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Abstract. In this paper we continue investigations of cover-incomparability
graphs of finite partially ordered sets (see [1,2,3,4] and [6,7]). We con-
sider in some detail the distinction between cover-preserving subsets and
isometric subsets of a partially ordered set. This is critical to under-
standing why forbidden subposet characterizations of certain classes of
cover-incomparability graphs in [1] and [3] are not valid as presented.
Here we provide examples, investigate the root of the difficulties, and
formulate and prove valid revisions of these characterizations.

1 Introduction

In this paper we deal with posets and graphs associated to them. There are
several ways how to associate a graph G to a given poset P . The vertex set
V (G) is usually the set of points of P . Depending on the edge-set E(G), we
may obtain among others the comparability graph of P (x and y are adjacent iff
x < y or y < x), the incomparability graph of P (x and y are adjacent iff x and
y are incomparable), the cover graph of P (x and y are adjacent iff x covers y
or vice versa) or the cover-incomparability graph of P (x and y are adjacent iff
x covers y, or y covers x, or x and y are incomparable). The incomparability
graph of P is of course just the complement of its comparability graph, while
the cover-incomparability graph of P is the union of the cover graph and the
incomparability graph of G.

Cover graphs, comparability graphs and incomparability graphs are standard
ways how to associate a graph to a given poset, while the notion of cover-incom-
parability graph is new. It was introduced in [1]. This notion was motivated
by the theory of transit functions on posets. It turns out that the underlying
graph GP of the standard transit function TP on the poset P is exactly the
cover-incomparability graph of P (see [1] for details).
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Cover-incomparability graphs have been so far approached in two different
ways. One possibility is to try to characterize graphs that are cover-incomparability
graphs. In [6] it was proved that the recognition problem for cover-incomparability
graphs is in general NP-complete. On the other hand there are classes of graphs
(such as trees, Ptolemaic graphs, distance-hereditary graphs, block graphs, split
graphs or k-trees) for which the recognition problem can be solved in linear time
(see [2,3,7,8] for details and proofs).

Another approach is to study posets whose cover-incomparability graphs have
certain property. Posets whose cover-incomparability graphs are chordal, Ptole-
maic, distance-hereditary, claw-free or cographs were characterized in [1] and
[4]. Unfortunately, there is a mistake that originated in [1] and continued in [4]
and several statements from these papers do not hold as they are stated. In this
paper we correct the mistake and reformulate the corresponding statements so
that they hold.

Our paper is organized as follows. In Section 2 we give an overview of ter-
minology and basic properties of cover-incomparability graphs. In Section 3 we
present counterexamples to Theorem 4.1 from [3], Lemma 4.4 and 4.5 from [1]
and to Proposition 5.1 from [1]. In Section 4 we show that the mistake originated
in Theorem 2.4 of [1]. We reformulate this statement and give a corrected proof
of it. In addition, we reformulate all the above mentioned statements so that
they hold.

2 Terminology and basic properties

Let P = (V,≤) be a poset. We will use the following notation. For u, v ∈ V we
write:

– u < v if u ≤ v and u 6= v.
– u ≺ v if u < v and there is no z ∈ V such that u < z < v. We say that v

covers u.
– u ≺≺ v if u < v and ¬(u ≺ v).
– u ‖ v if u and v are incomparable.

Definition 1. For a given poset P = (V,≤), let GP = (V,E) be a graph with
E = {{u, v} | u ≺ v or v ≺ u or u ‖ v}. Then we say that GP is the cover-
incomparability graph of P (or the C-I graph of P for short).

Note that for any u, v ∈ V (GP ), u 6= v we have {u, v} /∈ E(GP ) ⇔ u ≺≺
v or v ≺≺ u.

As this is crucial for the rest of our paper let us define properly the following
three concepts.

Definition 2. Let P = (VP ,≤P ) be a poset.

• We say that Q = (VQ,≤Q) is a subposet of P = (VP ,≤P ) if
1. VQ ⊆ VP and
2. for any u, v ∈ VQ we have u ≤Q v ⇔ u ≤P v.



• We say that R = (VR,≤R) is an isometric subposet of P = (VP ,≤P ) if
1. VR ⊆ VP and
2. for any u, v ∈ VR we have u ≤R v ⇔ u ≤P v and
3. for any u, v ∈ VR such that u ≤R v there exists a chain of a shortest

length between u and v in P is also in R.

• We say that S = (VS ,≤S) is a ≺-preserving subposet of P = (VP ,≤P ) if
1. VS ⊆ VP and
2. for any u, v ∈ VS we have u ≤S v ⇔ u ≤P v and
3. for any u, v ∈ VS we have u ≺S v ⇔ u ≺P v.

Note that an isometric subposet is always ≺-preserving but there are ≺-
preserving subposets that are not isometric. For example, the poset P ′ depicted
in Fig. 1 is a nonisometric ≺-preserving subposet of P in Fig. 1.
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Fig. 1: A nonisometric ≺-preserving subposet.

Let us also mention a few easy observations about C-I graphs. They follow
immediately from the definition.

Lemma 1. Let P = (V,≤) be a poset and GP = (V,E) its C-I graph. Then the
following holds.

(i) GP is connected.
(ii) If U ⊆ V is an antichain in P then U induces a complete subgraph in GP .
(iii) If I ⊆ V is an independent set in GP then all points of I lie on a common

chain in P .
(iv) There are at most 2 vertices of degree 1 in GP .
(v) If P ∗ = (V,≤∗) is the dual poset to P (i.e. u ≤ v in P ⇔ v ≤∗ u in P ∗),

then G(P ∗) = GP .
(vi) If the vertices x, y, z form a triangle in GP then at least two of them are

incomparable.
(vii) Let x, y, z be vertices of GP such that xy ∈ E, xz /∈ E, yz /∈ E. Then

(x ≺≺ z and y ≺≺ z) or (z ≺≺ x and z ≺≺ y).



3 Counterexamples

In this section we present counterexamples to several statements from [1] and
[3]. Let us start with the easiest case, with Proposition 5.1 from [1].

3.1 A counterexample to Proposition 5.1 from [1]

First we cite the statement of this proposition in the original text:

Proposition (Proposition 5.1 [1]). Let P be a poset. Then GP contains an induced
claw if and only if P contains one of S1, S2 or S3 as an isometric subposet, see
Fig. 2.

S1 S2 S3

Fig. 2: Subposets S1, S2 and S3 and the claw.
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Fig. 3: A counterexample to Proposition 5.1.

This statement does not hold. Let P be the poset depicted in Fig. 3. Clearly,
neither S1 nor S2 are subposets of P . S3 is a subposet of P but it is not an



isometric subposet of P . This is because there is a chain of length two between u
and v in P while there is no chain of length two between u and v in S3. Thus P
does not contain any of S1, S2 and S3 as an isometric subposet. But GP contains
an induced claw on vertices v, v1, v3, v5, a contradiction.

Counterexamples to other statements can be derived in a similar way:

3.2 A counterexample to Lemma 4.4 from [1]

Proposition (Proposition 4.4 in [1]). Let P be a poset. Then GP contains an
induced house if and only if P contains one of R1, R2, R3, R4 or R5 as an
isometric subposet, see Figure 4.

R1 R2 R3 R4 R5

Fig. 4: Subposets Ri, i = 1, . . . 5 and the house.

Let P be the poset depicted in Fig. 5. It is easy to see that it is a counterex-
ample to Lemma 4.4 [1]. Indeed, P does not contain any of the posets R1, R2,
R3, R4 or R5 as an isometric subposet. But GP contains an induced house
on vertices v1, v2, v4, v5, v7, a contradiction.

3.3 A counterexample to Lemma 4.5 from [1]

Proposition (Proposition 4.5 in [1]). Let P be a poset. Then GP contains an
induced domino if and only if P contains one of D1, D2, D3, D4, D5, D6 or D7

as an isometric subposet, see Fig. 6.
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Fig. 5: A counterexample to Lemma 4.4

Let P be the poset depicted in Figure 7. Clearly that it is a counterexample
to Lemma 4.5. [1]. Indeed, P does not contain any of the posets D1, D2, D3, D4,
D5, D6 or D7 as an isometric subposet. But GP contains an induced domino on
vertices v1, v2, v4, v5, v7, a contradiction.

3.4 A counterexample to Theorem 4.1 from [3]

Theorem (Theorem 4.1 [3]). Let P be a poset. Then GP is a cograph if and
only if P contains neither any of Q1, Q2, . . . , Q7 nor duals of Q2 or Q5 as an
isometric subposet, see Fig. 8.

Let P be the poset depicted in Fig. 7. It is easy to see that it is a coun-
terexample to Theorem 4.1 [3]. Indeed, P contains neither any of the posets Q1,
Q2, . . . , Q7 nor the duals of Q2 or Q5 as an isometric subposet. But GP con-
tains an induced path on four vertices v1, v2, v3, v4. Thus, GP is not a cograph,
a contradiction.

4 Restatements and proofs

The mistake originated in Theorem 2.4 [1].

Theorem (Theorem 2.4 [1]). Let G be a class of graphs with a forbidden induced
subgraphs characterization. Let P = {P | P is a poset with GP ∈ G}. Then P
has a forbidden isometric characterization.

If we go carefully through the proof of this theorem in [1] we notice that it is
not proved that the poset P contains one of the constructed posets {Pi}i∈I as
an isometric subposet. The condition of isometry is too strong and it has to be
replaced by the weaker concept of ≺-preserving subposet. See Section 2 for the
definition.

Theorem 1 (see Theorem 2.4 [1]). Let G be a class of graphs with a char-
acterization by forbidden induced subgraphs. Let P = {P | P is a poset with
GP ∈ G}. Then P has a characterization by forbidden ≺-preserving subposets.



D1 D2 D3 D4

D5 D6 D7

Fig. 6: Subposets Di, i = 1, . . . 7, and the domino graph.

For the proof of this theorem we need a slightly stronger version of Lemma 2.3 [1].

Lemma 2 (see Lemma 2.3 [1]). Let Q be a C-preserving subposet of a poset
P . Then GQ is isomorphic to a subgraph of GP induced by the points of Q.

Proof. Let H be the subgraph of GP induced by the points of Q. Let u and v
be arbitrary points in Q. We show that

{u, v} ∈ E(H)⇔ {u, v} ∈ E(GQ).

First suppose that {u, v} ∈ E(H). This happens if and only if either u ≺P v,
or v ≺P u, or u ‖P v. As Q is a C-preserving subposet of P we have

u ≺P v ⇒ u ≺Q v ⇒ {u, v} ∈ E(GQ),

v ≺P u⇒ v ≺Q u⇒ {u, v} ∈ E(GQ),

u ‖P v ⇒ u ‖Q v ⇒ {u, v} ∈ E(GQ).

Thus if {u, v} ∈ E(H) then also {u, v} ∈ E(GQ).
Now suppose that {u, v} /∈ E(H). Then u ≺≺P v or v ≺≺P u. As Q is

a C-preserving subposet of P it follows that u ≺≺Q v or v ≺≺Q u, and thus
{u, v} /∈ E(GQ).

We conclude that H and GQ are isomorphic graphs as stated. ut

Now we are ready to prove Theorem 1.
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Fig. 7: A counterexample to Lemma 4.5.

Proof ((of Theorem 1)). Let Gforb be one of the forbidden induced subgraphs for
the class G. Let P ∈ P be any poset in the class P. By the definition of P, GP

does not contain Gforb as an induced subgraph. By Lemma 2, P does not contain
any ≺-preserving subposet Q such that GQ is isomorphic to Gforb. Hence any
subposet Q s.t. GQ is isomorphic to Gforb is forbidden for P. Repeating this for
all the forbidden induced subgraphs for G we find a list of forbidden ≺-preserving
subposets {Qi}i∈I .

We will show that the class P is characterized by forbidden ≺-preserving
subposets {Qi}i∈I .

First, let P ∈ P. Then P clearly contains no Qi as a ≺-preserving subposet.
Otherwise (by Lemma 2) the graph GP would contain a forbidden induced sub-
graph for G.

Conversely, suppose that P contains no Qi as a ≺-preserving subposet. Then
(by the construction of {Qi}i∈I) GP contains no forbidden subgraph for G. Thus
GP ∈ G, and hence P ∈ P. ut

The previous theorem can be applied for various graph classes that admit a
characterization by forbidden induced subgraphs, such as chordal graphs, claw-
free graphs, distance-hereditary graphs, Ptolemaic graphs etc.

Theorem 2 (corrected Lemma 5.1 [1]). Let P be a poset. Then GP contains
an induced claw if and only if P contains one of S1, S2, S3 or S∗2 (the dual of
S2) as a ≺-preserving subposet, see Fig. 2.

Proof. If P contains one of the posets S1, S2, S3 or S∗2 as a ≺-preserving subposet
then clearly GP contains an induced claw.

Conversely, suppose that GP contains an induced claw. We want to find S1,
S2, S3 or S∗2 as a ≺-preserving subposet of P . Let us denote by x the middle
vertex and by u, v, w the other vertices of the claw. By Lemma 1(iii), as u, v, w
form an independent set in GP they lie on a common chain in P . Without loss
of generality we may suppose that u ≺≺ v ≺≺ w.

Note that x ≺ v is not possible, otherwise x ≺≺ w and hence {x,w} /∈
E(GP ), a contradiction. Similarly, it is not possible that x ≺ u, v ≺ x or
w ≺ x. Thus there are only five cases to distinguish:
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Fig. 8: Subposets Qi, i = 1, . . . 7.
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Fig. 9: A counterexample to Theorem 4.1

– Case 1 x ‖ u, x ‖ v, x ‖w. Then P obviously contains S3 as a ≺-preserving
subposet.

– Case 2 u ≺ x, x‖v, x‖w. Then P obviously contains S2 as a ≺-preserving
subposet.

– Case 3 x ≺ w, x‖v, x‖u. Then P obviously contains S∗2 as a ≺-preserving
subposet.

– Case 4 u ≺ x, x ≺ w, x‖v and the length of the shortest chain in P between
u and w is equal to 4. Then P obviously contains S3 as a ≺-preserving
subposet.

– Case 5 u ≺ x, x ≺ w, x‖v and the length of the shortest chain in P between
u and w is greater than 4. Then P obviously contains S2 as a ≺-preserving
subposet.

ut



Now let us restate the corresponding statements from [1] and [3]. We skip
their proofs as they are the same as the ones presented in [1] and [3], the only
mistake was claiming that the forbidden subposets must be isometric subposets
of P .

Theorem 3 (corrected Lemma 4.4 [1]). Let P be a poset. Then GP contains
an induced house if and only if P contains one of R1, R2, R3, R4, R5 or its
duals as a ≺-preserving subposet, see Fig. 4.

Theorem 4 (corrected Lemma 4.5 [1]). Let P be a poset. Then GP contains
an induced domino if and only if P contains one of D1, D2, D3, D4, D5, D6,
D7 or its duals as a ≺-preserving subposet, see Fig. 6.

Let us remark that for P1, P2, and P3 the notion of isometric subposet and
≺-preserving subposet coincide. More precisely, a poset P contains P1, P2, or P3

as an isometric subposet if and only if P contains P1, P2, or P3 as a ≺-preserving
subposet. This is because the length of the longest chain in P1, P2, and P3 is
only two. Hence, Theorem 3.1 [3] holds as it was stated in [3].

Theorem 5 (corrected Theorem 4.1 [3]). Let P be a poset. Then GP is a
cograph if and only if P contains none of Q1, Q2, . . . , Q7 and neither of the
duals of Q2 and Q5 as a ≺-preserving subposet, see Fig. 8.

P1 P2 P3 C4

Fig. 10: Subposets P1, P2, P3 and C4
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editor of this paper for many valuable comments and suggestions regarding this
paper.



References
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