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Abstract

In this paper we present a new method for deriving a random linear extension of a poset.
This new strategy combines Probability with Combinatorics and obtains a procedure where
each minimal element of a sequence of subposets is selected via a probability distribution. The
method consists in obtaining a weight vector on the elements of P , so that an element is selected
with a probability proportional to its weight. From some properties on the graph of adjacent
linear extensions, it is shown that the probability distribution can be obtained solving a linear
system; the number of equations involved in this system relies on the number of what we have
called positioned antichains, that allows a reduced number of equations; finally, we give some
examples of the applicability of the algorithm. This procedure cannot be applied to any poset,
but it is exact when it can be used. Moreover, the method is quick and easy to implement.
Besides, it allows a simple way to derive the number of linear extensions of a given poset.

Keywords: Poset; linear extension; random generation.

1 Introduction

One of the most interesting problems when dealing with posets is to generate a linear extension in
a random fashion (see for example [8]). Brightwell and Winkler have shown in [2] that, for general
posets, this problem, as well as the problem of counting the number of linear extensions of a poset,
are � P-complete problems, and consequently, it is not possible to derive a satisfactory procedure for
solving these problems for general posets.

On the other hand, this problem has drawn the attention of many researchers and many algorithms
have been proposed to cope with it (see e.g. [6, 25, 11, 20] for generating a random linear extension
of a poset and [18, 16, 12] for counting the number of linear extensions).

In this sense, an interesting research line is to provide an algorithm that allows to solve the
problem for general posets and such that the computational cost for each step is bounded; these
algorithms are called loopless-free and several algorithms fulfilling this condition have been proposed
in the literature (see e.g. [13]).

Another interesting line to deal with the problem is based on Markov chains and follows the work
of Karzanov and Khachiyan [12] (see also [14] for an introduction on mixing Markov chains). The
idea is to generate a sequence of linear extensions and consider the n-th term of the sequence; it
has been proved [10] that it is possible to obtain a bound n such that for the n-th element in the
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sequence, all linear extensions of the poset have the same probability of appearence, no matter the
initial linear extension considered; thus, a way to generate a linear extension is to follow the sequence
until the n-th term. Some works in this line can be seen e.g. in [1, 3].

Interestingly enough, the problem of generating a linear extension of a poset in a random fash-
ion appears in other domains. For example, consider the set of non-additive measures [24, 4, 7];
non-additive measures are a fundamental tool appearing in many different fields, as for example
Multicriteria Decision Making or Cooperative Game Theory, among many others (see [9]); the set of
all non-additive measures on a finite referential is a bounded polytope; now, consider the problem
of generating a random non-additive measure; there are several methods to generate points in a
polytope, as the grid method [8], the sweep-plane method [15] and triangulation methods [8]; it can
be easily proved that the set of non-additive measures is an order polytope (see [22] for the concept
and properties of these polytopes) whose subjacent poset is the Boolean poset; then, triangulations
methods are specially appealing for order polytopes because, as it is proved in [17] pag. 304, the
problem of generating a point in an order polytope can be turned into generating a linear extension
of the subjacent poset in a random way.

The main difficulty when trying to generate a random linear extension relies in the combinatorial
nature of the problem. Usually, the quantities appearing in the problem are very large and grow very
fast when the cardinality of the poset grows, and then are considered untractable (see unsolvable)
for generating a linear extension in a random way.

In this paper we present a new procedure for generating linear extensions, that we have called
Bottom-Up method. Briefly speaking, we look for a vector of weights w∗ on the elements of P, so
that an element has a probability to be selected as the next element of the linear extension given by
the quotient between its weight and the sum of all elements that can be selected for this position.
The problem we solve in the paper is how to obtain a weight vector so that any linear extension has
the same probability of being obtained. We will see that this can be done solving a linear system
of equations; moreover, this system does not depend on the number of linear extensions, but on the
number of what we have called positioned antichains, whose number is usually very small compared
with the number of linear extensions. As it will become apparent below, the algorithm is simple and
fast; besides, it allows to compute the number of linear extensions of the poset very easily. Moreover,
once w∗ is obtained, the computational cost of deriving a random extension is very reduced and thus,
this procedure is specially appealing when several linear extensions are needed. On the other hand,
this method cannot be applied to any poset and indeed, we show that the existence of a suitable
weight w∗ depends on whether a linear system has infinite solutions. We show some examples of
families of posets where it can be applied, illustrating the procedure; we also provide some sufficient
conditions on the polytope to admit such a weight vector and study how this weight vector can be
obtained.

The rest of the paper is presented as follows: In order to fix the notation and to be self-contained,
in next section we give the basic definitions and facts that will be needed to explain the procedure.
The Bottom-Up method is developed in Section 3. Section 4 shows some examples of families of
polytopes that allow the existence of a weight vector. We finish with the conclusions and open
problems. In order to avoid missing the thread of the paper, the technical proof of Theorem 3 is
given in an appendix.
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2 Basic concepts and tools on posets

For a general introduction on the theory of posets see [5, 19]. Let us consider a finite set P endowed
with a partial order � (a reflexive, antisymmetric and transitive relation). The pair (P,�) is a
partial order set or poset for short; with some abuse of notation, we will usually omit � and
write P instead of (P,�) when referring to posets. Elements of P are denoted x, y and so on, and
also a1, a2, ...; if |P | = n, we will also use the notation P = {1, ..., n}. Subsets of P are denoted
by capital letters A,B, ...; a poset can be represented through Hasse diagrams. An element x such
that x �≺ y, ∀y ∈ P is called a maximal element; similarly, if x is such that y �≺ x, ∀y ∈ P, x is
called a minimal element; we will denote by M(P ) the set of minimal elements of poset P and
m(P ) = |M(P )|. We say that y covers x, denoted x � y, if x � y and there is no z ∈ P \ {x, y}
satisfying x � z � y. For an element x, we define its level recursively as follows: maximal elements
are in level 0, denoted L0; then, maximal elements of P \L0 are in level L1; in general, Li is the set of
maximal elements of P \ (L0 ∪ ...∪Li−1). For a poset P , we can define the dual poset P ∂ = (P,�∂)
such that x �∂ y ⇔ y � x.

A chain is a poset such that � is a total order; we will denote the chain of n elements by n;
similarly, an antichain is a poset where � is given by x � y ⇔ x = y; we will denote the antichain
of n elements by n̄.

Given an element x, we denote by ↓ x the subposet of P whose elements are {y : y � x} and by
↓ x̂ :=↓ x\ {x}; similarly, we denote by ↑ x the subposet of P whose elements are {y : x � y} and by
↑ x̂ :=↑ x \ {x}. These notions can be extended for a general subset A, thus obtaining ↓ A, ↑ Â, ↓ A
and ↑ Â. Finally, we will denote by � A the set of elements related to any element of A and by
� Â =� A \ A. An ideal or downset I of P is a subset of P such that if x ∈ I then ↓ x ⊆ I; we
will denote the set of all ideals of P by I(P ) and i(P ) = |I(P )|. Symmetrically, a subset F of P is
a filter or upset if for any x ∈ F and any y ∈ P such that x � y, it follows that y ∈ F ; we denote
by F(P ) the set of filters of P .

Two posets (P,�P ) and (Q,�Q) are isomorphic if there is a bijection f : P → Q such that
x �P y ⇔ f(x) �Q f(y). If two posets are isomorphic, then their corresponding Hasse diagrams are
the same up to differences in the names of the elements.

Two elements x, y ∈ P are said to be interchangeable if there is an automorphism f : P → P
such that f(x) = y and f(y) = x.

The direct sum of two posets (P,�P ), (Q,�Q), denoted P ⊕Q is a poset (P ∪Q,�P⊕Q) where
x �P⊕Q y whenever x, y ∈ P and x �P y, or x, y ∈ Q and x �Q y, or x ∈ P, y ∈ Q. A poset
is irreducible by direct sum if it cannot be written as a direct sum of two posets. Similarly, the
disjoint union of two posets (P,�P ), (Q,�Q), denoted P � Q is a poset (P ∪ Q,�P�Q) where
x �P�Q y whenever x, y ∈ P and x �P y, or x, y ∈ Q and x �Q y. A poset which cannot be written
as disjoint union of two posets is called connected. Obviously, the Hasse diagram of a connected
poset is also a connected graph.

A linear extension of (P,�) is a sorting of the elements of P that is compatible with �, i.e.
x � y implies that x is before y in the sorting. Linear extensions will be denoted ε1, ε2 and so on and
the i-th element of ε is denoted ε(i). We will denote by L(P ) the set of all linear extensions of poset
(P,�) and by e(P ) = |L(P )|. The aim of the paper is to generate a linear extension in a random
fashion. Two linear extensions are said to be related by a transposition if they are identical except
for the swapping of two elements; if these elements are consecutive, the linear extensions are related
by an adjacent transposition.

For L(P ) two graphs can be assembled: the first one is the transposition graph, denoted
(L(P ), τ); this graph has all the elements in L(P ) as vertices and edges exist between linear extensions
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that are related by a transposition. The second one is the adjacent transposition graph, denoted
(L(P ), τ ∗), where edges exist between linear extensions that are related by an adjacent transposition.
It is well-known [21] that both graphs are connected.

When working with finite posets, it is sometimes convenient to denote elements as natural num-
bers. A labeling is a bijective mapping L : {1, 2, . . . , |P |} → P (see [19]). There are n! ways to
define a labeling. A labeling is natural if x � y implies L−1(x) ≤ L−1(y) with the natural numbers
order. It is well-known that every finite poset admits a natural labeling.

Example 1. Consider the poset N , given by four elements 1, 2, 3, 4 and whose corresponding Hasse
diagram is given in Figure 1 left. The linear extensions of this poset N are

(1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 3, 4), (2, 1, 4, 3), (2, 3, 1, 4)

and the corresponding transposition graph and adjacent transposition graph (they are the same for
this poset) are given in Figure 1 right. Note that we have used a natural labeling for N.

Figure 1: N poset and its (adjacent) transposition graph.

4 3
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21431234

2134

2314

3 Bottom-Up method

Let us consider a poset (P,�) and let us treat the problem of building a linear extension. The first
element of the linear extension is a minimal element of P , say x1; next, an element in M(P\{x1})
is selected, say x2; then, a minimal element of P\{x1, x2}, and so on. In order to generate a random
linear extension, the problem we have to face is the way each minimal element is selected. In this
section, we develop a procedure that assigns to each element of the poset a weight value, so that the
probability of selecting this element in a step is proportional to the quotient between its weight and
the sum of the weights of all minimal elements of the corresponding subposet. The basic steps of our
algorithm are:
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BOTTOM-UP ALGORIHM

1. INITIALIZATION: For any x ∈ P , assign a weight value wx > 0.

2. MAIN STEP: Starting with P ′ = P :

(a) Select a minimal element x of P ′ with probability the quotient between wx and the sum
of the weights of M(P ′).

(b) Remove this element and repeat the previous step for the new poset P ′\{x}.

Lemma 1. Let w = (w1, ..., wn) be a weight vector such that wi > 0 ∀i, and suppose that we derive
a linear extension via the previous algorithm. Then, we obtain a probability distribution on L(P ).

Proof: By construction, we know that P (ε) > 0 for any ε ∈ L(P ). Thus, it suffices to show∑
ε∈L(P ) P (ε) = 1. We will prove it by induction on |P |.
For |P | = 2 we have a chain or an antichain, and the result trivially holds in both cases.
Assume the result holds for |P | ≤ n and consider the case |P | = n + 1. Let m1, ..., mr be the

minimal elements of P . Then, one of them is the first element in the linear extension and thus,

∑
ε∈L(P )

P (ε) =

r∑
i=1

P (ε(1) = mi)
∑

ε′∈L(P\{mi})
P (ε′) =

r∑
i=1

wmi∑r
i=1wmr

∑
ε′∈L(P\{mi})

P (ε′) .

Now, applying the induction hypothesis,
∑

ε′∈L(P\{mi}) P (ε′) = 1 ∀i = 1, ..., r, and the result
holds.

With some abuse of notation, we will denote wA =
∑

x∈A wx. Note that for a given linear extension
ε and a weight function w, the probability of appearance of ε is given by

P (ε) =
wε(1)

wM(P)

× wε(2)

wM(P\{ε(1)})
× · · · =

n∏
i=1

wε(i)

wM(P\{ε(1),...,ε(i−1)})
. (1)

We look for a weight vector satisfying that all linear extensions share the same probability, that
we will denote by w∗. The critical point in this procedure is the way we assign weights to elements
in P so that w∗ serves this purpose. Two questions arise:

1. Is it possible to derive such a weight for any poset?

2. If a poset admits a weight vector in these conditions, how can it be sorted out?

Answer to the first question is negative, as next example shows:

Example 2. Consider the poset given in Figure 2

Figure 2: Example of poset where w∗ does not exist.
4 3
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Consider the following pairs of linear extensions: ε1 = (1, 2, 4, 3, 5), ε2 = (1, 2, 4, 5, 3), ε3 =
(5, 2, 1, 3, 4), ε4 = (5, 2, 3, 1, 4) and ε5 = (1, 5, 2, 3, 4), ε6 = (5, 1, 2, 3, 4). Then, if w∗ exists, P (ε1) =
P (ε2) leads to w∗

3 = w∗
5; next, P (ε3) = P (ε4) leads to w∗

1 = w∗
3 + w∗

4; finally, P (ε5) = P (ε6) leads to
w∗

1 = w∗
5. As a conclusion, no w∗ satisfying w∗

i > 0, ∀i ∈ P exists.

If a poset P admits a weight vector w∗ > 0, we say that P is BU-feasible.
Assume P is BU-feasible; we treat the problem of obtaining w∗ below. Let us start with an

example.

Example 3. Consider poset N and let w = (w1, w2, w3, w4) be a (possible) vector of weights. Then,
for each linear extension of poset N , we obtain the probabilities:

ε1 = (1, 2, 3, 4) ⇒ p(ε1) =
w1

w1 + w2

× w2

w2

× w3

w3 + w4

× w4

w4

ε2 = (1, 2, 4, 3) ⇒ p(ε2) =
w1

w1 + w2

× w2

w2

× w4

w3 + w4

× w3

w3

ε3 = (2, 1, 3, 4) ⇒ p(ε3) =
w2

w1 + w2
× w1

w1 + w3
× w3

w3 + w4
× w4

w4

ε4 = (2, 1, 4, 3) ⇒ p(ε4) =
w2

w1 + w2
× w1

w1 + w3
× w4

w3 + w4
× w3

w3

ε5 = (2, 3, 1, 4) ⇒ p(ε5) =
w2

w1 + w2

× w3

w1 + w3

× w1

w1

× w4

w4

In order to sampling uniformly, we should get a vector w = (w1, w2, w3, w4) such that p(ε1) =
p(ε2) = p(ε3) = p(ε4) = p(ε5). It is easy to see that w∗ = (2, 3, 1, 1) satisfies these conditions.

Note that we have two problems to face: first, as it can be seen in the previous example, we have
to solve a non-linear system of equations; this is the case for general posets. Second, the system
involves |L(P )| − 1 equations and relies on the knowledge of the whole set of linear extensions;
therefore, the problem is untractable at this stage. In next results we will see that it is possible to
derive an equivalent linear system involving a reduced number of equations and such that it does not
depend on the knowledge of L(P ).

We start transforming the system into an equivalent one just involving linear equations.

Lemma 2. Let us consider two adjacent linear extensions ε1, ε2 in (L(P ), τ ∗); then, the equation
p(ε1) = p(ε2) is linear.

Proof: Let ε1 and ε2 be two adjacent linear extensions in (L(P ), τ ∗). Then, they can be written
as ε1 = (a1, a2, . . . , ak, x, y, b1, b2, . . . , bs) and ε2 = (a1, a2, . . . , ak, y, x, b1, b2, . . . , bs). Now, denoting
Pi = P\{ε1(1), ..., ε1(i− 1)} and P ′

i = P \ {ε2(1), ..., ε2(i− 1)}, then

P (ε1) =
wa1

wM(P1)

× · · · × wak

wM(Pk)

× wx

wM(Pk+1)

× wy

wM(Pk+2)

× wb1

wM(Pk+3)

× · · · × wbs

wPn

.

P (ε1) =
wa1

wM(P ′
1)

× · · · × wak

wM(P ′
k)

× wy

wM(P ′
k+1)

× wx

wM(P ′
k+2)

× wb1

wM(P ′
k+3)

× · · · × wbs

w′
Pn

.

Notice that wM(Pi) = wM(P ′
i )
, if i �= k + 2. Consequently,

P (ε1) = P (ε2) ⇔ wM(P ′
k+2)

= wM(Pk+2),

whence we have obtained a linear equation.
From this result we can transform the system of equations into a linear system.
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Theorem 1. Let P be a finite poset. The system of |L(P )| − 1 non-linear equations p(ε1) = p(ε2) =
. . . = p(εe(P )) can be transformed into a linear system of the same number of equations.

Proof: Consider a linear extension ε1; as (L(P ), τ ∗) is connected, there exists ε2 being adjacent
to ε1. Applying the previous lemma, we conclude that p(ε1) = p(ε2) is a linear equation. Now, there
exists ε3 ∈ L(P )\{ε1, ε2} adjacent to one of them, say ε2; and again, p(ε2) = p(ε3) is linear. Acting
like this, we obtain a system of e(P )− 1 linear equations.

Example 4. In next table we show the way to obtain the weight vector for poset N . In the first
column, we consider the set of adjacent linear extensions. Although there are five pairs of adjacent
linear extensions (see Fig. 1), note that we just need four of them in order to define the system
involving all linear extensions. Moreover, remark that there are just three different equations, as
some of them coincide.

Linear extensions Equation Incomparable pair V
p(ε1) = p(ε2) w3 = w4 {3, 4} ∅
p(ε1) = p(ε3) w2 = w1 + w3 {1, 2} ∅
p(ε2) = p(ε4) w2 = w1 + w3 {1, 2} ∅
p(ε3) = p(ε4) w3 = w4 {3, 4} ∅
p(ε3) = p(ε5) w1 = w3 + w4 {1, 3} ∅

Therefore, we obtain the following linear system:⎧⎪⎨⎪⎩
w3 = w4

w2 = w1 + w3

w1 = w3 + w4

whose solution is w∗ = (2λ, 3λ, λ, λ), λ > 0.

Now, a problem may be considered: how can the adjacent linear extensions be chosen? Of
course, the natural answer is to consider a Hamiltonian path in the graph (L(P ), τ ∗); however, such
a path does not exist in general and it is indeed a problem that has attracted the attention of many
researchers (see [21] and references therein). We will show below that the problem can be solved in a
more suitable way without the need of considering linear extensions and connections between them,
so we can avoid this problem.

Let us now deal with the problem of reducing the number of equations of the linear system. To
shed light on what follows, let us have a look to the system obtained in Example 4. As we have seen in
this example, it could be the case that some equations coming from different pairs of adjacent linear
extensions in (L(P ), τ ∗) coincide. This is the case for p(ε1) = p(ε2) and p(ε3) = p(ε4), or p(ε1) = p(ε3)
and p(ε2) = p(ε4). Let us take a deeper look at these equations; as they come from adjacent linear
extensions, they differ in two consecutive uncomparable elements that have swapped positions, the
position of the other elements remaining unaltered; thus, as we have shown in Lemma 2, the equation
depends on these pairs of elements; moreover, as the equations relies on the minimal elements of the
corresponding subposets when these elements are selected, we have to take into account the elements
that have been selected before (or equivalently, that will be selected after); the elements in ↓ x̂∪ ↓ ŷ
are of course selected before x, y, and elements in ↑ x̂∪ ↑ ŷ are selected after; then, it just suffices to
know which are the elements outside these subsets that have been selected before x, y; this is set V
in the fourth column and it is an ideal of P\ � {x, y}. This leads us to the following definition.
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Definition 1. Let P be a finite poset. We say that (a = {x, y}, V ) is a positioned antichain if
a = {x, y} is an antichain in P and V is an ideal of P\ � {x, y}. Notice that V can be the empty
set.

Let us denote by PA(P ) the set of all positioned antichains for poset P and by pa(P ) its cardi-
nality. Remark that for any pair of adjacent linear extensions in (L(P ), τ ∗), a positioned antichain
is associated to the pair, but it could be the case that several pairs of adjacent linear extensions
share the same positioned antichain, as we have seen in the previous example. Therefore, the linear
system based on adjacent linear extensions can be transformed into another one based on positioned
antichains. This is formally shown below.

Definition 2. Let P be a finite poset and (a, V ) a positioned antichain of P with a = {x, y}. Define
the set of linear extensions generated by (a, V ) as

G(a, V ) := {ε = (ε1, ε2, ε3) ∈ L(P ) : ε1 ∈ L(↓ x̂∪ ↓ ŷ ∪ V ), ε2 ∈ L(a), ε3 ∈ L(↑ x̂∪ ↑ ŷ ∪ V c
a )}

where V c
a := P\(� {x, y} ∪ V ). Notice that ε2 = (x, y) or ε2 = (y, x).

Lemma 3. Let us consider a pair of adjacent linear extensions (ε1, ε2) in (L(P ), τ ∗). Then, there is
a unique positioned antichain (a, V ) such that ε1, ε2 ∈ G(a, V ). We call it the positioned antichain
associated to the pair (ε1, ε2).

Proof: Let ε1 = (a1, a2, . . . , ak, x, y, b1, b2, . . . , bs) and ε2 = (a1, a2, . . . , ak, y, x, b1, b2, . . . , bs). Now
we necessarily have to choose a = (x, y) and V = (P\ � {x, y})∩{a1, a2, . . . , ak}. Since ε1 and ε2 are
linear extensions, then V is an ideal of P\ � {x, y}. Finally ε1, ε2 ∈ G(a, V ).

Note that for any positioned antichain (a = {x, y}, V ), it is always possible to obtain a pair
of linear extensions (ε1, ε2) such that ε1 and ε2 are adjacent in (L(P ), τ ∗) and whose associated
positioned antichain is (a, V ). To see this, it just suffices to consider ε1 = (ε11, x, y, ε

3
1) ∈ G(a, V ) and

ε2 = (ε11, y, x, ε
3
1).

Theorem 2. Let us consider two pairs of adjacent linear extensions (ε1, ε2) and (ε3, ε4) in (L(P ), τ ∗)
and suppose they share the same positioned antichain. Then, the linear equation for p(ε1) = p(ε2) and
p(ε3) = p(ε4) is the same. Consequently, it just suffices to consider the linear equations corresponding
to different positioned antichains.

Proof: Let us denote by (a, V ) with a = {x, y} the common positioned antichain associated to
both pairs. From the proof of Lemma 2, we know that the linear equations for p(ε1) = p(ε2) and
p(ε3) = p(ε4) only depend on the terms corresponding to the (consecutive) positions for x, y in the
linear extension; on the other hand, these terms depend only on the elements appearing before in
the linear extension. As these elements are in both cases ↓ x̂∪ ↓ ŷ ∪ V , the result holds.

Definition 3. We define the linear equation associated to the positioned antichain (a = {x, y}, V )
the equation given by

w(M(P \ (↓ â ∪ V ∪ {x}))) = w(M(P \ (↓ â ∪ V ∪ {y}))). (2)

Note that this equation arises for p(ε1) = p(ε2) where (ε1, ε2) is a pair of two adjacent linear
extensions whose associated positioned antichain is (a, V ).

Now, the following question is of relevance: Does the system based on positioned antichains
involve a reduced number of equations? For this, we have to compare pa(P ) and e(P ); the following
holds:
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Theorem 3. Let P be a finite poset. Then, pa(P ) ≤ e(P ).

Proof: See appendix.
In general, pa(P ) < e(P ) and pa(P ) is very small compared to e(P ). Note however that it could

be the case that the number of linear extensions and the number of positioned antichains could be
the same.

Example 5. Consider the antichain of three elements, 3̄. In this case, there are six linear extensions.
On the other hand, each pair of elements are uncomparable, and V can be either the element outside
the antichain or the empty set; then, there are six positioned antichains.

Finally, it is important to note that the number of equations could be further reduced, as redun-
dances may appear. Next example illustrates this situation and shows how positioned antichains can
reduce the complexity of the problem.

Example 6. Let us consider the case of the Boolean poset of order three B3 (Figure 3), that has 48
linear extensions.

Figure 3: B3 lattice.

123

2312 13

31 2

∅

Note that the ∅ and the total set have fixed positions and any weight is valid for these elements.
If we remove these two elements we obtain an irreducible poset. We have the following positioned
antichains and equations:

Positioned Antichain Equation positioned Antichain Equation
(12, 13) V = ∅ w13 = w12 (12, 13) V = 23 w13 = w12

(12, 23) V = ∅ w12 = w23 (12, 23) V = 13 w12 = w23

(13, 23) V = ∅ w13 = w23 (13, 23) V = 12 w13 = w23

(1, 23) V = ∅ w1 = w12 + w13 + w23 (2, 13) V = ∅ w2 = w12 + w13 + w23

(3, 12) V = ∅ w3 = w12 + w13 + w23 (1, 2) V = ∅ w1 = w2

(1, 2) V = 3 w1 + w23 = w2 + w13 (1, 3) V = ∅ w1 = w3

(1, 3) V = 2 w1 + w23 = w3 + w12 (2, 3) V = ∅ w2 = w3

(2, 3) V = 1 w2 + w13 = w3 + w12

Note that we have reduced the number of equations from 47 to 15. In fact, the number of equations
can be further reduced to: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

w12 = w13 = w23

w1 = w12 + w13 + w23

w2 = w12 + w13 + w23

w3 = w12 + w13 + w23

9



Then a solution is w∗ = (w∗
1, w

∗
2, w

∗
3, w

∗
12, w

∗
13, w

∗
23) = (3, 3, 3, 1, 1, 1) or, with w∗

∅ = 1 and w∗
123 = 1,

w∗ = (1, 3, 3, 3, 1, 1, 1, 1).

Remark 1. Let P be BU-feasible. Then, ∀ε ∈ L(P ), it is possible to obtain P (ε) applying Eq. (1).

On the other hand, P (ε) = 1
|L(P )| , whence |L(P )| = 1

P (ε)
.

For example, considering B3, it can be checked that:

P (ε = (∅, 1, 2, 3, 12, 13, 23, 123)) = 1 · 3
9
· 3
6
· 3
4
· 1
3
· 1
2
· 1 · 1 =

1

48
⇒ |L(B3)| = 48.

Thus, our procedure also provides an easy way to obtain the number of linear extensions. Note
that, as already pointed out in the introduction, the problem of counting all linear extensions of a
poset is a hard problem.

Let us now show some properties regarding BU-feasibility.

Proposition 1. Let P1, ..., Pn be a group of finite posets and consider P := P1 ⊕ P2 ⊕ ... ⊕ Pn.
Then, there exists a weight vector w∗

P if and only if there exists w∗
Pi
, i = 1, ..., n. In other words, P is

BU-feasible if and only if Pi is BU-feasible ∀i = 1, ..., n. Moreover, w∗
P = (w∗

P1
, ..., w∗

Pn
).

Proof: As P = P1 ⊕ P2 ⊕ ...⊕ Pn, a positioned antichain in Pi is a positioned antichain in P .
By definition of ⊕, given x ∈ Pi and y ∈ Pj with i < j, x �P y; consequently, any antichain

of order two in P consists in two elements in the same Pi that are not related. Consider now a
positioned antichain (a = {x, y}, V ) in P . Then, x, y belong to the same Pi; on the other hand, V
is an ideal of P\ � {x, y}; as x, y � z, ∀z ∈ Pj, j < i and x, y � z, ∀z ∈ Pk, k > i, we conclude that
V ⊂ Pi and thus, ({x, y}, V ) is a positioned antichain in Pi. As a result,

PA(P ) =

n⋃
i=1

PA(Pi).

Finally, for a positioned antichain (a = {x, y}, V ) in Pi, notice that the minimal elements when
introducing x and y in the linear extension belong to Pi; therefore, we obtain a linear equation that
just involves elements in Pi, and it is the same equation arising when dealing with Pi instead of P.

Therefore, the equations for P can be divided in n groups of equations, each of them just involving
elements of a Pi. Thus, it is possible to obtain a weight vector w∗

P if and only if it is possible to
obtain a group of n weight vectors w∗

P1
, ..., w∗

Pn
and in this case w∗

P = (w∗
P1
, ..., w∗

Pn
).

Now, we prove an important property about BU-feasible posets.

Theorem 4. Let P be a BU-feasible finite poset with weight vector w∗
P . If F ∈ P, then F is BU-

feasible and w∗
F := w∗

P |F is a possible weight vector for subposet F .

Proof: It suffices to prove that every linear equation associated to the linear system generated
for F is in the linear system generated for P . Consider a positioned antichain (aF = {a1, a2}, VF ) in
F ; the associated equation for this positioned antichain is given by (see Eq. (2))

w(M(F \ (↓ âF ∪ VF ∪ {a1}))) = w(M(F \ (↓ âF ∪ VF ∪ {a2}))).
Consider (a, V ), where a = aF and V = VF ∪ F c

a where F c
a := F c\ � a. First, note that V is an

ideal of P\ � a; as F c is an ideal of P , then F c\ � a = F c
a is an ideal of P\ � a; take x ∈ V and

z � x, z ∈ P\ � a; then, if x ∈ F c
a so is z; suppose on the other hand that x ∈ VF ; if z ∈ F, then

z ∈ VF because VF is an ideal of F ; otherwise, z ∈ F c and z ∈ P\ � a, whence z ∈ F c
a .

10



The associated equation is

w(M(P \ (↓ â ∪ V ∪ {a1}))) = w(M(P \ (↓ â ∪ V ∪ {a2}))) ⇔

w(M(P \ (↓ âF ∪ (VF ∪ F c
a ) ∪ {a1}))) = w(M(P \ (↓ âF ∪ (VF ∪ F c

a ) ∪ {a2}))) ⇔

w(M(P \ (↓ âF ∪ VF ∪ {a1} ∪ (F c\ ↑ aF )))) = w(M(P \ (↓ âF ∪ VF ∪ {a2} ∪ (F c\ ↑ aF )))) ⇔

w(M(P \ (↓ âF ∪ VF ∪ {a1} ∪ F c))) = w(M(P \ (↓ âF ∪ VF ∪ {a2} ∪ F c))) ⇔

w(M(F \ (↓ âF ∪ VF ∪ {a1}))) = w(M(F \ (↓ âF ∪ VF ∪ {a2}))).
Observe that we have used above that F c\ ↑ aF = F c since ↑ aF ⊆ F . Finally, as the system for

P has a positive solution, then so has the one for F , and a possible solution is the restriction of w∗
P

to F .
Note however that this does not mean that BU-feasibility for a subposet F implies BU-feasibility

for P .

Corollary 1. Let P1, P2, · · · , Pn be a collection of finite connected posets. If P = P1 � P2 � · · · � Pn

is BU-feasible, then each Pi is BU-feasible and w∗
Pi

= w∗
P |Pi

is a possible weight vector.

Proof: As Pi is a filter of P , it just suffices to apply Theorem 4.

Lemma 4. Let P be a finite poset and let M = L0 = {m1, m2, . . . , ms} be the set of maximal
elements of P . Then, if P is BU-feasible, then w∗

mi
= w∗

mj
, ∀mi, mj ∈ M.

Proof: For every pair of maximal elementsmi, mj , consider the positioned antichain ({mi, mj}, V =
P \(↓ mi∪ ↓ mj)). Then, P \(↓ m̂i∪ ↓ m̂j ∪ V ) = {mi, mj}, whence M(P \(↓ m̂i∪ ↓ m̂j ∪ V ∪mj) =
{mi} and M (P \ (↓ m̂i∪ ↓ m̂j ∪ V ∪mi)) = {mj} and thus by Eq. (2), the corresponding equation
is wmi

= wmj
.

Next, we are going to study a useful tool to compute w∗.

Proposition 2. Let P be a BU-feasible finite poset and x, y ∈ P . If x and y are interchangeable,
then w∗

x = w∗
y.

Proof: Note that if x, y are interchangeable, then they are in the same level. Then, we will prove
the result by induction on the level of x, y.

If x, y ∈ L0, then they are maximal and w∗
x = w∗

y by Lemma 4.
Suppose the result holds for L0, L1, ..., Lk and take x, y ∈ Lk+1 being interchangeable. Notice

that x and y are not related to each other, so we can take the positioned antichain of order 2 given
by ({x, y}, V ) with V = P\ � {x, y}. Applying Eq. (2), we derive the equation

w∗
x + w∗

z1
+ w∗

z2
+ . . .+ w∗

zs = w∗
y + w∗

z∗1
+ w∗

z∗2
+ . . .+ w∗

z∗s ,

where z1, ..., zs = M(P\{V ∪ ↓ x̂∪ ↓ ŷ ∪ y}) and z∗1 , ..., z
∗
s = M(P\{V ∪ ↓ x̂∪ ↓ ŷ ∪ x}). As ↑ x ∼=↑ y,

there are as many zi as z∗i . Besides, we can suppose that {zi, ..., zs} ∩ {z∗1 , ..., z∗s} = ∅. Moreover,
↑ x∩Lk

∼=↑ y∩Lk, whence we can assume that the elements zi and z∗i are interchangeable (reordering
the indices if necessary). Applying the induction hypothesis w∗

z∗i
= w∗

zi
, ∀i ∈ {1, 2, . . . , s}, whence

w∗
x = w∗

y.
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Remark 2. It should be noted that we cannot assume that two elements x, y in the poset are inter-
changeable if w∗

x = w∗
y. Consider for example poset N . In this case, w∗

4 = w∗
3 by Lemma 4. However,

4 and 3 are not interchangeable.

Let us now deal with the problem of BU-feasibility of a poset P . From Proposition 1, we just
need to focus on the case of posets P that are irreducible by direct sum

⊕
.

Theorem 5. Let P be a finite poset irreducible by direct sum ⊕. Then, P is BU-feasible if and only
if the system has infinitely many solutions.

Proof: ⇒) Note that the system based on positioned antichains has the null vector as trivial
solution, but this vector is not a valid weight vector as weights should be positive. Thus, BU-
feasibility implies that the linear system has infinitely many solutions.

⇐) Let us prove that if the system has infinite many solutions, then it is possible to obtain a
weight vector; i.e. we shall prove that a vector with positive coordinates can be always obtained.

Consider an element in Lk+1. As P is irreducible, there are at least two elements in Lk and there
exists at least x ∈ Lk+1 such that it is not covered by any element in Lk. Denote by y an element
in Lk such that x �� y and let us denote by m1, ..., mr the set of elements in Lk covering x; consider
the positioned antichain ({x, y}, V ) where V = P\ � {x, y}. Then, from Def. 3, the corresponding
equation is given by

wx = wm1 + wm2 + . . .+ wmr + wy. (3)

Consider now an element z ∈ Lk+1 such that it is covered by any element in Lk. Since there exists
x ∈ Lk+1 that is not covered by all elements in Lk, let us consider the positioned antichain ({z, x}, V )
where V = P\ � {x, z}. Again, this leads to the equation

wz = wx +
∑

y∈Lk,x �	y

wmk
. (4)

First, let us show that if the system has infinite many solutions, then there exists a solution such
that wmi

�= 0 for a maximal element. For if wmi
= 0 for all maximal elements, we can apply Eqs.

(3) and (4) to conclude that wx = 0, ∀x ∈ L1; but then, we can repeat the procedure to conclude
wx = 0, ∀x ∈ L2; and so on. Then, wx = 0, ∀x ∈ P, whence the system has just an only solution.

Assume then that we have a solution for the system satisfying wmi
�= 0, for a maximal element mi.

We can fix this value to be wmi
= 1. Now, consider the positioned antichain given by ({mi, mj}, V =

P \ (↓ mi∪ ↓ mj)), that leads to wmi
= wmj

. Consequently, all maximal elements have the same
positive weight.

Now, let us show that by induction that if x � y, then wx > wy.
Let us consider an element in L1. If L1 = ∅, then P is an antichain and the results holds. In other

case, as P is irreducible, there are at least two maximal elements and there exists at least x ∈ L1

such that it is not covered by any element in L0. Let us prove that wx > 1. Denote by y an element
in L0 such that x �� y and let us denote by m1, ..., mr the set of elements in L0 covering x; consider
the positioned antichain ({x, y}, V ) where V = P\ � {x, y}. Then, from Eq. (3), the corresponding
equation is given by wx = wm1 + wm2 + . . .+ wmr + wy =

∑
mi∈L0,x	mi

wmi
+ 1 ≥ 2.

Consider now an element z ∈ L1 such that it is covered by any element in L0. Since there exists
x ∈ L1 that is not covered by all elements in L0, let us consider the positioned antichain ({z, x}, V )
where V = P\ � {x, z}. Eq. (4) leads to the equation wz = wx +

∑
y∈L0,x �	y wmk

= |L0|+ 1 ≥ 3.
Then, we have proved that every element in the second level has a weight greater than 1.

12



Now suppose that the result holds for elements in levels 0, ..., k and let us prove it for elements
in Lk+1. The reasoning is pretty similar. Since P is irreducible by direct sum, there are at least two
elements in Lk and there exists at least x ∈ Lk+1 such that it is not covered by any element in Lk;
let us choose an element y in Lk such that x �� y and let us prove that wx > wy. Let us denote by
m1, ..., mr the set of elements in Lk covering x; consider the positioned antichain ({x, y}, V ) where
V = P\ � {x, y}. Then, the corresponding equation is given by wx = wm1+wm2+. . .+wmr+wy > wy.

Consider now an element z ∈ Lk+1 such that it is covered by any element in Lk. Choose x ∈ Lk+1

that is not covered by all elements in Lk and let us consider the positioned antichain ({z, x}, V )
where V = P\ � {x, z}. Again, we obtain the equation wz = wx +

∑
y∈L0,x �≺y wmk

> wx. Then, for
the elements in Lk covering x, we obtain wz > wx > wmi

; for the elements y ∈ Lk not covering x, we
have by the previous case, wz > wx > wy.

As a direct consequence of this result, the following holds.

Corollary 2. Let P be a finite poset irreducible by direct sum ⊕. If |PA(P )| < |P |, then there is a
positive solution w∗.

Joining Theorem 5, Proposition 1 and Corollary 2, the following results hold.

Corollary 3. Let P = P1 ⊕ P2 ⊕ . . .⊕ Pn. Then, there exists w∗
P if and only if the linear systems

associated to Pi, i = 1, ..., n have infinitely many solutions.

Corollary 4. Let P = P1 ⊕ P2 ⊕ . . .⊕ Pn. If |PA(Pi)| < |Pi|, i = 1, ..., n, then there exists a weight
vector w∗

P .

Note that this condition is sufficient but not necessary (see for example the boolean lattice B3

developed in Example 6).
Thus, the final version of the Bottom-Up algorithm is as follows:

BOTTOM-UP ALGORIHM

1. ASSIGNING WEIGHTS

(a) Compute all possible positioned antichains.

(b) For any positioned antichain, build the corresponding linear equation.

(c) Solve the system of linear equations and choose a weight vector (if possible).

2. MAIN STEP: Starting with P ′ = P :

(a) Select a minimal element x of P ′ with probability the quotient between wx and the sum
of the weights of M(P ′).

(b) Remove this element and repeat the previous step for the new poset P ′\{x}.

4 Examples

In this section, we apply the Bottom-Up method to some families of posets in order to illustrate the
performance of this algorithm.
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Example 7. In this example we are going to show that every rooted tree is BU-feasible. A rooted
tree [23] is a poset satisfying that its Hasse diagram (considered as an undirected graph) is connected
and has no cycles, and it has just one minimal element (called root). An example of rooted tree can
be seen in Figure 4.

Figure 4: Rooted Tree.
8 9

7654

32

1

Consider (a = {x, y}, V ) a positioned antichain for a rooted tree. Note that, as P has no cycles, for
any z ∈ M(P \(↓ â∪V )), z �= x, y, it follows z ∈ M(P \(↓ â∪V ∪{x}))∩M(P \(↓ â∪V ∪{y})), whence
we conclude that for two positioned antichains (a, V ) and (a, V ′), they share the same associated
equation. In other words, ideal V is not relevant.

Now, for x ∈ P, let us consider λx := |{y ∈ T |y � x}|. Now, as P has no cycles, it is easy to see
by induction on the level that λx = 1 +

∑
x�h λh. Then, for a = {x, y}, the associated equation is

wx +
∑
y�z

wz = wy +
∑
x�h

wh.

Taking wx = λx, we have

wx +
∑
y�z

wz = λx +
∑
y�z

λz = 1 +
∑
x�h

λh +
∑
y�z

λz =
∑
x�h

λh + 1 +
∑
y�z

λz =
∑
x�h

λh + λy = wy +
∑
x�h

wh.

Consequently, any rooted tree is BU-feasible and w∗
x = λx is a possible solution. Observe that the last

argument remains valid for disjoint union of rooted trees by Corollary 1.
Finally, let us compute e(Tn) for any rooted tree with n elements. Again, we have to keep in mind

that λx = 1 +
∑

x�h λh. Then, it can be easily seen by induction that
∑

x∈M(P ) λx = |P | for any P
being a disjoint union of rooted trees. Therefore, for any linear extension ε of a rooted tree,

P (ε) =
λroot

n
· λx1

n− 1
· λx2

n− 2
· · · ,

whence

e(Tn) =
n!∏

x∈Tn
λx

.

This formula was already shown by Stanley [23].

Example 8. Let us consider the following family of posets Pn, where Pn has n + 1 levels, starting
on level 0 for minimals. In each level, we have an antichain of two elements, and they are related
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to the previous and the next level in the following way: one of the elements is related to any element
of these levels, while the other one is related only to one element in each level; to fix notation, we
assume that level i consists in {2i + 1, 2i + 2} and odd numbers are related to all the elements of
the previous and next level, while even numbers are related to odd numbers in the previous and next
level. Figure 5 shows the Hasse diagrams of P1, P2 and P3.

Figure 5: P1, P2 and P3 .
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Thus labeled, the possible positioned antichains for Pn are: ({2i − 1, 2i}, V = ∅) and ({2i, 2i +
2}, V = ∅). Consequently, there are 2n+ 1 positioned antichains and 2n+ 2 elements. By Corollary
2, we conclude that Pn is BU-feasible. Let us then compute a weight vector w∗.

Applying Lemma 4, we can assign w2n+1 = 1, w2n+2 = 1 to the two top elements. Now, considering
the positioned antichain ({2n, 2n + 2}, V = ∅), we obtain w2n = w2n+1 + w2n+2 = 2. For ({2n −
1, 2n}, V = ∅), we obtain w2n−1 = w2n + w2n+1 = 3. And we can continue this process until we reach
the first level. For example, for P3 we obtain the vector w∗ = (17, 12, 7, 5, 3, 2, 1, 1).

In order to derive a general formula, let us consider the reversed order, so that element i is
assigned to w∗

2n+2−i; for example, for P3 we would obtain the vector w∗ = (1, 1, 2, 3, 5, 7, 12, 17). Let
us denote by on the n-th odd number of this sequence and en the n-th even number; then, it is easy
to show by induction that ⎧⎪⎨⎪⎩

on = on−1 + en−1

en = on + on−1

o1 = e1 = 1

Merging the second equation into the first one we have on = 2on−1+ on−2 with o0 = 0 and o1 = 1.

Let us solve this recursive equation through generating functions. Let F (x) :=

∞∑
k=0

xkok. Observe that:

F (x) = o0 + o1x+
∞∑
k=2

xkok = x+ 2
∞∑
k=2

xkok−1 +
∞∑
k=2

xkok−2 = x+ 2xF (x) + x2F (x).

Thus, F (x) =
x

1− 2x− x2
.

On the other hand,
x

1− 2x− x2
can be written as F (x) =

A

1− αx
+

B

1− βx
=

A +B − (βA+ αB)x

(1− αx)(1− βx)
.

As (1− αx)(1− βx) = 1− 2x− x2, we obtain that α and β satisfy{
αβ = −1

α + β = 2
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whence α =
2 +

√
4 + 4

2
= 1 +

√
2 and β =

2−√
4 + 4

2
= 1−√

2. On the other hand,

A +B = 0
βA+ αB = −1

}
⇒ A =

1

2
√
2
, B = − 1

2
√
2
.

Now,

F (x) =
A

1− αx
+

B

1− βx
= A

∞∑
k=0

αkxk +B

∞∑
k=0

βkxk,

whence

on = Aαn +Bβn =
1

2
√
2

[
(1 +

√
2)n − (1−

√
2)n

]
and

en = on + on−1 =
1

2
√
2

[
(1 +

√
2)n − (1−

√
2)n + (1 +

√
2)n−1 − (1−

√
2)n−1

]
=

1

2
√
2

[
(2 +

√
2)(1 +

√
2)n−1 − (2−

√
2)(1−

√
2)n−1

]
Finally, let us obtain the number of linear extensions for Pn. Note that:

P (ε = (1, 2, 3, 4, , ..., 2n+ 2)) =
on+1

on+1 + en+1
· 1 · on

on + en
· 1 · on−1

on−1 + en−1
· . . . o2

o2 + e2
· 1 · 1

o1 + e1
· 1

=
on+1

on+2
· 1 · on

on+1
· 1 · on−1

on
· . . . o2

o3
· 1 · 1

o2
· 1

=
1

on+2

whence e(Pn) =
1

2
√
2

[
(1 +

√
2)n+2 − (1−√

2)n+2
]
. The first values of e(Pn) are given in next table.

n 2 3 4 5
e(Pn) 12 29 70 169

Example 9. Let n ∈ N, N = {1, ..., n} and consider the poset Pn consisting on all the subsets of
N that are either singleton or whose complementary is a singleton, and consider the order relation
given by x ≺ y ⇔ x ⊂ y. Figure 6 shows P3, P4 and P5.

Figure 6: P3, P4 and P5 .
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Let us first find out the possible positioned antichains. We have three different cases:
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• Case 1: Derived from {i, j}. We have
(
n
2

)
possibilities. For each of them, we have the n − 2

singletons that are incomparable to both of them, so that we have 2n−2 possible choices of V .

• Case 2: Derived from {N\{i}, N\{j}}. As in the previous case, there are
(
n
2

)
possibilities. For

each of them, we have the n − 2 subsets of cardinality n − 1 that are incomparable to both of
them, so that we have 2n−2 possible choices of V .

• Case 3: Derived from {i, N\{i}}. In this case, there are n possibilities and any other element
in the poset compares to one of them, so that V = ∅.

Then, we have n(n− 1)2n−2+n positioned antichains, a number much larger than |Pn| = 2n and
consequently, Corollary 2 cannot be applied. However, we will show that in this case it is possible to
find a weight vector w∗.

Remark that by Lemma 4, we know that if w∗ exists, then all maximal elements have the same
weight, say 1; thus w∗

N\{i} = 1, ∀i ∈ N. Now, take i ∈ N and consider the positioned antichain

({i, N\{i}}, ∅); then, it follows that w∗
i = n. It suffices to show that no contradiction arises for any

other condition derived from other positioned antichain.

• For ({i, j}, V ) we derive w∗
i = w∗

j .

• For ({N\{i}, N\{j}}, V ) we derive w∗
N\{i} = w∗

N\{j}.

Thus, our solution fits all the equations. For example, for P3, P4 and P5 the corresponding weight
vectors are (3, 3, 3, 1, 1, 1), (4, 4, 4, 4, 1, 1, 1, 1) and (5, 5, 5, 5, 5, 1, 1, 1, 1, 1), respectively, and for Pn we
obtain (n, ..., n, 1, ..., 1).

Finally, let us use this vector to compute e(Pn). If we choose an extension ε whose first n elements
are the singletons, we obtain:

p(ε) =
n

n2
· n

(n− 1)n
· n

(n− 2)n
. . .

n

2n
· n

n+ 1
· 1
n
· 1

n− 1
. . .

1

3
· 1
2
· 1 =

n

n!(n + 1)!
.

Therefore,
e(Pn) = (n + 1)!(n− 1)!.

5 Conclusions and open problems

In this paper we have introduced a new procedure for generating a random linear extension of a
poset. The idea behind the algorithm is to derive a weight vector on the elements of P so that it
can be used for generating next element in the linear extension. Once this weight vector is obtained,
it suffices to select a minimal element with probability given by the quotient between its weight and
the sum of the weights of the whole set of minimal elements. The method is exact and simple to use;
besides, it allows to compute the number of linear extensions of the polytope. The main aspect of
the algorithm is the way of deriving the vector of weights; in this sense, we show that whenever this
vector exists, it can be obtained solving a linear system of equations; in a first step we show that this
system has e(P )−1 equations, so it could be a big (see untractable) linear system and the knowledge
of all elements of L(P ) is needed; next, we show that in general many of these equations are the same
and thus, they can be removed, and we develop a way to reduce the number of equations involved,
based on what we have called positioned antichains.
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There are some open problems that we aim to treat in the future. First, we have the problem
of obtaining necessary and sufficient conditions on the poset to apply the procedure; following this
line, we have already obtained Th. 5, but it could be interesting to derive other results based on
the structure of P . Another interesting problem would be to compare this procedure with other
procedures appearing in the literature, in the sense of their computational costs; in this sense, it
should be noted that BU-algorithm is very fast once w∗ is obtained; then, it seems to be an appealing
solution if many random linear extensions are needed. Finally, we have seen that an equivalent system
can be stated if we consider positioned antichains instead of adjacent linear extensions, leading in
general to a reduction in the number of equations; on the other hand, we have already seen that
the number of equations needed can be less than the number of the positioned antichains; a deeper
study on how the number of equations can be reduced seems interesting.

BU-algorithm is based on minimal elements. Similar procedures could be developed if attention
is fixed on maximal elements or other positions in the linear extension. This could increase the range
of applicability of this philosophy; for example, starting from last element would be a suitable choice
for rooted trees when the root is the maximal element.
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Appendix: Proof of Theorem 3

In an attempt to clarify the proof, we have considered some previous results before the main part of
the proof. In what follows, we will denote Px the poset P \ {x}.
Lemma 5. Let P be a finite poset. The following holds:

i) For every finite posets P and Q, e(P ⊕Q) = e(P )e(Q) and e(P �Q) =
(|P |+|Q|

|P |
)
e(P )e(Q).

ii) For every x ∈ M(P ), i(Px) ≤ i(P ) ≤ 2i(Px).

iii) pa(P ) =
∑

(x,y)∈A2(P ) i(P\ � {x, y}), where A2(P ) denotes the set of antichains of two elements
of P .

iv) pa(P1 ⊕ P2) = pa(P1) + pa(P2).

v) pa(P1 � P2) = i(P2)pa(P1) + i(P1)pa(P2) +
∑

(x,y)∈P1×P2
i((P1\ � {x}) � (P2\ � {y})).

vi) Let P be a poset with m(P ) = 2. Suppose that P has a minimal element x1 less than every
non-minimal element in P ; then, pa(P ) = pa(Px1)+1. Therefore, if P ∗ is a poset with an only
minimum, then pa(P ∗ � 1) = pa(P ∗

x1
� 1) + 1.

vii) Let P be a poset with m(P ) = 3. Suppose that P has a minimal element x1 less than every
non-minimal element in P ; then, pa(P ) = pa(Px1)+5. Therefore, if P ∗ is a poset with an only
minimum, then pa(P ∗ � 1 � 1) = pa(P ∗

x1
� 1 � 1) + 5.

viii) i(P ) = i(P ∂) and pa(P ) = pa(P ∂).

Proof:
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i) These are well-known properties of e(P ). See [23], [19].

ii) Consider x ∈ M(P ) fixed and let us define

F : I(Px) → I(P )
I �→ I ∪ {x}

As x ∈ M(P ), if I ∈ I(Px), it follows that I ∪ {x} ∈ I(P ), and F is injective, whence the first
inequality holds.

Let us now consider the function G : I(P ) → I(Px)× 2 given by

G(I) =

⎧⎨⎩
(I, 0), x /∈ I

(I \ {x}, 1), x ∈ I �= {x}
(∅, 1), I = {x}

Remark that if x �∈ I then I ∈ I(Px); on the other hand, as x ∈ M(P ), if x ∈ I, then
I \ {x} ∈ I(Px); we conclude that G is well-defined. As G is injective, the second inequality
holds.

iii) For a fixed antichain {x, y} of two elements, the number of positioned antichains associated to
{x, y} is given by i(P\ � {x, y}). Then, pa(P ) =

∑
(x,y)∈A2(P ) i(P\ � {x, y}).

iv) This result has been already shown in the proof of Prop. 1.

v) The set PA(P1�P2) can be partitioned in three parts in terms of the antichain a: a ⊆ P1, a ⊆ P2

and a = {x, y}, x ∈ P1, y ∈ P2. Then, if A2(P ) denotes the set of antichains of two elements of
P , iii) implies that pa(P1 � P2) is given by

∑
(x,y)∈A2(P1)

i((P1\ � a)�P2)+
∑

(x,y)∈A2(P2)

i(P1�(P2\ � a))+
∑

(x,y)∈P1×P2

i((P1\ � {x})�(P2\ � {y})).

On the other hand, note that i((P1\ � a) � P2) = i(P1)i(P2). Consequently, if a ∈ P1, then
V = V1 ∪ V2, where V1 ∈ I(P1\ � a), V2 ∈ I(P2). Thus, (a, V ) ∈ PA(P1) and V2 ∈ I(P2),
whence

∑
(x,y)∈A2(P1)

i((P1\ � a) � P2) = pa(P1)i(P2). Similarly,
∑

(x,y)∈A2(P2)
i(P1 � (P2\ �

a)) = i(P1)pa(P2).

vi) Let x1, x2 be the minimal elements of P . Observe that x2 is the only element in P that is not
related or equal to x1. Then, every antichain of two elements a in P is related or contains x1.
Therefore, P\ � a = Px1\ � a and I(P\ � a) = I(Px1\ � a). Then, if (a, V ) is a positioned
antichain of P such that x1 /∈ a then (a, V ) is a positioned antichain of Px1. Also, if (a, V ) is
a positioned antichain of Px1, then (a, V ) is a positioned antichain of P . Then, the positioned
antichains in P are the same as Px1 plus the positioned antichains with x1 ∈ a. Since x1

is less than every element apart from x2, then the only position antichain with x1 ∈ a is
(a = {x1, x2}, V = ∅). Therefore, pa(P ) = pa(Px1) + 1.

vii) Let x1, x2, x3 be the minimal elements of P and let us study the different kinds of positioned
antichains (a, V ) in P and Px1.
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• Suppose a contains some element in ↑ x̂1; then, x1 /∈ V and P\ � a = Px1\ � a, whence
V is an ideal of Px1, and then (a, V ) is a positioned antichain for Px1. Reciprocally, any
(a, V ) ∈ PA(Px1) satisfying a∪ ↑ x̂1 �= ∅ can be associated to (a, V ) ∈ PA(P ). Then,

f : I(P\ � a) → I(Px1\ � a)
V → V

is a bijective function.

• Suppose on the other hand a∩ ↑ x̂1 = ∅. Observe that this case only arises if a ⊂
{x1, x2, x3}, since x1 is related with every non-minimal element. The possible positioned
antichains are (a = (x1, x2), V = ∅), (a = {x1, x3}, V = ∅), (a = {x1, x2}, V = {x3}), (a =
{x1, x3}, V = {x2}) and the positioned antichains for a = {x2, x3}. Note that the first
four positioned antichains are not positioned antichains of Px1.

Let us then turn to positioned antichains with a = (x2, x3). We have two possible choices
for V in this case: either x1 ∈ V or V = ∅. In the first case, note that

f : I(P\ � {x2, x3}) → I(Px1\ � {x2, x3})
V → V \ {x1}

is a bijective function. Then, the number of ideals associated to the positioned antichain
a = {x2, x3} in P is the number of ideals associated to the positioned antichain a = {x2, x3}
in Px1 plus one (the remaining case V = ∅). This positioned antichain plus the four ones
above which were not in Px1 give us the result pa(P ) = pa(Px1) + 5.

viii) Note that i(P ) = i(P ∂) because A ∈ I(P ) ⇔ Ac ∈ F(P ) = I(P ∂).

Let us now prove that pa(P ) = pa(P ∂). Let a be an antichain in P ; then, a is an antichain
in P ∂. On the other hand, the number of positioned antichains associated to this antichain in
P is i(P\ � a), and the number of positioned antichains associated to a in P ∂ is i(P ∂\ � a);
since P ∂\ � a = (P\ � a)∂, then i(P ∂\ � a) = i((P\ � a)∂) = i(P\ � a). By iii) we get
pa(P ) = pa(P ∂).

Lemma 6. Let P be a finite poset with an only minimal element x; then, pa(P ) = pa(Px).

Proof: Obviously, pa(P ) ≥ pa(Px). Now, as x � y, ∀y ∈ Px, for any positioned antichain (a, V )
in P , it follows that x �∈ a, x �∈ V . Consequently, any positioned antichain in P is also a positioned
antichain in Px, whence pa(P ) ≤ pa(Px) and thus, pa(P ) = pa(Px).

Lemma 7. Let P be a finite poset such that m(P ) ≥ 4. Then, pa(P ) ≤ ∑
x∈M(P ) pa(Px).

Proof: The set PA(P ) (resp. PA(Px)) can be partitioned in three groups, PA0(P ),PA1(P ),PA2(P )
(resp. PA0(Px),PA1(Px),PA2(Px)) attending the number of minimal elements of P in the antichain.
We will show that for each of these three cases the result holds.

• Case 1: a = {a1, a2}, a1, a2 �∈ M(P ). Consider an element x(a1, a2) ∈ M(P ) such that
x(a1, a2) ∈↓ â. Then, x(a1, a2) �∈ a, x(a1, a2) �∈ V, whence (a, V ) ∈ PA(Px(a1,a2)). Consequently,

pa0(P ) ≤
∑

x∈M(P )

pa0(Px).
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• Case 2: a = {x, a0}, a0 �∈ M(P ), x ∈ M(P ). As in the previous case, there exists an
element x(a0) ∈ M(P ), x(a0) �= x such that x(a0) ∈↓ a. Then, x(a0) �∈ a, x(a0) �∈ V, whence
(a, V ) ∈ PA(Px(a0)). Consequently,

pa1(P ) ≤
∑

x∈M(P )

pa1(Px).

• Case 3: a = {xi, xj}, xi, xj ∈ M(P ). Note that for fixed {xi, xj} the number of possible
positioned antichains in P (resp. Px, for x ∈ M(P )\{xi, xj}) is given by i(P\ ↑ {xi, xj}) (resp.
i(Px\ ↑ {xi, xj})). Thus, by Lemma 5 iii),

pa2(P ) =
∑

(xi,xj)∈M(P )2

i(P\ ↑ {xi, xj}),
∑

x∈M(P )

pa2(Px) =
∑

x∈M(P )

∑
(xi,xj)∈M(P )\{x}

i(Px\ ↑ {xi, xj}).

Now, defining P ij = P\ ↑ {xi, xj}, we have

∑
x∈M(P )

∑
(xi,xj)∈M(P )\{x}

i(Px\ ↑ {xi, xj}) =
∑

x∈M(P )

∑
(xi,xj)∈M(P )\{x}

i(P ij \ {x})

=
∑

(xi,xj)∈M(P )

∑
x∈M(P )\{xi,xj}

i(P ij \ {x})

Since there are at least four minimal elements in P, the last expression has at least two addends.
If x∗

i,j is the minimal element with least i(P ij \ {x∗
i,j}), it follows from Lemma 5 ii)

∑
(xi,xj)∈M(P )2

∑
x∈M(P )\{xi,xj}

i(P ij \ {x}) ≥
∑

(xi,xj)∈M(P )2

2i(P ij \ {x∗
i,j})

≥
∑

(xi,xj)∈M(P )2

i(P ij)

=
∑

(xi,xj)∈M(P )2

i(P\ ↑ {xi, xj})

Adding up these three cases, the result holds.
It is not difficult to find examples showing that there are not similar results to Lemmas 6 and 7

when m(P ) = 2 and m(P ) = 3. However, there is a special case where a similar result holds.

Lemma 8. Let P be a finite poset such that m(P ) = 2 and P has at least two maximal elements
which are both non-minimal elements. Then:

pa(P ) ≤ pa(Px1) + pa(Px2).

Proof: The proof is quite similar to the previous one. The set PA(P ) (and PA(Px1),PA(Px2))
can be partitioned in three groups, PA0(P ),PA1(P ),PA2(P ) (resp. PA0(Pxi

),PA1(Pxi
),PA2(Pxi

))
attending the number of minimal elements of P in the antichain. The first two cases can be treated as
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in the previous lemma; in particular, ({M1,M2}, V = ∅) is linked to ({M1,M2}, ∅) in, say, PA(Px1),
with x1 ∈↓ {M1,M2}.

Let us then deal with the case of PA2(P ). In this case, the only positioned antichain is given
by (a = {x1, x2}, V = ∅). Then, we can link this positioned antichain to (a = {M1,M2}, V = ∅) ∈
PA(Px2), which has not been linked to any other positioned antichain.

Lemma 9. Let P be a finite poset such that M(P ) = {x1, x2, x3} and P has at least three maximal
elements which are non-minimals; then,

pa(P ) ≤ pa(Px1) + pa(Px2) + pa(Px3).

Proof: The proof is very similar to the previous proofs. The set PA(P ) (and PA(Pxi
), xi ∈

M(P )) can be partitioned in three groups, PA0(P ),PA1(P ),PA2(P ) (resp. PA0(Pxi
),PA1(Pxi

),PA2(Pxi
))

attending the number of minimal elements of P in the antichain a. The first two cases can be
treated as in Lemma 7. In particular, if we denote by M1,M2,M3 three maximal non-minimal el-
ements, the positioned antichain (a = {Mi,Mj}, V = ∅) is linked to (a, V ) ∈ PA(Px(Mi,Mj)) for a
x(Mi,Mj) ∈↓ {Mi,Mj}.

Let us then deal with the situation where a = {xi, xj} and consider the positioned antichain
(a, V ). In this case, either V = ∅ or xk ∈ V , where xk is the minimal outside a. If xk ∈ V , we link
(a, V ) to (a, V \ {xk}) ∈ PA(Pxk

). If V = ∅, we link (a = {xi, xj}, V = ∅) to (a = {Mi,Mj}, V =
∅) ∈ PA(Px∗(Mi,Mj)) for x

∗(Mi,Mj) �= x(Mi,Mj).

Lemma 10. Let P be a finite poset with 2 minimals x1 and x2 and such that P \ {x1, x2} is neither
the empty set nor a chain; then, ∑

x∈P
i(P\ � x) ≤ (|P | − 1)e(P )

Proof: We are going to build an injective function F from I(P\ � x) × {x} to L(P ) ×
{1, 2, · · · , |P |−1}. Define f : P → {1, 2, · · · , |P |−1} such that f(x1) = f(x2) = 1, f(P \{x1, x2}) =
{2, ..., |P |−1} (i.e. f is a bijection between P \{x1, x2} and {2, ..., |P |−1}) and such that f(i) < f(j)
if i � j.

Take x ∈ P \ {xi, xj} and consider (i, x) ∈ I(P\ � x)× {x}. We define F (i, x) = (ε, f(x)), where
ε is a linear extension given by ε := (i, ↓ x̂, x, R) where R := P \ (i∪ ↓ x) and such that the order
in the elements of each part are given according to f and x1 is placed before x2. F is well-defined:
note that i∩ ↓ x = ∅ and there is no contradiction with the order if we place elements of i before
elements of ↓ x̂; for if y ∈ i, z ∈↓ x̂, z � y, then z ∈ i as i is an ideal, whence z ∈ i∩ ↓ x̂ = ∅, that is
not possible. Similarly, there is no contradiction placing elements of R after i or ↓ x̂. Note that F
is injective so far. Indeed, as f is bijective on P \ {x1, x2}, the value f(x) provides element x; and
then, i can be found as the elements placed before x and outside ↓ x̂.

Consider now (i, xk) ∈ I(P\ � xk)× {xk}. We define F (i, xk) = (ε, 1). Let us then define ε:

• If i �= ∅ (then i contains a minimal element) then we define ε = (i, xk, R) where elements in i
and in R are placed in increasing order according to f .

• Finally, F (∅, x1) = (x1, x2, R
∗) and F (∅, x2) = (x2, x1, R

∗), where R∗ is a linear extension of
P \ {x1, x2} such that it does not fit to f . Note that this is always possible as P \ {x1, x2} �= ∅
and it is not a chain.
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Now we can prove the principal theorem of this appendix.
Proof of Theorem 3: We are going to prove it by induction on n = |P |.

For n = 1 the only poset is 1 with pa(1) = 0 < 1 = e(1).
Assume pa(P ) ≤ e(P ) holds if |P | ≤ n and let us prove the result for a poset with n+1 elements.

We have several cases:

• Case 1: m(P ) = 1. Applying the induction hypothesis and Lemma 6, if x is the minimum,

pa(P ) = pa(Px) ≤ e(Px) = e(P ),

whence the result.

• Case 2: m(P ) ≥ 4. Applying the induction hypothesis and Lemma 7

pa(P ) ≤
∑

x∈M(P )

pa(Px) ≤
∑

x∈M(P )

e(Px) = e(P ),

whence the result.

• Case 3: m(P ) = 2. We consider several cases in terms of the number of maximal elements
that are not minimal in P . Let us denote by S this set.

– If S = ∅, then P = 2 and pa(2) = 1 < 2 = e(2).

– If |S| = 1, then either P has a maximum or P = P ∗ � 1, where P ∗ has an only minimum.
If P has a maximum, applying pa(P ) = pa(P ∂) (Lemma 5 viii)), e(P ) = e(P ∂) and the
first case,

pa(P ) = pa(P ∂) ≤ e(P ∂) = e(P ).

Otherwise, if P = P ∗ � 1, where P ∗ has an only minimum, we can apply Lemma 5 i), vi)
and the induction hypothesis, whence

pa(P ∗ � 1) = pa(P ∗
x1

� 1) + 1 ≤ e(P ∗
x1

� 1) + 1 = (|P ∗
x1
|+ 1)e(P ∗

x1
) + 1

≤ (|P ∗
x1
|+ 1)e(P ∗

x1
) + e(P ∗

x1
) = (|P ∗

x1
|+ 2)e(P ∗

x1
) = (|P ∗|+ 1)e(P ∗) = e(P ∗ � 1).

• Case 4: m(P ) = 3. In this last case we can suppose that P has exactly 3 maximal elements
because otherwise we can apply Lemma 5 viii), e(P ) = e(P ∂) and the corresponding case
studied before to conclude:

pa(P ) = pa(P ∂) ≤ e(P ∂) = e(P ).

Then, let us suppose that P has three maximal elements; let us denote by S the set of maximal
elements of P that are not minimal. We consider different cases in terms of |S|.

– If |S| = 0, then P = 3 and pa(3) = 6 = e(3).
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– If |S| = 1, then P = P ∗�1�1, where P ∗ has just one minimal x1. Then, applying Lemma
5 vii) and the induction hipothesis,

pa(P ) = pa(Px1) + 5 ≤ e(Px1) + 5.

We will prove that in this case e(Px1) + 5 ≤ e(P ). To prove this, observe that if we take
any linear extension of Px1 , it can be obtained from a linear extension of P removing x1.
Then, the map

G : L(P ) → L(Px1)
(ε1, ..., εi, x1, εi+2, ..., εn) → (ε1, ..., εi, εi+2, ..., εn)

is a surjective function. Note that:

∗ G(x1, x2, x3, z, . . .) = G(x2, x1, x3, z, . . .) = G(x2, x3, x1, z, . . .) = (x2, x3, z, . . .).

∗ G(x1, x3, x2, z, . . .) = G(x3, x1, x2, z, . . .) = G(x3, x2, x1, z, . . .) = (x3, x2, z, . . .).

∗ G(x1, x3, z, x2, . . .) = G(x3, x1, z, x2, . . .) = (x3, z, x2, . . .).

Thus, e(P ) ≥ e(Px1) + 5 and the result holds.

– If |S| = 2, then P = P ∗ � 1, where P ∗ is a poset with 2 minimal elements and two
(different) maximal elements. Then, we can apply Lemma 5 v), Lemma 10 and the
induction hypothesis to conclude

pa(P ∗ � 1) = 2pa(P ∗) +
∑
x∈P ∗

i(P ∗\ � x) ≤ 2e(P ∗) +
∑
x∈P ∗

i(P ∗\ � x)

≤ 2e(P ∗) + (|P ∗| − 1)e(P ∗) = (|P ∗|+ 1)e(P ∗) = e(P ∗ � 1).

– If |S| = 3, we can use Lemma 9 and the induction hipothesis to conclude

pa(P ) ≤ pa(Px1) + pa(Px2) + pa(Px3) ≤ e(Px1) + e(Px2) + e(Px3) = e(P ).

Therefore we have proved the inductive step for any P with n+1 elements, and then by induction
the result holds.
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[15] J. Leydold and W. Hörmann. A Sweep-Plane Algorithm for Generating Random Tuples in
Simple Polytopes. J. Math. Comp., (67):1617–1635, 1998.

[16] R.H. Mohring M. Habib. On some complexity properties of N-free posets and posets with
bounded decomposition diameter. Discrete Mathematics, 63:157–182, 1987.

[17] Jiri Matousek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2002.

[18] M.D.Atkinson and H.W. Chang. Extensions of partial orders of bounded width. Congressus
Numerantium, (52):21–35, 1985.

[19] J. Neggers and H. S. Kim. Basic posets. World Scienctific, 1998.

[20] G. Pruesse and F. Ruskey. Generating linear extensions fast. SIAM Journal on Computing,
(23):373–386, 1994.

[21] F. Ruskey. Generating Linear Extensions of Posets by Transpositions. Journal of Combinatorial
Theory, Series Bl, 54:77–101, 1992.

[22] R. Stanley. Two poset polytopes. Discrete Comput. Geom., 1(1):9–23, 1986.

[23] R. Stanley. Enumerative Combinatorics. Cambridge University Press, Cambridge (UK), 2012.

[24] M. Sugeno. Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of
Technology, 1974.

[25] Y.L. Varol and D. Rotem. An algorithm to generate all topological sorting arrangements.
Comput. J., (24):83–84, 1981.

25



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


