] → Π be the order-isomorphism from ([ℓ];≤) to
(Π;≤Π). Let δΠ : [n] → [ℓ] be the mapping δΠ = (ηΠ)

−1◦natΠ. For any f : An → B,
define the functions f ′

Π : AΠ → B and fΠ : Aℓ → B as f ′
Π = f ◦natΠ and fΠ = f ◦δΠ.

By Fact 1, we have

fΠ = f ◦ δΠ = f ◦ ((ηΠ)−1 ◦ natΠ) = f ◦ natΠ ◦ (ηΠ)−1 = f ′
Π ◦ (ηΠ)−1

and, consequently, f ′
Π = fΠ ◦ ηΠ.

Remark 1. The functions fΠ and f ′
Π are “essentially the same”. The difference

basically lies in relabeling the argument index set, the translation being provided
by the bijection ηΠ : [ℓ] → Π. We may thus switch between fΠ and f ′

Π at will and
without difficulty, depending on which one of the two domains is more convenient
to work with in each particular situation. We will, nevertheless, always explicitly
indicate which one of the two functions, fΠ or f ′

Π, we are considering in each case.

Let I and J be nonempty subsets of V . We denote by ΠI the partition of V
whose only nontrivial block is I, and we let ΠI,J := ΠI ∨ ΠJ . In order to simplify
notation, we often write I and I, J instead of ΠI and ΠI,J in notations where
symbols representing partitions occur as sub- or superscripts. For example, we
write fI , f

′
I , δI instead of the more formally correct fΠI

, f ′
ΠI

, δΠI
.

Let f : AV → B. For any i ∈ V , we say that argument i is essential in f , or
f depends on argument i, if there exist tuples a = (aj)j∈V and b = (bj)j∈V such
that aj = bj for all j ∈ V \ {i} and f(a) ̸= f(b). In this case, we say that a and b
witness (or are witnesses of) the essentiality of argument i in f . An argument that
is not essential is inessential. We denote by Ess f the set of essential arguments of
f , i.e., Ess f = {i ∈ V : argument i is essential in f}. The cardinality of Ess f is
called the essential arity of f , or the number of essential arguments of f , and it is
denoted by ess f .

A partial function of several arguments is a map f : S → B, where S ⊆ AV .
Essential arguments can be defined for partial functions as above, but we must
additionally require that witnesses of essentiality of arguments are members of the
domain S of f .

In order to illustrate the notions and notation introduced above, we provide a
detailed proof of a simple – almost obvious – statement: If each member of a group
of arguments is inessential in a function and we identify them into a single argument
(possibly also performing some more identifications among other arguments), then
this new argument will be inessential in the resulting minor. This statement could



4 MIGUEL COUCEIRO AND ERKKO LEHTONEN

be formalized as follows: Given a map f : AV → B and partitions Π and Γ of V , if
Π is a refinement of Γ, then for every Γ-block I it holds that if the argument J is
inessential in f ′

Π for every Π-block J ⊆ I, then I is inessential in f ′
Γ. In Lemma 1,

we state and prove the contrapositive.

Lemma 1. Let f : AV → B. Let Π and Γ be partitions of V . If Π ⊑ Γ, then for
every I ∈ Ess f ′

Γ, there exists J ∈ Π such that J ⊆ I and J ∈ Ess f ′
Π.

Proof. Let I ∈ Ess f ′
Γ, and let J1, . . . , Jp be the distinct Π-blocks included in I.

Let a = (ai)i∈Γ and b = (bi)i∈Γ be tuples witnessing the essentiality of argument
I in f ′

Γ, i.e., ai = bi for all i ̸= I and f ′
Γ(a) ̸= f ′

Γ(b). Define tuples cℓ = (cℓi)i∈Π

(0 ≤ ℓ ≤ p) as follows: c0 is the unique tuple in AΠ satisfying natΠ(c
0) = natΓ(a).

For each ℓ ∈ {1, . . . , p}, cℓ−1
i = cℓi for every i ∈ Π \ {Jℓ}, while cℓ−1

Jℓ
= aI and

cℓJℓ
= bI ; in other words, cℓ is obtained from cℓ−1 by changing the entry indexed

by Jℓ from aI to bI . Consequently, c
p satisfies natΠ(c

p) = natΓ(b).
Since

f ′
Π(c

0) = f(natΠ(c
0)) = f(natΓ(a)) = f ′

Γ(a) ̸=
f ′
Γ(b) = f(natΓ(b)) = f(natΠ(c

p)) = f ′
Π(c

p),

there must exist an index ℓ ∈ {1, . . . , p} such that f ′
Π(c

ℓ−1) ̸= f ′
Π(c

ℓ). Moreover,
cℓ−1 and cℓ only differ at position Jℓ, so they witness the essentiality of argument
Jℓ in f ′

Π. □

Let f : An → B and g : Am → B. We say that f is a minor of g, or that g is
a major of f , and we write f ≤ g, if there exists a map σ : [m] → [n] such that
f = g ◦ σ, that is, f(a) = g(aσ) for all a ∈ An. If f ≤ g and g ≤ f , then we say
that f and g are equivalent and write f ≡ g. As usual, we write f < g to denote
the fact that f ≤ g but g ≰ f ; in this case we say that f is a proper minor of g.
It is not difficult to verify that every minor of f is equivalent to a function of the
form fΠ for some partition Π of [n].

An important special case of the minors of f are the functions of the form fI for
some I ∈

(
n
2

)
. (Recall that fI means fΠI

, where ΠI is the partition of [n] whose
only nontrivial block is I.) Such functions are referred to as identification minors
of f . It is easy to write down explicitly a defining expression for the identification
minors of f . Indeed, for any I ∈

(
n
2

)
, the function fI : A

n−1 → B is given by the
rule fI = f ◦ δI , where δI : [n] → [n− 1] is the map

δI(i) =


i, if i < max I,

min I, if i = max I,

i− 1, if i > max I.

In other words, if I = {i, j} with i < j, then

fI(a1, . . . , an−1) = f(a1, . . . , aj−1, ai, aj , . . . , an−1),

for all a1, . . . , an−1 ∈ A. Note that ai occurs twice on the right side of the above
equality: both at the i-th and at the j-th positions.

In the remainder of this paper, we assume that the sets A and B have at least
two elements. For, if |A| = 1 or |B| = 1, then every function f : An → B is constant
and ess f = 0.



MAJORS OF FUNCTIONS 5

3. From how high can we jump back?

Question 1. Let f : An → B, and assume that f depends on all of its arguments.
For a fixed parameter p ≥ 1, what is the maximum number ℓ such that for every
major g : An+ℓ → B of f that depends on all of its arguments, there exists an
(n + ℓ − p)-partition Π of [n+ ℓ] such that gΠ ≤ f? In particular (when p = 1),
what is the maximum number ℓ such that for every major g : An+ℓ → B of f that
depends on all of its arguments, there exists I ∈

(
n
2

)
such that gI ≤ f?

It is easy to see that the maximum number ℓ is at least p: any identification of
essential arguments decreases the essential arity, and since g is a major of f , there
must exist a partition Π with at least n blocks such that gΠ ≡ f . Proposition 2
shows that the maximum number is actually equal to p, for every function f .

The diagonal function of f : An → B is the function ∆f : A → B given by the
rule ∆f(a) = f(a, . . . , a) for all a ∈ A. The function ∆f is a minor of f ; in fact,
∆f = fΠ, where Π = {[n]}.

Proposition 2. Let f : An → B, and let ℓ ≥ 1. Then there exist a function
g : An+ℓ → B with ess g = n+ ℓ and an n-partition Π of [n+ ℓ] such that gΠ = f ,
but there is no partition Γ of [n+ ℓ] with at least n+ 1 blocks such that gΓ ≤ f .

Proof. Fix elements α, β ∈ A with α ̸= β, and let ϕ : P(A) → B be a map
that satisfies the following conditions: ∆f(α) ̸= ϕ({α}), ϕ({α}) ̸= ϕ({α, β}),
f(β, β, . . . , β, α) ̸= ϕ({β}). It is clear that such a function ϕ exists. Define
g : An+ℓ → B by the rule

g(a1, . . . , an+ℓ) =

{
f(a1, . . . , an), if an = an+1 = · · · = an+ℓ,

ϕ({a1, . . . , an}), otherwise.

It is clear that f = gΠ for the n-partition Π = {{1}, {2}, . . . , {n−1}, {n, . . . , n+ℓ}}.
We are going to show that for every p-partition Γ of [n+ ℓ] with p ≥ n + 1, the
function g′Γ depends on all of its arguments. Then it is not possible that gΓ ≤ f ,
because ess gΓ = p ≥ n+ 1 > ess f . Moreover, ess g = n+ ℓ.

Let Γ be a p-partition of [n+ ℓ] with p ≥ n + 1. Then there exists a Γ-block
Q that is a subset of {n + 1, . . . , n + ℓ}. (Otherwise every Γ-block would contain
an element of the set {1, . . . , n}, and there would be at most n distinct Γ-blocks, a
contradiction.) We will show that P ∈ Ess g′Γ for every P ∈ Γ. We consider four
different cases that exhaust all possibilities.

Case 1: P ⊆ {n + 1, . . . , n + ℓ}. Let u,u′ ∈ AΓ be tuples such that uP = α,
u′
P = β, and uT = u′

T = α for all T ∈ Γ \ {P}. Then g′Γ(u) = ∆f(α) ̸= ϕ({α}) =
g′Γ(u

′), so P ∈ Ess g′Γ.
Case 2: P ⊈ {n+1, . . . , n+ ℓ}, {n, . . . , n+ ℓ} ⊈ P ∪Q, and {1, . . . , n} ⊈ P . Let

u,u′ ∈ AΓ be tuples such that uP = α, u′
P = β, uQ = u′

Q = β, and uT = u′
T = α

for all T ∈ Γ \ {P,Q}. Then g′Γ(u) = ϕ({α}) ̸= ϕ({α, β}) = g′Γ(u
′), so P ∈ Ess g′Γ.

Case 3: P ⊈ {n + 1, . . . , n + ℓ}, {n, . . . , n + ℓ} ⊈ P ∪ Q, and {1, . . . , n} ⊆ P .
We need to consider two cases according to whether or not ϕ({α}) and ϕ({β}) are
equal. If ϕ({α}) = ϕ({β}), then let u,u′ ∈ AΓ be tuples such that uP = α, u′

P = β,
uQ = u′

Q = α, and uT = u′
T = α for all T ∈ Γ \ {P,Q}. Then g′Γ(u) = ∆f(α) ̸=

ϕ({α}) = ϕ({β}) = g′Γ(u
′), so P ∈ Ess g′Γ. If ϕ({α}) ̸= ϕ({β}), then let u,u′ ∈ AΓ

be tuples such that uP = α, u′
P = β, uQ = u′

Q = β, and uT = u′
T = α for all

T ∈ Γ \ {P,Q}. Then g′Γ(u) = ϕ({α}) ̸= ϕ({β}) = g′Γ(u
′), so P ∈ Ess g′Γ.
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Case 4: P ⊈ {n+1, . . . , n+ ℓ} and {n, . . . , n+ ℓ} ⊆ P ∪Q. Since p ≥ n+1, this
means in fact that p = n+1, P = {n, . . . , n+ℓ}\Q and the singletons {i}, i ∈ [n− 1]
are Γ-blocks. Let u,u′ ∈ AΓ be tuples satisfying u{i} = u′

{i} = β for all i ∈ [n− 1],

uP = α, u′
P = β, uQ = u′

Q = α. Then g′Γ(u) = f(β, . . . , β, α) ̸= ϕ({β}) = g′Γ(u
′),

so P ∈ Ess g′Γ. □

4. Common upper bounds

Question 2. Under which conditions do two functions have a common upper bound
in the minor order? What is the minimum essential arity of the common upper
bounds, if one exists?

Recall that two functions f : Am → B, g : An → B have a common lower bound
in the minor order if and only if ∆f = ∆g. In this section, we show that whenever
f and g have a common lower bound, then they also have a common upper bound.
Moreover, if a common upper bound of f and g exists, then there exists one of arity
m+ n− 1. It is not, however, in general guaranteed that upper bounds of smaller
arity exist, as illustrated by Example 1.

Proposition 3. Let f : Am → B, g : An → B, and assume that ∆f = ∆g. Then
there exists a function h : Am+n−1 → B such that f and g are minors of h.

Proof. Without loss of generality, assume that m ≤ n. Let h : Am+n−1 → B be
any function that satisfies

h(a1, . . . am+n−1) =

{
f(a1, . . . , am), if am = · · · = am+n−1;

g(am, . . . , am+n−1), if a1 = · · · = am.

Note that such a function h exists, because we are assuming that ∆f = ∆g. It is
clear that f = hΠ and g = hΓ, where

Π = {{1}, . . . , {m− 1}, {m, . . . ,m+ n− 1}},
Γ = {{1, . . . ,m}, {m+ 1}, . . . , {m+ n− 1}}.

□

Lemma 4. Let n ≥ 1. Let Π and Γ be partitions of [2n] with at least n+ 1 blocks.
Then Π ∨ Γ has at least two blocks.

Proof. It is well known that lattices of partitions of finite sets are semimodular
and hence satisfy the Jordan–Hölder chain condition: any two maximal chains
have the same length. Denoting by h(Π) the height of a partition Π on a set A
(i.e., the common length of the maximal chains connecting Π to the bottom of the
partition lattice), we have h(Π) + h(Γ) ≥ h(Π ∨ Γ) + h(Π ∧ Γ), for all partitions
Π, Γ. Since h(Π) = |A| − |Π|, this implies |Π| + |Γ| ≤ |Π ∨ Γ| + |Π ∧ Γ|. Thus,
|Π ∧ Γ| ≥ |Π|+ |Γ| − |Π ∨ Γ| ≥ (n+ 1) + (n+ 1)− 2n = 2. □

As it will become clear from the following example, we cannot improve the arity
m+ n− 1 of the common upper bound of f and g in Proposition 3.
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Example 1. Assume that 0 and 1 are distinct elements of B. Define the functions
f, g : An → B as

f(a1, . . . , an) =

{
0, if a1 = · · · = an = 0,

1, otherwise,

g(a1, . . . , an) =

{
1, if a1 = · · · = an ̸= 0,

0, otherwise.

Obviously ∆f = ∆g, so by Proposition 3, there exists h : A2n−1 → B such that
f ≤ h and g ≤ h.

We claim that there does not exist any h : A2n−2 → B such that f ≤ h and
g ≤ h. Suppose, to the contrary, that there is such a function h. Then there exist
n-partitions Π and Γ of [2n− 2] such that hΠ = f and hΓ = g. (Note that f and g
are totally symmetric, so we can take equality and not just equivalence here.) By
Lemma 4, the partition Π ∨ Γ has at least two blocks. Let B be a block of Π ∨ Γ,
let α and β be distinct elements of A, and let u ∈ A2n−2 be the tuple satisfying
ui = α for i ∈ B, and ui = β for i ∈ [2n− 2] \ B. Then u = vδΠ = wδΓ for some
v,w ∈ An and v and w are not constant tuples. Therefore,

1 = f(v) = hΠ(v) = h(vδΠ) = h(u) = h(wδΓ) = hΓ(w) = g(w) = 0,

a contradiction.

5. Upper covers

We say that f is a lower cover of g, or that g is an upper cover of f , if f < g in
the minor order and there is no h such that f < h < g. Denote by Cf the set of
upper covers of f .

Question 3. Given a function f : An → B with ess f = n, what are the possible
essential arities of the upper covers of f? In other words, describe the set {ess g :
g ∈ Cf}. In particular, what is max{ess g : g ∈ Cf}?

To give an answer to this question, we will make use of the mapping oddsupp:∪
n≥1 A

n → P(A) defined by Berman and Kisielewicz [1] as follows:

oddsupp(a1, . . . , an) = {a ∈ A : |{i ∈ [n] : ai = a}| is odd}.
A function f : An → B is then said to be determined by oddsupp if f = f∗ ◦
oddsupp|An for some f∗ : P(A) → B.

Theorem 5. Assume that f : An → B is a function that depends on all of its
arguments. Let ℓ ∈ N+.

(i) If ℓ ≥ max(|A|, 3), then f does not have upper covers of essential arity n+ ℓ.
(ii) If 1 ≤ ℓ < |A|, then there exists an upper cover of f of essential arity n+ ℓ.
(iii) If |A| = 2, then f has an upper cover of essential arity n+ 2 if and only if f

is determined by oddsupp.

Note that Theorem 5(ii) asserts that if A is infinite, then f has upper covers of
essential arity n+ ℓ for every ℓ ∈ N+.

The remainder of this section constitutes the proof of Theorem 5. First we need
to introduce several concepts and prove some auxiliary results.

The following result was proved by Bouaziz, Couceiro, Pouzet [2, Theorem 8].
It was originally stated for Boolean functions but the provided proof is actually
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valid in the more general setting of functions f : An → B, where |A| = 2 and the
codomain B is arbitrary.

Theorem 6. Assume that |A| = 2 and f : An → B depends on all of its arguments.
Then all lower covers of f have the same essential arity that is either n−1 or n−2.
In the latter case f has a unique lower cover.

Note, however, that this result is very particular to the case when |A| = 2. The
statement would no longer be true if we removed the condition |A| = 2. This
was illustrated by Couceiro, Lehtonen, Waldhauser [4, Example 3.2] with a 6-ary
operation on a 5-element set that has lower covers of essential arity 4 and 5. This
example can be easily adapted to functions over larger sets A. However, that
example left open the question whether there exist functions f : An → B with
lower covers of different essential arities in the case when |A| ∈ {3, 4}. The following
example provides a positive answer.

Write An
̸= := {(a1, . . . , an) ∈ An : ai = aj =⇒ i = j}.

Example 2. Assume that |A| ≥ 3 and that 0 and 1 are distinct elements of B. Let
f : A2 → B and g : A3 → B be functions given by the rules

f(x1, x2) =

{
0, if x1 = x2,

1, if x1 ̸= x2,

g(x1, x2, x3) =

{
0, if (x1, x2, x3) /∈ A3

̸=,

1, if (x1, x2, x3) ∈ A3
̸=.

We apply the construction given in the proof of Proposition 3 to produce a common
upper bound of f and g, namely, the function h : A4 → B given by

h(x1, x2, x3, x4) =


f(x1, x3), if x1 = x2 and x3 = x4,

g(x1, x3, x4), if x2 = x3,

1, otherwise.

It is clear from Proposition 3 that f and g are minors of h. Moreover, g cannot be a
minor of f , because ess f < ess g, and f cannot be a minor of g, because any identi-
fication of arguments in g yields a constant function. It remains to show that f and
g are lower covers of h. Clearly, we have hI = g for I = {2, 3}. Moreover, it is not
difficult to verify that whenever I ∈ {{1, 2}, {1, 3}}, the equality hI(x1, x2, x3) =
f(x1, x2) holds for all x1, x2, x3 ∈ A, and whenever I ∈ {{1, 4}, {2, 4}, {3, 4}},
the equality hI(x1, x2, x3) = f(x2, x3) holds for all x1, x2, x3 ∈ A. Consequently,
hI ≡ f for all I ̸= {2, 3}. This shows that f and g are indeed lower covers of h
with different essential arities.

The arity gap of a function f : An → B is the minimum difference between the
essential arity of f and that of its proper minors: gap f = ming<f (ess f − ess g).
If f depends on all of its arguments, this is the same as minI∈(n2)

(ess f − ess fI).

For further information on the arity gap, see Couceiro, Lehtonen [3]. The following
result on the arity gap is sufficient for our needs.

Theorem 7 ([3, Theorem 13]). For a pseudo-Boolean function f : {0, 1}n → B,
n ≥ 2, which depends on all of its variables, gap f = 2 if and only if f satisfies one
of the following conditions:

• n = 2 and f is a nonconstant function satisfying f(0, 0) = f(1, 1),
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• f = g ◦ h, where g : {0, 1} → B is injective and h : {0, 1}n → {0, 1} is a
Boolean function with gaph = 2, as listed below:

– x1 + x2 + · · ·+ xm + c (2 ≤ m ≤ n),
– x1x2 + x1 + c,
– x1x2 + x1x3 + x2x3 + c,
– x1x2 + x1x3 + x2x3 + x1 + x2 + c,

where addition and multiplication are done modulo 2 and c ∈ {0, 1}.
Otherwise gap f = 1.

Proposition 8. Assume that |A| = 2 and f : An → B depends on all of its argu-
ments. Then f has an upper cover with n+ 2 essential arguments if and only if f
is determined by oddsupp.

Proof. If f = f∗ ◦ oddsupp|An , then the function g = f∗ ◦ oddsupp|An+2 has a
unique identification minor, namely f . Therefore g is an upper cover of f with
ess g = ess f + 2.

If f has an upper cover g : An+2 → B that depends on all of its arguments, then
it follows from Theorem 6 that gap g = 2. Moreover, by Theorem 7, either g is at
most ternary or g is determined by oddsupp. It follows that f is determined by
oddsupp. Namely, if g is at most ternary, then f is unary and the claim is true,
because all unary functions are determined by oddsupp. The claim holds also in the
case when g is determined by oddsupp, because then all minors of g are determined
by oddsupp. □

Proposition 9. Let n, ℓ ∈ N+, f : An → B and g : Aℓ → B, and assume that
ess f = n and ess g = ℓ. If ℓ ≥ n+max(|A|, 3), then g is not an upper cover of f .

Observe that in Proposition 9, it is necessary to assume that ℓ ≥ n+ 3, because
in the case of Boolean functions, i.e., |A| = 2, any linear function of arity n has an
upper cover of arity n+ 2 and would thus falsify the statement.

Proof. Suppose, to the contrary, that g is an upper cover of f . Then there exists L ∈(
ℓ
2

)
such that f ≡ gL. Permuting the arguments of g in a suitable way if necessary,

we may assume without loss of generality that gL(x1, . . . , xℓ−1) = f(x1, . . . , xn).
Thus Ess g′L = {i/ΠL : 1 ≤ i ≤ n}. Furthermore, we may assume that if L ∈ Ess g′L
then L = {n, n+ 1}, and if L /∈ Ess g′L, then L = {ℓ− 1, ℓ}. Write EL :=

∪
Ess g′L.

We thus have EL = {1, . . . , n+1} if L ∈ Ess g′L, and EL = {1, . . . , n} if L /∈ Ess g′L.

Observe that for every I ∈
(
ℓ
2

)
such that I ̸⊆ EL and I ̸= L, it holds that gL,I ≡

f . In fact, gL,I(x1, . . . xℓ−2) = f(x1, . . . , xn). Moreover, since f ≡ gL,I ≤ gI < g
and since g is an upper cover of f , we must have that gI ≡ f .

Furthermore, we may assume that L ∈ Ess g′L. For, if L /∈ Ess g′L, then let L′

be any couple in
(
ℓ
2

)
such that L′ ̸⊆ EL, L′ ∩ EL ̸= ∅, and L ∩ L′ = ∅. Such

a couple L′ exists, because we are assuming that n ≥ 1 and ℓ ≥ n + 3. Then
Ess g′L,L′ = Ess g′L \ {EL ∩ L′} ∪ {L′}; thus L′ ∈ Ess g′L,L′ . Lemma 1 then asserts

that L′ ∈ Ess g′L′ , and we have gL′ ≡ f . Therefore we may consider L′ instead of
L.

Thus we have L = {n, n + 1}, Ess g′L = {{1}, . . . , {n − 1}, {n, n + 1}}, and

EL = {1, . . . , n + 1}. Let I = {i, j} ∈
(
ℓ
2

)
(i < j) with I ̸⊆ EL. Let us determine

Ess g′I in terms of Ess g′L, by applying Lemma 1 and taking into account that gI ≡ f
and hence ess g′I = n.
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• If I ∩EL = ∅, then Ess g′L,I = Ess g′L, because the arguments i/ΠL for i ∈ I

are inessential in g′L, and Ess g′I = (Ess g′L \ {L})∪ {{ℓI}} for some ℓI ∈ L.
• If i ∈ EL \ L and j /∈ EL, then Ess g′L,I = (Ess g′L \ {{i}}) ∪ {I}, and

Ess g′I = (Ess g′L,I \ {L})∪ {{ℓI}} = (Ess g′L \ {{i}, L})∪ {I, {ℓI}} for some
ℓI ∈ L.

• If i ∈ L and j /∈ EL, then Ess g′L,I = (Ess g′L \ {L})∪ {L∪ I}, and Ess g′I =

(Ess g′L \ {L}) ∪ {ℓI/ΠI} for some ℓI ∈ L. Note that in this case ℓI/ΠI

equals either I or L \ I.
We can summarize the above as follows: for each I ∈

(
ℓ
2

)
with I ̸⊆ EL, there exists

a unique element ℓI ∈ L such that Ess g′I = {i/ΠI : i ∈ EL \ L} ∪ {ℓI/ΠI}. Recall
that i/ΠI denotes the block containing i in the partition ΠI , in which I is the only
nontrivial block.

Claim 1. For any I = {i1, i2} ∈
(
ℓ
2

)
(i1 < i2) with I ̸⊆ EL, it holds that

gI(a1, . . . , aℓ−1) = f(a1, . . . , an−1, aℓI ).

Proof. In order to see this, recall two facts that we have established above: Ess g′I =
{i/ΠI : i ∈ EL \ L} ∪ {ℓI/ΠI} and gI ≡ f . It follows from these facts that there
exists a permutation σI of [n] such that gI(a1, . . . , aℓ−1) = f((a1, . . . , an−1, aℓI )σI).
We also have gL(a1, . . . , aℓ−1) = f(a1, . . . , an). Now, let a = (a1, . . . , an) ∈ An be
arbitrary, and let b = (b1, . . . , bℓ) ∈ Aℓ be any tuple such that bi = ai for all i ∈ [n],
bn+1 = bn and bi1 = bi2 . It is easy to see that such a tuple b exists. Then there
exist tuples b′,b′′ ∈ Aℓ−1 such that b′δI = b = b′′δL; furthermore, bi = b′i = b′′i
for all i ∈ [n]. We have

g(b) = g(b′′δL) = gL(b
′′) = f(a).

Moreover, since bn = bn+1 and ℓI ∈ {n, n+ 1}, we also have

g(b) = g(b′δI) = gI(b
′) = f((b1, . . . , bn−1, bℓI )σI) = f(aσI).

Putting the above two equalities together, we get that the equality f(a) = f(aσI)
holds for all a ∈ An. Consequently,

gI(a1, . . . , aℓ−1) = f((a1, . . . , an−1, aℓI )σI) = f(a1, . . . , an−1, aℓI ),

as claimed. ■

Claim 2. ℓI = ℓJ for all I, J ∈
(
ℓ
2

)
with I, J ̸⊆ EL.

Proof. Suppose, to the contrary, that ℓI ̸= ℓJ for some I = {i1, i2} and J = {j1, j2}
with i2, j2 /∈ Ess gL. We may assume that if i1 and j1 are both in EL, then i2 ̸= j2.
For, if i1, j1 ∈ EL and i2 = j2, then, since ℓ ≥ n + 3, and |EL| = n + 1, there
exists an element k2 ∈ [ℓ] \ (EL ∪ {i2}). Let K = {i2, k2}. Then either ℓK ̸= ℓI or
ℓK ̸= ℓJ . Therefore, instead of I and J , we may consider the couples K and the
one among I and J for which the inequality holds.

Assume, without loss of generality, that ℓI = n and ℓJ = n + 1. Let a ∈ An.
Let b ∈ Aℓ be any tuple such that bi = ai for all i ∈ [n], bn ̸= bn+1, bi1 = bi2 and
bj1 = bj2 . Note that the conditions we placed above for I and J guarantee that
such a tuple b exists. Then there exist tuples b′,b′′ ∈ Aℓ−1 such that b = b′δI
and b = b′′δJ , and we have

f(a1, . . . , an−1, an) = gI(b
′) = g(b) = gJ(b

′′) = f(a1, . . . , an−1, bn+1).
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Since a was chosen arbitrarily and an = bn ̸= bn+1, this implies that the n-th
argument is inessential in f , which contradicts the assumption that ess f = n. We
conclude that ℓI = ℓJ for all I, J ∈

(
ℓ
2

)
with I, J ̸⊆ EL. ■

(Proof of Proposition 9 continued.) By transposing the arguments n and n+1 in g

if necessary, we may assume that ℓI = n for all I ∈
(
ℓ
2

)
with I ̸⊆ EL. Consequently,

gI(x1, . . . , xℓ−1) = f(x1, . . . , xn) for all I ∈
(
ℓ
2

)
with I ̸⊆ EL or I = L.

Now, let u ∈ Aℓ. Since ℓ ≥ n + |A|, there exist elements p, q ∈ [ℓ] such that
q ∈ {n + 1, . . . , ℓ} and up = uq. Let I = {p, q}. Then I ̸⊆ EL or I = L, and
there exists v ∈ Aℓ−1 such that vi = ui for all i ∈ [n] and u = vδI . Therefore,
g(u) = g(vδI) = gI(v) = f(v1, . . . , vn) = f(u1, . . . , un). Since u was chosen
arbitrarily, this implies that the last ℓ − n arguments of g are inessential, which
contradicts the assumption that g depends on all of its arguments. □

Let S ⊆ [n], and write

An
S := {(a1, . . . , an) ∈ An : ai = aj for all i, j ∈ [n] \ S and

ai ̸= aj for all i ∈ S and j ∈ [n] with i ̸= j}.

Remark 2. If A is finite and |A| = k, then An
S ̸= ∅ if and only if |S| ≤ k − 1 or

|S| = k = n. Furthermore, if n ≥ k + 1 and S, T ⊆ [n] with |S| = |T | ≤ k − 1, then
the sets An

S and An
T are disjoint whenever S ̸= T . Moreover, if |S| ≤ k − 1 < n,

then |{a1, . . . , an}| = |S| + 1 for every (a1, . . . , an) ∈ An
S . Note also that if n = k,

then An
S = An

̸= for every S with |S| = k − 1.

We say that an ℓ-element set S ⊆ [n] is stringent in a function f : An → B if
the restrictions of f to the sets An

S and An \ An
S do not depend on the arguments

indexed by elements of S. It clearly holds that if S = {i1, . . . , iℓ} is stringent in f ,

then there exist functions h̸= : Aℓ+1
̸= → B with Ess h̸= ⊆ {1} and h : An → B with

Essh ⊆ [n] \ S such that, for all (a1, . . . , an) ∈ An and for any j ∈ [n] \ S,

(1) f(a1, . . . , an) =

{
h̸=(aj , ai1 , . . . , aiℓ), if (a1, . . . , an) ∈ An

S ,

h(a1, . . . , an), otherwise.

Lemma 10. Let f : An → B, and assume that f depends on all of its arguments.
Then, for every ℓ ∈ N+ with 2 ≤ ℓ < min(|A|, n − 1), there exists at most one
ℓ-element subset of [n] that is stringent in f .

Proof. Suppose, to the contrary, that S and T are distinct ℓ-element subsets of [n]
that are stringent in f . Then there exist elements s ∈ S \ T and t ∈ T \ S. We are
going to find a contradiction by showing that the s-th argument is inessential in f .
For this goal, let a,a′ ∈ An be any tuples satisfying ai = a′i for all i ∈ [n] \ {s}. We
want to show that f(a) = f(a′).

If a,a′ ∈ An
S or a,a′ /∈ An

S , then f(a) = f(a′) by the stringency of S. It remains
to consider the case when a ∈ An

S and a′ /∈ An
S . Since An

S and An
T are disjoint,

a /∈ An
T . The fact that a′ /∈ An

S implies that a′s = ai for some i ∈ [n] \ {s}. Hence
{a′1, . . . , a′n} = {a1, . . . , an} \ {as}, so |{a′1, . . . , a′n}| = |{a1, . . . , an}| − 1 = |S|.
Consequently, a′ /∈ An

W for all W ⊆ [n] with |W | = ℓ; in particular, a′ /∈ An
T . Let

α ∈ {a1, . . . , an} \ {as, at} (note that |{a1, . . . , an}| = |S| + 1 = ℓ + 1 ≥ 3). By
changing the t-th component of a to α we obtain the tuple aαt . We have aαt /∈ An

T ,
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because ℓ ≤ n− 2, so there exists an element s′ ∈ [n] \ (T ∪ {s}) and it holds that
as ̸= as′ . By the stringency of T , we have

(2) f(a) = f(aαt ).

Moreover aαt /∈ An
S , because there exists an element t′ ∈ [n] \ (S ∪ {t}) and the t-th

and t′-th components of aαt are distinct. Changing the s-th argument of aαt to a′s
we obtain the tuple b := (aαt )

a′
s

s that does not belong to An
S for the same reason

as aαt /∈ An
S : t, t′ /∈ S and the t-th and t′-th components of b are distinct. By the

stringency of S we have

(3) f(aαt ) = f(b).

Note that the element as does not occur in the tuple b, because both α and a′s
are distinct from as and there is only one occurrence of as in a; hence {b1, . . . , bn} =
({a1, . . . , an}\{as})∪{a′s}. Now, if a′s ∈ {a1, . . . , an}\{as}, then |{b1, . . . , bn}| = ℓ,
whence b /∈ An

T . If a
′
s /∈ {a1, . . . , an}\{as}, then bs = a′s ̸= as′ = bs′ , with s, s′ /∈ T ,

so b /∈ An
T . By changing the t-th component of b to at we get the tuple a

′. We have
observed above that a′ is not in any set of the form An

W , in particular, a′ /∈ An
T . It

follows from the stringency of T that

(4) f(b) = f(a′).

Putting (2), (3), and (4) together, we see that the equality f(a) = f(a′) holds also
in this case.

Since the choice of a and a′ above was arbitrary, this shows that the s-th argu-
ment is inessential in f . This contradicts the assumption that f depends on all of
its arguments. We conclude that there is at most one ℓ-element subset of [n] that
is stringent in f . □

Proposition 11. Let f : An → B, and assume that f depends on all of its argu-
ments. Then for every ℓ ∈ N+ with 1 ≤ ℓ < |A|, there exists an upper cover of f
with n+ ℓ essential arguments.

Proof. The claim is obvious if ℓ = 1, so let us assume that ℓ ≥ 2 and hence
|A| ≥ 3. In the following, ϕ : Aℓ+1

̸= → B is a map that will be specified later. Define

g : An+ℓ → B by the rule

g(x1, . . . , xn+ℓ) =


ϕ(xn, . . . , xn+ℓ), if x1 = · · · = xn and

xn, . . . , xn+ℓ are distinct,

f(x1, . . . , xn), otherwise.

The function ϕ must be chosen in such a way that the function g depends on all
of its arguments. This can be achieved, for example, by letting ϕ : Aℓ+1

̸= → B

be the function ϕ(x1, . . . , xℓ+1) = γ(x1), where γ : A → B is an arbitrary unary
map distinct from ∆f . (It is straightforward to verify that the resulting function g
depends on all of its arguments.) We would also like to make sure that g is an upper
cover of f , so a bit more care must be taken, and the exact choice of ϕ depends on
f as will be discussed below.

Let us consider the identification minors of g. Let I = {i, j} ∈
(
n+ℓ
2

)
with i < j.

If j ≥ n+ 1, then, by the definition of g, we have

gI(x1, . . . , xn+ℓ−1) = f(x1, . . . , xn),
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so g is a major of f , as desired. If j ≤ n, then

gI(x1, . . . , xn+ℓ−1) =


ϕ(xn−1, . . . , xn+ℓ−1), if x1 = · · · = xn−1 and

xn−1, . . . , xn+ℓ−1 are distinct,

fI(x1, . . . , xn−1), otherwise.

In this case, it might happen that f < gI . We want to avoid this by choosing ϕ
carefully. Note first that if we identify one of the last ℓ arguments with any other
argument in gI , we get fI , which is fine. We might still be able to get f when we
identify some arguments among the first n− 1.

In order to analyse the situation, let Π be an n-partition of [n+ ℓ] such that
{n+ 1}, {n+ 2}, . . . , {n+ ℓ} ∈ Π, and let Π′ be the (n− ℓ)-partition of [n] whose
blocks are the Π-blocks included in [n]. If ℓ ≥ n, then no such partition Π exists
and we are done: we may take ϕ(x1, . . . , xℓ+1) = γ(x1), where γ : A → B is any
map distinct from ∆f . Assume that ℓ ≤ n− 1. Then

gΠ(x1, . . . , xn) =


ϕ(xn−ℓ, . . . , xn), if x1 = · · · = xn−ℓ and

xn−ℓ, . . . , xn are distinct,

fΠ′(x1, . . . , xn−ℓ), otherwise.

If ℓ = n− 1, then the above expression of gΠ simplifies to

gΠ(x1, . . . , xn) =

{
ϕ(x1, . . . , xn), if (x1, . . . , xn) ∈ An

̸=,

∆f(x1), otherwise.

Let γ : A → B be a unary map distinct from ∆f such that γ is constant if and only
if the restriction f |An

̸=
is not constant (it is clear that such a map γ exists). Let

ϕ : An
̸= → B be the map ϕ(x1, . . . , xn) = γ(x1). Then g is a major of f with n+ ℓ

essential arguments and gΠ ̸≡ f .
Finally, consider the case when ℓ ≤ n− 2. Let γ : A → B be an arbitrary unary

map distinct from ∆f . If f has a stringent set S of cardinality ℓ (by Lemma 10
such a set S is unique if one exists) and a representation as in equation (1) with

h̸= : Aℓ+1
̸= → B and h : An → B, then we additionally require that γ is constant

if and only if h̸= is not constant. It is clear that such a function γ exists. Let

ϕ : Aℓ+1
̸= → B be the map ϕ(x1, . . . , xℓ+1) = γ(x1). Then g is a major of f with

n + ℓ essential arguments. Since Essϕ ⊆ {1}, the set T := {n − ℓ + 1, . . . , n} is
stringent in gΠ. It is not difficult to see that gΠ ̸≡ f , either because gΠ has a
stringent set of cardinality ℓ but f does not, or because the restriction of gΠ to the
set An

T is not equivalent to the restriction of f to An
S .

We conclude that g is an upper cover of f , as desired. □

Proof of Theorem 5. Follows immediately by putting together Propositions 8, 9,
and 11. □

6. Concluding remarks

In Theorem 5 we determined for every function f : An → B the maximum es-
sential arity of the upper covers of f . In fact, we showed that for each 1 ≤ ℓ < |A|
there exists an upper cover of essential arity n+ ℓ. This gives lower bounds on the
number of upper covers that a function may have. In the case when A is infinite,
every function has infinitely many upper covers, whereas if A is finite, then there



14 MIGUEL COUCEIRO AND ERKKO LEHTONEN

are at least |A| − 1 upper covers. In the latter case, determining the exact number
remains an open problem that is a topic of further research.

Question 4. Estimate |Cf |.
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